JPH01193004A - Steam turbine power generator - Google Patents

Steam turbine power generator

Info

Publication number
JPH01193004A
JPH01193004A JP1586488A JP1586488A JPH01193004A JP H01193004 A JPH01193004 A JP H01193004A JP 1586488 A JP1586488 A JP 1586488A JP 1586488 A JP1586488 A JP 1586488A JP H01193004 A JPH01193004 A JP H01193004A
Authority
JP
Japan
Prior art keywords
shaft
steam turbine
turbine
generator
power generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1586488A
Other languages
Japanese (ja)
Inventor
Eiji Tsunoda
角田 英治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1586488A priority Critical patent/JPH01193004A/en
Publication of JPH01193004A publication Critical patent/JPH01193004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To eliminate twist exciting force and prevent any breakage of turbine blades by constituting the rotary shaft of a steam turbine power generator in such a way that the linked twist rotational frequency formed with those of the rotary shaft and a turbine long blade is not shifted from a frequency twice as much as the operation system frequency of a steam turbine power generator. CONSTITUTION:A coupling part 12 is provided on a journal part 11 located on the turbine shaft side of the rotary shaft 10 in a steam turbine power generator. A weight 13 for adjustment as an added weight, is fixed on a side surface opposite to a turbine shaft side of this coupling part 12. The weight of this weight 13 is set to such a weight as the node 16a of a twist oscillation mode 16 is located on the central part, in longitudinal direction, of a shaft part 14 with the coil of the power generator wound thereon. On the other hand, a journal part 15 is provided on the side opposite to the turbine shaft side on the rotary shaft 10, so that the diameter D1 is set larger than the diameter D2 of the journal part 11. Thereby, it is possible to hold the balance of the rigidity in an axial direction and mass with respect to the coupling part 12 provided on the journal part 11.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は蒸気タービン発電機に係り、特に回転輪とター
ビン長翼との連成ねじり回転撮動に対して回転軸系が損
傷を受は難い構造とした蒸気タービン発電機に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a steam turbine generator, and in particular, to a rotary shaft system for coupled torsional rotation motion between a rotary ring and a long turbine blade. This invention relates to a steam turbine generator with a structure that is difficult to damage.

(従来の技術) 蒸気タービン発電機の回転軸系は、径が太く重量のある
ロータ部と、径が細くて長い軸部とを交互に連精して構
成されている。この蒸気タービン発′iIA機の回転軸
系においては、送電系統事故やそれに引き続く高速再閉
路などにより励起される過渡振動により回転輪系に過大
なトルクが生じ、この過大なトルクの繰返しによって回
転軸系にねじり疲労が累積されることがある。かかるね
じり撮動の問題は回転軸系に発生する低次の軸ねじり振
動モードにより、ジャーナル部、カップリング部等の低
サイクル疲労として扱われ、その疲労の蓄積を監視する
ための監視装置が開発され使用されている。
(Prior Art) A rotating shaft system of a steam turbine generator is configured by alternately connecting a heavy rotor portion with a large diameter and a long shaft portion with a thin diameter. In the rotating shaft system of this steam turbine generator, excessive torque is generated in the rotating wheel system due to transient vibrations excited by power transmission system failures and subsequent high-speed reclosing circuits, and the repetition of this excessive torque causes the rotating shaft to Torsional fatigue may accumulate in the system. Such torsional imaging problems are treated as low-cycle fatigue of the journal section, coupling section, etc. due to the low-order shaft torsional vibration mode that occurs in the rotating shaft system, and a monitoring device has been developed to monitor the accumulation of such fatigue. has been used.

上記ねじり振動はまた蒸気タービン発電機軸と最終段間
に代表されるタービンの艮、翼との連成撮動の問題を生
じさせ、この翼と軸との速成ねじり振動は、発電機逆相
電流により発生する系統周波数の2倍の周波数の変動ト
ルクにより軸系にねじり撮動を発生させる。
The above torsional vibration also causes the problem of coupling between the steam turbine generator shaft and the blades of the turbine represented by the final stage, and the fast-forming torsional vibration between the blades and shaft causes the generator reverse sequence current. The fluctuating torque at a frequency twice the system frequency generated by this causes torsional motion in the shaft system.

