JPH01192824A - Carbon fiber produced by vapor phase process - Google Patents

Carbon fiber produced by vapor phase process

Info

Publication number
JPH01192824A
JPH01192824A JP1123188A JP1123188A JPH01192824A JP H01192824 A JPH01192824 A JP H01192824A JP 1123188 A JP1123188 A JP 1123188A JP 1123188 A JP1123188 A JP 1123188A JP H01192824 A JPH01192824 A JP H01192824A
Authority
JP
Japan
Prior art keywords
peak
carbon fiber
produced
vgcf
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1123188A
Other languages
Japanese (ja)
Inventor
Yasusuke Hirao
平尾 庸介
Yukio Fukuyama
幸男 福山
Yuichi Yamada
裕一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1123188A priority Critical patent/JPH01192824A/en
Publication of JPH01192824A publication Critical patent/JPH01192824A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain a carbon fiber produced by vapor-phase process, exhibiting a specific X-ray diffraction pattern, rich in graphite structure and having excellent properties, by thermally decomposing an organic compound in the presence of a transition metal element or transition metal compound. CONSTITUTION:The raw material of the carbon fiber is produced by dissolving 2wt.% of iron pentacarbonyl [Fe(CO)5] in benzene and further dissolving 0.5wt.% of thiophene in the solution. The raw material is mixed into a carrier gas consisting of hydrogen and carbon dioxide gas and the mixture is introduced into an externally heated vertical furnace 1 to effect the thermal decomposition of the raw material. Vapor-phase carbon fiber having a diameter of 0.1-0.3mum and a length of >=50mum can be produced by this process. The X-ray diffraction pattern of the fiber has asymmetrical (002) diffraction line of carbon and has at least one peak having an area accounting for >=5% of the total area of peaks at a position beyond 26.0 deg. when resolved into each peak after removing the back-ground of amorphous halo.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は気相法炭素繊維(以下VGCFという)に関わ
り、特に強度、弾性率その他結晶性に優れた黒鉛質特有
の性質を複合化して包含するVGCFに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to vapor grown carbon fiber (hereinafter referred to as VGCF), and in particular, it combines the properties unique to graphite, such as strength, elastic modulus, and excellent crystallinity. Concerning the included VGCF.

[従来の技術] 炭素繊維は機械的特性が高いだけでなく、耐食性、耐熱
性、導電性にも優れているため多くの分野に使用されて
いる。
[Prior Art] Carbon fiber is used in many fields because it not only has high mechanical properties but also excellent corrosion resistance, heat resistance, and electrical conductivity.

炭素繊維としてはPAN系、ピッチ系等が良く知られて
おり航空用部材、スポーツ用品、レジャー用品、工業部
品として幅広い分野で用いられている。
PAN type carbon fibers, pitch type carbon fibers, etc. are well known and are used in a wide range of fields such as aviation parts, sports goods, leisure goods, and industrial parts.

また近年性1」を集めているものとしてVGCFがあり
、このものはFe、Nj等の微粒子を媒介として有機化
合物の熱分解によって成長すると云われている。VGC
Fの従来の製法には熱分解帯域に置かれた基板上に微粒
子を散布しておき、そこから繊維を成長させる方法(例
えば特公昭58−22571号)と、微粒子を浮遊させ
浮遊中に繊維を生成させる方法(例えば特開昭58−1
8061.5号、特開昭[io −54998号)があ
る。
Furthermore, VGCF is one that has attracted attention in recent years, and is said to grow by thermal decomposition of organic compounds mediated by fine particles of Fe, Nj, etc. VGC
Conventional manufacturing methods for F include a method in which fine particles are scattered on a substrate placed in a pyrolysis zone and fibers are grown therefrom (for example, Japanese Patent Publication No. 58-22571), and a method in which fine particles are suspended and fibers are grown while suspended. (for example, JP-A-58-1)
No. 8061.5 and JP-A-Sho [io-54998].

[発明が解決しようとする課題] VGCFは高温処理(約2000℃以上)により炭素網
面の選択的配向性か高度に進行し黒鉛ライスカーに近い
構造をとることが知られている。
[Problems to be Solved by the Invention] It is known that VGCF undergoes high-temperature treatment (approximately 2000° C. or higher) to develop selective orientation of carbon network planes to a high degree, resulting in a structure similar to that of graphite Rice Car.