軸系にねじり振動が生じると、軸およびこの軸に結合さ
れた衷が相互に影響しあいながらi勤し、関と軸の速成
ねじり固有振動数が系統の2倍周波敗に一致すると、共
振現象により宵が加振□し、内が破損してしまうことが
ある。上記系統周波数は東日本では501−1 zであ
るから変動トルクを生じさせる2倍周波数は100H2
であり、一方西日本では60H2であるから変動トルク
を生じさせる2倍周波数は120Hzである。
When torsional vibration occurs in the shaft system, the shaft and the shaft connected to this shaft work together while influencing each other, and when the fast-growing torsional natural frequency of the joint and shaft matches the double frequency loss of the system, a resonance phenomenon occurs. This may cause vibrations and damage the inside. The above system frequency is 501-1z in eastern Japan, so the double frequency that causes fluctuating torque is 100H2
On the other hand, in western Japan, the frequency is 60H2, so the double frequency that produces the fluctuating torque is 120Hz.

上記軸ねじり振動モードを第5図に示す。ねじれ角変位
で示したものであるが、高圧蒸気タービン(+−I P
 >の回転軸1と、低圧蒸気タービン(LP−A、LP
−B、LP−C)(7)回転軸2,3゜4と発電機(G
EN)の回転軸5とが、それぞれの方向にねじれたモー
ドで連結され、これら回転軸に結合された四6も連成し
て振動し、ねじれ方向に振動していることを示している
。軸だけのねじれ振動では翼はi勤せず、モード図上で
は軸のねじれ振動のみが示されている。
The above shaft torsional vibration mode is shown in FIG. Although it is shown in terms of torsion angular displacement, the high-pressure steam turbine (+-I P
> rotary shaft 1 and low pressure steam turbines (LP-A, LP
-B, LP-C) (7) Rotating shaft 2, 3°4 and generator (G
EN) are connected in a twisted mode in each direction, and the four 6 coupled to these rotating shafts also vibrate in a coupled manner, indicating that they vibrate in the torsional direction. Torsional vibration of only the shaft does not affect the blade, and only the torsional vibration of the shaft is shown on the mode diagram.

116の振動モードは第6図および第7図に示すように
211類あり、一方は軸4のねじれ方向と同゛じ方向に
ねじれ振動を生じる同位相モード(第6図)と、他方は
軸4のねじれ方向と逆の方向にFJ6がねじれ振動を生
じる逆位相モード(第7図)である。すなわち買6とし
てのねじり方向の固有振動数は原則として1つであるが
、翼6と軸4とを連成した場合、同位相モードと逆位相
モードの2つの振動として表わされ、固有撮動数として
2つ出現することになる。
There are 211 types of vibration modes of 116 as shown in Figs. 6 and 7. One is the in-phase mode (Fig. 6) that generates torsional vibration in the same direction as the torsional direction of the shaft 4, and the other is the in-phase mode (Fig. This is an anti-phase mode (FIG. 7) in which FJ6 causes torsional vibration in a direction opposite to the torsional direction of No. 4. In other words, the natural frequency in the torsional direction as vibration 6 is in principle one, but when the blade 6 and shaft 4 are coupled, it is expressed as two vibrations, an in-phase mode and an anti-phase mode, and the natural frequency is Two numbers will appear as moving numbers.

この振動は軸4と連成運動する長翼6の数に比例して発
生するため、設計上考慮りべき振動数は少なく、111
443!成ねじり振動数は、蒸気タービン発電機として
の構造上その系統周波数の2倍近くに存在する可能性が
高いことになる。
Since this vibration occurs in proportion to the number of long blades 6 that move in conjunction with the shaft 4, the number of vibrations that should be considered in design is small, 111
443! Due to the structure of the steam turbine generator, the torsional vibration frequency is likely to be approximately twice the system frequency.

また第8図(a)に示すように蒸気タービン発電機の回
転軸5における振動モード7の節7aが、第8図(b)
に示すように、回転軸5のコイルを巻いたシャフトの長
手方向中央部から離れた位置にあると、回転軸5をねじ
り加振した場合に長手方向に加振力をキャンセルする振
動モードが対称でないため、共振現象を生じ、回転軸5
に大きいねじり振動が発生する。その結果タービン内の
振動応答応力8は第9図に示すように増大し、タービン
翼の疲労損傷につながることになる。
Further, as shown in FIG. 8(a), the node 7a of the vibration mode 7 on the rotating shaft 5 of the steam turbine generator is as shown in FIG. 8(b).
As shown in the figure, if the rotating shaft 5 is located away from the center in the longitudinal direction of the shaft around which the coil is wound, the vibration mode that cancels the excitation force in the longitudinal direction when the rotating shaft 5 is torsionally excited becomes symmetrical. As a result, a resonance phenomenon occurs and the rotating shaft 5
Large torsional vibrations occur. As a result, the vibration response stress 8 within the turbine increases as shown in FIG. 9, leading to fatigue damage to the turbine blades.

一方、発電機の逆相電流は不平衡電気トルクを発生させ
、発電機軸をねじり加振する現象を引き起す。この逆相
電流は通常運転時も流れており、不平衡トルクとしての
値は定格伝達トルクの2〜3%程度であるが、共振現象
を取扱う問題であり、ダンピングが小さいことがら翼軸
速成ねじり振動数が系統振動数の2倍と共振した場合に
は、別が損傷するおそれがある。
On the other hand, the negative sequence current of the generator generates an unbalanced electric torque, which causes the generator shaft to twist and vibrate. This negative-sequence current flows even during normal operation, and its value as unbalanced torque is about 2 to 3% of the rated transmission torque, but since this is a problem dealing with a resonance phenomenon, and the damping is small, the blade shaft speed formation torsion If the frequency resonates at twice the system frequency, there is a risk of damage to other components.

(FF、明が解決しようとする課題) 上述したように、翼軸連成ねじり振動数が系統振動数の
2倍と共振しないように設計することが基本となり、蒸
気タービン発電機の軸の設工1とタービン長翼の設計と
ともに、連成した後の振動設計を含めて検討する必要が
あり、設計が非常に複雑になってしまう。
(FF, the problem that Akira is trying to solve) As mentioned above, the basic design is to prevent the blade shaft coupled torsional frequency from resonating with twice the system frequency, and the design of the shaft of the steam turbine generator is In addition to the design of engineering 1 and the long turbine blades, it is necessary to consider the vibration design after coupling, making the design extremely complicated.

また機種によっては振動解析精度の問題から、少なくと
も解析上は±3HzVI度離調した設計が要求されるた
め、大幅に離調した設計はできず、どうしても共振も考
慮した設計を行なうことになり、さらに設計が複雑なも
のになってしまう。
Also, depending on the model, due to problems with vibration analysis accuracy, a design with at least ±3 Hz VI degree detuning is required for analysis, so it is not possible to design with a large detuning, and it is necessary to design with resonance in mind. Furthermore, the design becomes more complicated.

本発明は上記した点に鑑みてなされたもので、発電機軸
部におけるねじり振動モードの節が発電機軸の長手方向
のほぼ中央部を通るように設定し、ねじり加振力をねじ
り16 lhモードによってキ1!ン゛セルさせ、ター
ビン翼の損傷をなくすようにした蒸気タービン発電機を
提供することを目的とする。
The present invention has been made in view of the above points, and the nodes of the torsional vibration mode in the generator shaft section are set to pass through approximately the center in the longitudinal direction of the generator shaft, and the torsional excitation force is transmitted by the torsional 16 lh mode. Ki 1! An object of the present invention is to provide a steam turbine generator in which damage to turbine blades is eliminated.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の蒸気タービン発電機は、蒸気タービン発電機の
回転軸を、回転軸とタービン長翼とめ連成ねじり回転振
動数が蒸気タービン発電機の運転系統周波数の2倍周波
数から離れない構成とするとともに、発電機軸のタービ
ン側のジャーナル径を、発NIl軸のねじり振動モード
における振動の節が発電機のコイルを巻いたシャフトの
長手方向中央部に位置するように反対側のジャーナル径
より小径として構成される。
(Means for Solving the Problems) The steam turbine generator of the present invention has a rotating shaft of the steam turbine generator whose coupled torsional rotational frequency between the rotating shaft and the turbine long blade is equal to the operating system frequency of the steam turbine generator. In addition to maintaining a configuration that does not deviate from the double frequency, the journal diameter on the turbine side of the generator shaft is set so that the vibration node in the torsional vibration mode of the generator shaft is located at the longitudinal center of the shaft around which the generator coil is wound. The diameter of the journal is smaller than that of the opposite journal.