例えばR,Bacon (1,Appl、 Phys、
 31. p283(1980))によれば引張強度2
000 kg /−以上、弾性率71.5T/−で極め
て高性能であり、その構造の類似性からVGCFに大き
な期待がかけられている。
For example, R, Bacon (1, Appl, Phys,
31. According to p283 (1980), tensile strength 2
000 kg/- or more, and an elastic modulus of 71.5 T/-, which shows extremely high performance, and great expectations are placed on VGCF due to the similarity in its structure.

又、G、 G、 Tjbbetts (SAMPE J
、 5ept、 / Oct。
Also, G, G, Tjbbetts (SAMPE J
, 5ept, / Oct.

(1,98[i) p30) ニよれば2800℃処理
したvGCFは引張強度300〜700kg/mj、弾
性率36〜60T/mjであり、引張強度は市販PAN
系炭化繊維(1400℃処理)、弾性率はメソフユーズ
ピッチ系黒鉛繊維(2500℃以上で処理)に匹敵し、
従来の炭素繊維で得られる各特性のトップレベルに達す
るデータが示されている。また電気伝導性は6×10−
5Ω・amで従来の炭素繊維を大きく上回る特性を示し
、その構造か優れていることを示している。
(1,98[i) p30) According to 2, vGCF treated at 2800°C has a tensile strength of 300 to 700 kg/mj and an elastic modulus of 36 to 60 T/mj, and the tensile strength is the same as that of commercially available PAN.
carbonized fiber (processed at 1400℃), the elastic modulus is comparable to meso-fused pitch graphite fiber (processed at 2500℃ or higher),
Data are shown that reach the top level of each property obtained with conventional carbon fibers. Also, the electrical conductivity is 6×10-
At 5Ω・am, it exhibits properties that far exceed those of conventional carbon fibers, indicating that its structure is superior.

一方炉内で生成したままのVGCF (以下生成VGC
Fという)はG、 G、 Tjbbettsの前報によ
れば引張強度220〜270 kg/nuR1弾性率2
3〜40T/IIIIiiであり、メソフユーズピッチ
炭化繊維(1000〜1200℃処理)にほぼ匹敵する
が、その構造の可能性を考えればまたまた不十分と言わ
ざるを得ない。その要因の1つとして繊維軸方向への炭
素網面の配向および炭素網面間隔なと黒鉛結晶への達成
度が低いことか挙げられる。これは透過電子顕微鏡(T
EM)による電子線回折像および格子像あるいはX線に
よる構造パラメータd (002)等の手段により確認
することかできる。
On the other hand, VGCF (hereinafter referred to as generated VGC) remains as generated in the reactor.
According to a previous report by G, G, and Tjbbetts, the tensile strength is 220 to 270 kg/nuR1, and the modulus of elasticity is 2.
3 to 40T/IIIi, which is almost comparable to meso-fused pitch carbonized fiber (treated at 1000 to 1200°C), but considering the possibilities of its structure, it must be said that it is still insufficient. One of the reasons for this is that the orientation of carbon network planes in the fiber axis direction and the carbon network spacing are poorly achieved in graphite crystals. This is a transmission electron microscope (T
It can be confirmed by means such as an electron beam diffraction image and a lattice image using EM) or a structural parameter d (002) using X-rays.

また低コストで効率良<VGCFを得ることができる浮
遊法もいろいろ研究されているが、これにより得られた
生成VGCFはTEM解析構造パラメータ等によればシ
ーディング法と同等あるいは更に劣る結晶の達成度まで
しか至っていない。
In addition, various studies have been conducted on floating methods that can obtain VGCF efficiently at low cost, but according to TEM analysis structural parameters, etc., the VGCF produced by this method is equivalent to or even inferior to the seeding method. It has only gone so far.

本発明は生成VGCFでも特性に優れたVGCFを提供
する°ことを目的とする。
An object of the present invention is to provide a generated VGCF with excellent characteristics.