(作用) 本発明の蒸気タービン発電機においては、回転軸とター
ビン長翼の連成ねじり固有振動数が系統周波数の2倍の
周波数と共振しても、発電機軸のねじり振動モードにお
ける振動の節が発電機のコイルを巻いたシャフトの長手
方向中央部に位δするように設計されているので、共振
現象の加振方向に対して逆位相で蒸気タービン発電機の
回転軸がねじれ振動し、力学的に共振現象を押え込むこ
とが可能となり、タービン翼の振動応答応力も低減され
る。したがってタービン翼の疲労損傷を効渠的に防ぐこ
とが可能となる。
(Function) In the steam turbine generator of the present invention, even if the coupled torsional natural frequency of the rotating shaft and the long turbine blade resonates with a frequency twice the system frequency, the vibration node in the torsional vibration mode of the generator shaft is designed to be positioned δ at the longitudinal center of the shaft around which the generator coil is wound, so the rotating shaft of the steam turbine generator torsionally vibrates in the opposite phase to the excitation direction of the resonance phenomenon. It becomes possible to suppress the resonance phenomenon dynamically, and the vibration response stress of the turbine blades is also reduced. Therefore, fatigue damage to the turbine blades can be effectively prevented.

(実施例) 以下本発明の一実施例を図面につき説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図において符号10は蒸気タービン発電機の回転軸
であって、この回転軸10のタービン軸側に位置するジ
ャーナル部11にはカップリング部12が設けられてい
る。このカップリング部12のタービン軸側と反対側の
側面には、付加重量としての調整用ウェイト13が固着
されている。
In FIG. 1, reference numeral 10 is a rotating shaft of a steam turbine generator, and a coupling portion 12 is provided on a journal portion 11 located on the turbine shaft side of this rotating shaft 10. As shown in FIG. An adjustment weight 13 as additional weight is fixed to the side surface of the coupling portion 12 on the side opposite to the turbine shaft side.

この調整用ウェイト13の重量は、第2図に示ずように
ねじり振動モード16の節16aが発電機のコイルを巻
いたシャフト部14の長手方向中央部に位置するような
重さに設定されている。また第1図に示すように回転軸
10のタービン軸側と反対側にはジャーナル部15が設
けられている。
The weight of this adjustment weight 13 is set so that the node 16a of the torsional vibration mode 16 is located at the longitudinal center of the shaft portion 14 around which the coil of the generator is wound, as shown in FIG. ing. Further, as shown in FIG. 1, a journal portion 15 is provided on the opposite side of the rotating shaft 10 from the turbine shaft side.

上記ジャーナル部15の直径D1はジャーナル部11の
直径D2より大径になっている。ジャーナル部15の直
径D1をジャーナル部11の直径D2より大径にしたの
は、ジャーナル部11に設番ノたカップリング部12に
対して軸方向の剛性および質mのバランスをとるためで
ある。
The diameter D1 of the journal portion 15 is larger than the diameter D2 of the journal portion 11. The reason why the diameter D1 of the journal part 15 is made larger than the diameter D2 of the journal part 11 is to balance the axial rigidity and quality m with respect to the coupling part 12 provided in the journal part 11. .

一方上記回転輪10のジャーナル部11の端面からシャ
フト部14の長手方向中央部までの距離L1は、回転軸
10のジャーナル部15の端面からシャフト部14の長
手方向中央部までの距離L2より小さい値となるように
設定されている。
On the other hand, the distance L1 from the end face of the journal part 11 of the rotating ring 10 to the longitudinal center of the shaft part 14 is smaller than the distance L2 from the end face of the journal part 15 of the rotating shaft 10 to the longitudinal center of the shaft part 14. It is set to be the value.

これは電気的出力を得るためのシャフト部14の長手方
向の剛性を振動モードに合せるためである。
This is to match the longitudinal rigidity of the shaft portion 14 for obtaining electrical output to the vibration mode.

上記回転軸10の撮動モード16は第2図(b)に示す
ように、その節16aが発電機のコイルを巻いたシャフ
ト部14の長手方向中央部に位置するように設定されて
いる。
As shown in FIG. 2(b), the photographing mode 16 of the rotating shaft 10 is set so that the node 16a is located at the center in the longitudinal direction of the shaft portion 14 around which the coil of the generator is wound.

しかして回転軸10にねじり加振力が作用しても、回転
軸10は加゛振方向に対して逆位相でねじれ撮動するた
め、力学的に共振現象を押え込むことになり、回転軸1
0は振動せず、タービン翼の振動応答応力17は第3図
に示すように共振点においてもほぼ零に近い値となる。
Even if a torsional excitation force acts on the rotating shaft 10, the rotating shaft 10 torsionally moves in an opposite phase to the excitation direction, which mechanically suppresses the resonance phenomenon. 1
0 means no vibration, and the vibration response stress 17 of the turbine blade has a value close to zero even at the resonance point, as shown in FIG.

そのため、回転軸10とタービン長翼(図示せず)の連
成ねしり固有振動数が系統周波数の2倍の周波数と共振
しても、回転軸10のねじり振動モードによってはター
ビン翼が疲労損傷を受けることがない。
Therefore, even if the coupled torsion natural frequency of the rotating shaft 10 and the long turbine blade (not shown) resonates with a frequency twice the system frequency, the turbine blade may suffer fatigue damage depending on the torsional vibration mode of the rotating shaft 10. I never receive it.

すなわち本実施例による構造を採用することにより、従
来のタービン翼の構造を改変することなく、また、翼軸
連成ねじり振動数と系統周波数の2倍の周波数との離W
A設計を厳格に行なうことなく、信頼性の高い蒸気ター
ビン発電機を得ることができる。
That is, by adopting the structure according to this embodiment, the separation W between the blade axis coupled torsional vibration frequency and the frequency twice the system frequency can be reduced without modifying the structure of the conventional turbine blade.
A highly reliable steam turbine generator can be obtained without carrying out strict design.

第4図は本発明の他の実施例を示し、この実施例にJ3
いては、回転軸10のジャーナル部11に設けたカップ
リング部12に付加重量として焼きばめリング18が外
装され、カップリング部12の剛性と質聞を同時に変化
さゼることで、振動モードの節が発電機のコイルを巻い
たシ1?フト81114の長手方向中央部に位置するよ
うにしている。
FIG. 4 shows another embodiment of the present invention, in which J3
In this case, a shrink-fit ring 18 is attached to the coupling part 12 provided on the journal part 11 of the rotating shaft 10 as an additional weight, and by changing the rigidity and texture of the coupling part 12 at the same time, the vibration mode can be changed. Is the node wrapped around the generator coil 1? It is located at the center in the longitudinal direction of the foot 81114.

本実施例においても、回転軸10にねじり加振力が作用
しても、回転軸10は加振方向に対して逆位相でねじれ
振動するため、共振現像を抑制することになり、回転軸
10の疲労損傷を前述の実施例と同様に防止することが
できる。
In this embodiment as well, even if a torsional excitation force acts on the rotating shaft 10, the rotating shaft 10 torsionally vibrates in an opposite phase to the excitation direction, so resonance development is suppressed, and the rotating shaft 10 fatigue damage can be prevented in the same manner as in the previous embodiment.