[課題を解決するための手段] 本発明者は上記の生成VGCFであっても特性に優れた
VGCFを得るべく鋭意研究を行った結果、その結晶構
造の少くとも一部に実質的に黒鉛性に優れた部分を有す
るVGCFを生成させることにより達成でき、このもの
は従来にない新しいX線回折図形を示すことを発見して
本願発明を完成させるに至った。
[Means for Solving the Problems] As a result of intensive research in order to obtain VGCF with excellent characteristics even in the above produced VGCF, the present inventor found that at least a part of its crystal structure is substantially graphitic. This can be achieved by producing a VGCF having excellent properties, and the present invention was completed by discovering that this product exhibits a new X-ray diffraction pattern that has never existed before.

すなわち、本件発明の要旨は遷移金属元素または遷移金
属化合物存在下で有機化合物の熱分解により得られる気
相法炭素繊維であって、X線回折図形において炭素の(
002)回折線が非対称で、X線回折図形の非晶質ハロ
−をバックグラウンドとして除去してピーク分離した後
、標準シリコン粉末のピーク位置で補正して決定した少
くても1つのピーク位置が26.0度以上であって、当
該ピークの面積が全てのピーク面積合計の5%以上であ
る気相法炭素繊維にある。
That is, the gist of the present invention is a vapor grown carbon fiber obtained by thermal decomposition of an organic compound in the presence of a transition metal element or a transition metal compound, which
002) The diffraction line is asymmetric, and after removing the amorphous halo in the X-ray diffraction pattern as a background and separating the peaks, at least one peak position determined by correcting with the peak position of standard silicon powder is determined. The temperature is 26.0 degrees or more, and the area of the peak is 5% or more of the total area of all the peaks.

本発明の特徴は結晶構造の少くとも一部に黒鉛性に優れ
た部分を有するVGCFという点にある。
The present invention is characterized by VGCF having at least a portion of its crystal structure with excellent graphitic properties.

この確認は炭素材料について最も一般的な構造解析手段
であるX線回折で行うことができ、本願における具体的
な回折角の決定には学振法(日本学術振興会第117委
員会(炭材関係)、稲垣道夫「炭素材料実験技術1」炭
素材料学会編科学技術社刊(1978)、 p55)を
用いる。
This confirmation can be performed using X-ray diffraction, which is the most common structural analysis method for carbon materials. (related), Michio Inagaki, "Carbon Materials Experimental Techniques 1" edited by the Carbon Materials Society, published by Science and Technology Company (1978), p55).

X線回折(002回折線)を用いる場合、定性的ではあ
るが最も簡便な方法はその回折図形が非対称であるか否
かにより判定する方法である。更に定量的に判定する場
合は非晶質ハロ−をバックグラウンドとして除去後カー
ブフィッティングによりピーク分離し、標準シリコン粉
末のピーク位置で補正して決定したピーク位置のうち少
くとも1つは回折角が26,0度以上が好ましく、更に
好ましくは26.3度以上である。また回折角が25.
8度以下のピークのみでは実質的に乱層構造であり、本
願の黒鉛質の構造でないため効果を期待できない。最も
理想的には生成VGCFであっても黒鉛質の構造のみか
らなる場合であり、この場合は対称的になるが、そのピ
ーク位置が上記回折角の範囲にあるものであり、これは
本願のVGCFの究極的なものである。
When using X-ray diffraction (002 diffraction line), the simplest method, although qualitative, is to determine whether or not the diffraction pattern is asymmetric. For further quantitative determination, remove the amorphous halo as a background, separate the peaks by curve fitting, and correct at least one of the peak positions determined by the peak position of standard silicon powder with a diffraction angle. The temperature is preferably 26.0 degrees or more, more preferably 26.3 degrees or more. Also, the diffraction angle is 25.
If only the peak is 8 degrees or less, it is substantially a turbostratic structure, which is not the graphitic structure of the present application, and therefore no effect can be expected. The most ideal case would be for the produced VGCF to consist only of a graphitic structure, and in this case it would be symmetrical, but its peak position would be within the above diffraction angle range, which is the case in the present application. This is the ultimate VGCF.

また、本願の生成VGCFについて明確に効果が見られ
るのは、上記の回折角で規定するピーク分離した黒鉛質
ピーク部の面積が全てのピーク面積合計の1%以上とな
る場合であり、特に好ましくは5%以上となる場合であ
る。黒鉛質ピーク部の面積が1%以下では従来の実質的
に乱層構造のみの結晶構造を持つVGCFと有意差は認
められない。
Furthermore, the effect of the produced VGCF of the present application is clearly seen when the area of the peak-separated graphitic peak portion defined by the above-mentioned diffraction angle is 1% or more of the total area of all the peaks, which is particularly preferable. is 5% or more. When the area of the graphitic peak portion is 1% or less, no significant difference is observed from the conventional VGCF which has a crystal structure of substantially only a turbostratic structure.