また焼きばめリング18の形状または質量を適宜調整す
ることによって、蒸気タービン5Q電機の振動モードの
節の位置を外部から簡易に調整することができる。
Further, by appropriately adjusting the shape or mass of the shrink fit ring 18, the position of the vibration mode node of the steam turbine 5Q electric machine can be easily adjusted from the outside.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、タービン翼の構造を
変更することなく、また翼軸連成ねしり固有振動数と系
統周波数の2倍の周波数とを充分離調することなく軸系
の設計をすることができるので1.設計の簡素化が図ら
れるとともに蒸気タービン発電機の信頼性を大幅に向上
させることができる。
As described above, according to the present invention, the shaft system can be adjusted without changing the structure of the turbine blade and without sufficiently separating the blade-shaft coupled shear natural frequency and the frequency twice the system frequency. 1. I can design. The design can be simplified and the reliability of the steam turbine generator can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る蒸気タービン発電機の回転軸の一
実施例を示す図、第2図(a)と第2図(b)はそれぞ
れ回転軸と、回転軸の位置と振動モードとの関係を示す
図、第3図はねじり振動モードとタービン翼の振動応答
応力との関係を示す図、第4図は本発明の他の実施例を
示す図、第5図は翼軸連成ねしり振動モードの一例を蒸
気タービン発電機の位置とともに示す図、第6図は内が
同位相にある翼軸連成ねじり振動モードを示す図、第7
図は翼が逆位相にある翼軸連成ねじり振動モードを示す
図、第8図(a)と第8図(b)はそれぞれ回転軸と、
回転軸の位置と振動モードとの関係を示す図、第9図は
ねじり振動モードとタービン翼のi勤応答応力との関係
を示す図である。 1.2.3.4.5・・・回転軸、6・・・四、7・・
・振動モード、7a・・・節、8・・・振動応答応力、
10・・・回転軸、11・・・ジャーナル部、12・・
・カップリング部、13・・・調整用ウェイト、14・
・・シャフト部、15・・・ジャーナル部、16・・・
ねじり振動モード、16a・・・節、17・・・振動応
答応力、Dl。 D2・・・ジャーナル径。 出願人代理人   波 多 野   久第 1 回 (ぶ)16 革 2 図 肩ス収ft5z> 茶 3 図 第 4 z 弔 5 z 萎 O図 $ 7 図 革 6 図 戸町 ス[f  (H:lン 第 9 図
FIG. 1 is a diagram showing an embodiment of the rotating shaft of the steam turbine generator according to the present invention, and FIGS. 2(a) and 2(b) show the rotating shaft, the position of the rotating shaft, and the vibration mode, respectively. 3 is a diagram showing the relationship between the torsional vibration mode and the vibration response stress of the turbine blade. FIG. 4 is a diagram showing another embodiment of the present invention. FIG. 5 is a diagram showing the relationship between the torsional vibration mode and the vibration response stress of the turbine blade. Figure 6 shows an example of the torsional vibration mode along with the position of the steam turbine generator. Figure 6 is a diagram showing the blade-shaft coupled torsional vibration mode in which the inner parts are in the same phase. Figure 7
The figure shows the blade-axis coupled torsional vibration mode when the blades are in opposite phase, and Figures 8(a) and 8(b) respectively show the rotation axis and
FIG. 9 is a diagram showing the relationship between the position of the rotating shaft and the vibration mode, and FIG. 9 is a diagram showing the relationship between the torsional vibration mode and the i-force response stress of the turbine blade. 1.2.3.4.5...rotation axis, 6...four, 7...
・Vibration mode, 7a... Node, 8... Vibration response stress,
10... Rotating shaft, 11... Journal part, 12...
・Coupling part, 13...Adjustment weight, 14・
...Shaft part, 15...Journal part, 16...
Torsional vibration mode, 16a... Node, 17... Vibration response stress, Dl. D2...Journal diameter. Applicant's agent Hisashi Hatano 1st (Bu) 16 Leather 2 Fig. shoulder straps ft5z> Brown 3 Fig. 4 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 蒸気タービン発電機の回転軸を、回転軸とタービン長翼
との連成ねじり回転振動数が蒸気タービン発電機の運転
系統周波数の2倍周波数から離れない構成とするととも
に、発電機軸のタービン側のジャーナル径を、発電機軸
のねじり振動モードにおける振動の節が発電機のコイル
を巻いたシャフトの長手方向中央部に位置するように反
対側のジャーナル径より小径にしたことを特徴とする蒸
気タービン発電機。
The rotating shaft of the steam turbine generator is configured such that the coupled torsional rotation frequency between the rotating shaft and the long turbine blades does not deviate from twice the operating system frequency of the steam turbine generator, and the turbine side of the generator shaft A steam turbine power generation device characterized in that the journal diameter is made smaller than the journal diameter on the opposite side so that the vibration node in the torsional vibration mode of the generator shaft is located in the longitudinal center of the shaft around which the generator coil is wound. Machine.
JP1586488A 1988-01-28 1988-01-28 Steam turbine power generator Pending JPH01193004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1586488A JPH01193004A (en) 1988-01-28 1988-01-28 Steam turbine power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1586488A JPH01193004A (en) 1988-01-28 1988-01-28 Steam turbine power generator