生成VGCFを高温処理することにより高特性化するこ
と、またその要因か黒鉛構造の発達に負うところが大き
いことは前記の[発明が解決しようとする課題]の見出
しの項に記した通りである。
As stated in the heading of [Problems to be Solved by the Invention] above, the properties of the produced VGCF are improved by high-temperature treatment, and this is largely due to the development of the graphite structure.

その項で引用した文献(SAMPE J、 5ept、
 / Oct。
Literature cited in that section (SAMPE J, 5ept,
/ Oct.

(198Ei) p30)には鉄を生成の核とするVG
CFについての記述かなされ、高温処理による大幅な特
性向上に対応してX線回折図形が示されている。
(198Ei) p30) contains VG with iron as the production core.
A description of CF is made, and an X-ray diffraction pattern is shown corresponding to the significant improvement in properties due to high-temperature treatment.

すなわち、生成VGCFのみでは、そのX線回折図形は
d (002)=0.348nm  (回折角のピーク
では25.6度に相当する)で比較的ブロードな対称的
なピークのみが示されており、2600℃処理すること
によって初めてd (002)=0.33Gnm  (
回折角のピークでは265度に相当し、理想的な黒鉛結
晶のd (002) =OJ354nmとほぼ同等の網
面間隔である)・、−7− て鋭いピークを示し網面の積層の増大を示している。こ
のように高温処理による黒鉛結晶構造の発達と特性の向
上には大きい相関関係があるので、本願の少くとも一部
に黒鉛構造を有する生成VGCFは従来の生成VGCF
に比較して、優れた特性を有するものとなっている。
In other words, the X-ray diffraction pattern of the produced VGCF alone shows only a relatively broad symmetrical peak at d (002) = 0.348 nm (corresponding to a diffraction angle peak of 25.6 degrees). , d(002)=0.33Gnm (
The peak of the diffraction angle corresponds to 265 degrees, which is approximately the same mesh spacing as d (002) = OJ 354 nm of an ideal graphite crystal). It shows. As described above, there is a strong correlation between the development of the graphite crystal structure and the improvement of properties due to high-temperature treatment, so the produced VGCF having at least a part of the graphite structure in the present application is different from the conventional produced VGCF.
It has superior characteristics compared to .

本願の生成VGCFは単独で機能材料あるいはその素材
として、又は各種マトリックスのフィラーとの複合材料
として好適に用いることができる他、更に高温処理して
用いることもできる。
The produced VGCF of the present application can be suitably used alone as a functional material or its raw material, or as a composite material with fillers of various matrices, and can also be used after further high-temperature treatment.

以下に実施例を挙げて本発明を更に詳しく説明する。The present invention will be explained in more detail with reference to Examples below.

[実 施 例] ベンゼンに鉄ペンタカルボニル(F e(CO) 5)
を2重量%溶解し更に0,5重量%のチオフェンを溶解
し原料とした。
[Example] Iron pentacarbonyl (Fe(CO) 5) in benzene
was dissolved in an amount of 2% by weight, and further 0.5% by weight of thiophene was dissolved therein to obtain a raw material.

VGCFの反応炉としては第1図に示す外熱式竪型炉を
用いた。第1図中、1は反応炉、2はヒーター、3は噴
霧器、4は捕集室、5はフィルター、6はダクト、7は
CO2用流量調整器、8はH2用流量調整器、9は原料
定量ポンプ、10は原料容器、11は原料である。又、
反応炉は炉長1500mm、管内径80正のムライト管
を用い、均熱帯は300m+nであり、その温度は12
00℃に調整した。
As the VGCF reactor, an external heating type vertical furnace shown in FIG. 1 was used. In Figure 1, 1 is a reactor, 2 is a heater, 3 is a sprayer, 4 is a collection chamber, 5 is a filter, 6 is a duct, 7 is a flow rate regulator for CO2, 8 is a flow rate regulator for H2, and 9 is a A raw material metering pump, 10 is a raw material container, and 11 is a raw material. or,
The reactor uses a mullite tube with a furnace length of 1500 mm and an inner diameter of 80 mm, a soaking zone of 300 m + n, and a temperature of 12 mm.
The temperature was adjusted to 00°C.