Publications (1)

Publication Number Publication Date
JPH01193004A true JPH01193004A (en) 1989-08-03

Family

ID=11900663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1586488A Pending JPH01193004A (en) 1988-01-28 1988-01-28 Steam turbine power generator

Country Status (1)

Country Link
JP (1) JPH01193004A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230166A (en) * 2009-03-27 2010-10-14 General Electric Co <Ge> Tuning frequency of rotating body torsional mode by adding detuner
JP2015135181A (en) * 2014-01-07 2015-07-27 ゼネラル・エレクトリック・カンパニイ Rotor train torsional mode frequency tuning apparatus
WO2022209625A1 (en) * 2021-03-31 2022-10-06 株式会社アイシン Drive device for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230166A (en) * 2009-03-27 2010-10-14 General Electric Co <Ge> Tuning frequency of rotating body torsional mode by adding detuner
JP2015135181A (en) * 2014-01-07 2015-07-27 ゼネラル・エレクトリック・カンパニイ Rotor train torsional mode frequency tuning apparatus
WO2022209625A1 (en) * 2021-03-31 2022-10-06 株式会社アイシン Drive device for vehicle

Similar Documents

Publication Publication Date Title
US6144129A (en) Spring mounting for an electric generator
Rao et al. Theoretical analysis of lateral response due to torsional excitation of geared rotors
Endo et al. Flexural vibration of a thin rotating ring
KR101695021B1 (en) Tuning frequency of rotating body torsional mode by adding detuner
US4839550A (en) Controlled type magnetic bearing device
JP3107266B2 (en) Fluid machinery and wing devices for fluid machinery
JPH01193004A (en) Steam turbine power generator
Den Hartog Vibration of frames of electrical machines
JP4567929B2 (en) Rotating electric machine stator and rotating electric machine using the same
Lindley et al. James Clayton Paper: Some Recent Research on the Balancing of Large Flexible Rotors
US5530310A (en) Squirrel-cage rotor of an electric machine
Rodgers IX. On the vibration and critical speeds of rotors
JP2015135181A (en) Rotor train torsional mode frequency tuning apparatus
JP3029969B2 (en) Rotor wing damping device
JPH045402A (en) Integral shroud vane
Werner et al. Rotor dynamic analysis of asynchronous machines including the finite-element-method for engineering low vibration motors
JP4028183B2 (en) Rotating electric machine stator and rotating electric machine using the same
JPH01298927A (en) Rotor for rotary electric machine
JPH09331659A (en) Rotor of rotary machine
JPH01295640A (en) Rotor for rotary electric machine
Eshleman et al. Torsional vibration in reciprocating and rotating machines
Anwar et al. Effects of end-shields on the stator mode frequencies of electric machines
Hamouda et al. A comparative study on the starting methods of three phase wound-rotor induction motors. I
Murty et al. Lateral and torsional vibration analysis of gas turbine rotor system
SU1707496A1 (en) Method and device for stabilization of shaft rotation