キャリアガスとして水素を用い流量は毎分20gになる
ように調整し、また二酸化炭素毎分01gを水素に混ぜ
同時に流した。続いて定量ポンプにより原料を毎分1.
7gの割合で炉内に供給した。
Hydrogen was used as a carrier gas and the flow rate was adjusted to 20 g/min, and 0.1 g/min of carbon dioxide was mixed with the hydrogen and flowed at the same time. Then, a metering pump pumps the raw material at a rate of 1.
It was supplied into the furnace at a rate of 7 g.

原料を25.9g注入した後反応炉を冷却し捕集室内に
堆積した炭素質重量を計量した。炭素質重量は2.59
gであり収率(対ベンゼン比)は10,0%であった。
After injecting 25.9 g of raw material, the reactor was cooled and the weight of carbonaceous matter deposited in the collection chamber was measured. Carbonaceous weight is 2.59
g, and the yield (ratio to benzene) was 10.0%.

得られた炭素質生成物は第2図に示す走査電子顕微鏡写
真のように直径0.1〜0.3−で長さは50μs以上
の非常に良好なVGCFであり煤状物はみられなかった
The obtained carbonaceous product was a very good VGCF with a diameter of 0.1 to 0.3 mm and a length of 50 μs or more, as shown in the scanning electron micrograph shown in Figure 2, and no soot-like substances were observed. Ta.

このVGCFをメノウ乳鉢ですりつぶし粉末状にした後
、シリコン粉末を内部標準として学振法に準拠してX線
回折を行った。装置は理学電機RU −200型、ピー
ク分離は理学電機C−システムを用いた。ピーク分離し
た結果を第3図に示す。
This VGCF was ground into powder in an agate mortar and then subjected to X-ray diffraction using silicon powder as an internal standard in accordance with the Gakushin method. The apparatus used was Rigaku Denki RU-200 model, and the Rigaku Denki C-system was used for peak separation. The results of peak separation are shown in Figure 3.

第3図中、A線が非晶質ハロ−、B線がピーク分離して
得た乱層構造のピーク、C線がピーク分離して得た黒鉛
構造のピーク、D線がピーク分離して得た標準シリコン
粉末のピーク、E線がA−D線の総和を示す。シリコン
粉末のピーク位置により補正した後のピークが26.3
度、半価幅が0.7度のシャープな黒鉛質のピークと、
ピーク位置が25.3度、半価幅が5,3度のブロード
な炭素の乱層構造のピークに分離できた。面積比=(黒
鉛質のピーク面積)/(黒鉛質のピーク面積+乱層構造
のピーク面積) =0.1.4であった。
In Figure 3, the A line is the amorphous halo, the B line is the turbostratic structure peak obtained by peak separation, the C line is the graphite structure peak obtained by peak separation, and the D line is the peak separation. The peak of the obtained standard silicon powder, the E line, shows the sum of the A-D lines. The peak after correction based on the peak position of silicon powder is 26.3
A sharp graphitic peak with a half-width of 0.7 degrees,
It was possible to separate a broad carbon turbostratic structure peak with a peak position of 25.3 degrees and a half width of 5.3 degrees. Area ratio=(graphitic peak area)/(graphitic peak area+turbostratic structure peak area)=0.1.4.

[発明の効果] 本発明に係る気相法炭素繊維は生成VGCFでも結晶性
に優れた黒鉛質構造を含んでいるので、強度9弾性率、
電気伝導性、熱伝導性などの特性の改善が期待できるの
で、各種の材料として用いることができる。
[Effects of the Invention] The vapor-grown carbon fiber according to the present invention contains a graphite structure with excellent crystallinity even in the produced VGCF, so it has a strength of 9 and a modulus of elasticity of 9.
Since it can be expected to improve properties such as electrical conductivity and thermal conductivity, it can be used as a variety of materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の気相法炭素繊維を製造する装置のフロ
ー図を示し、第2図は実施例の気相洗炭素繊維の走査電
子顕微鏡写真を示し、第3図は実施例の気相法炭素繊維
のピーク分離したX線回折図形を示す。
FIG. 1 shows a flow diagram of an apparatus for manufacturing vapor-grown carbon fiber of the example, FIG. 2 shows a scanning electron micrograph of the vapor-washed carbon fiber of the example, and FIG. 1 shows a peak-separated X-ray diffraction pattern of phase-grown carbon fiber.

Claims (1)

【特許請求の範囲】[Claims] 遷移金属元素または遷移金属化合物存在下で有機化合物
の熱分解により得られる気相法炭素繊維であって、X線
回折図形において炭素の(002)回折線が非対称で、
X線回折図形の非晶質ハロ−をバックグラウンドとして
除去してピーク分離した後、標準シリコン粉末のピーク
位置で補正して決定した少くても1つのピーク位置が2
6.0度以上であって、当該ピークの面積が全てのピー
ク面積合計の5%以上である気相法炭素繊維。
A vapor-grown carbon fiber obtained by thermal decomposition of an organic compound in the presence of a transition metal element or a transition metal compound, wherein the (002) diffraction line of carbon is asymmetric in the X-ray diffraction pattern,
After removing the amorphous halo in the X-ray diffraction pattern as a background and separating the peaks, at least one peak position determined by correcting with the peak position of standard silicon powder is 2.
6.0 degrees or more, and the area of the peak is 5% or more of the total area of all the peaks.
JP1123188A 1988-01-20 1988-01-20 Carbon fiber produced by vapor phase process Pending JPH01192824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1123188A JPH01192824A (en) 1988-01-20 1988-01-20 Carbon fiber produced by vapor phase process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1123188A JPH01192824A (en) 1988-01-20 1988-01-20 Carbon fiber produced by vapor phase process

Publications (1)

Publication Number Publication Date
JPH01192824A true JPH01192824A (en) 1989-08-02

Family

ID=11772169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1123188A Pending JPH01192824A (en) 1988-01-20 1988-01-20 Carbon fiber produced by vapor phase process

Country Status (1)

Country Link
JP (1) JPH01192824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345060B2 (en) * 2007-09-20 2013-11-20 東洋炭素株式会社 Carbonaceous substrate and electrode for fluorine generation electrolysis
CN114250630A (en) * 2020-09-23 2022-03-29 湖南博翔新材料有限公司 Pyrolytic carbonyl iron coating carbon fiber and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225320A (en) * 1985-03-23 1986-10-07 Asahi Chem Ind Co Ltd Metal-containing carbonaceous fiber and production thereof
JPS61225319A (en) * 1985-03-23 1986-10-07 Asahi Chem Ind Co Ltd Carbonaceous fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225320A (en) * 1985-03-23 1986-10-07 Asahi Chem Ind Co Ltd Metal-containing carbonaceous fiber and production thereof
JPS61225319A (en) * 1985-03-23 1986-10-07 Asahi Chem Ind Co Ltd Carbonaceous fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345060B2 (en) * 2007-09-20 2013-11-20 東洋炭素株式会社 Carbonaceous substrate and electrode for fluorine generation electrolysis
JP2014005541A (en) * 2007-09-20 2014-01-16 Toyo Tanso Kk Electrode for fluorine electrolysis
CN114250630A (en) * 2020-09-23 2022-03-29 湖南博翔新材料有限公司 Pyrolytic carbonyl iron coating carbon fiber and preparation method thereof
CN114250630B (en) * 2020-09-23 2023-08-01 湖南博翔新材料有限公司 Pyrolytic carbonyl iron coating carbon fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
US7074379B2 (en) Process for producing single wall nanotubes using unsupported metal catalysts and single wall nanotubes produced according to this method
Rohmund et al. A simple method for the production of large arrays of aligned carbon nanotubes
Jung et al. Effect of NH3 environmental gas on the growth of aligned carbon nanotube in catalystically pyrolizing C2H2
US20040265212A1 (en) Synthesis of coiled carbon nanotubes by microwave chemical vapor deposition
Kumar et al. Camphor–a botanical precursor producing garden of carbon nanotubes
Jiao et al. Single-walled tubes and encapsulated nanoparticles: comparison of structural properties of carbon nanoclusters prepared by three different methods
EA028873B1 (en) Method for producing solid carbon by reducing carbon oxides
JP2008063718A (en) Carbonaceous nanofibers
JP2001518048A (en) Microdomain graphite material and method for producing the same
Dhore et al. Synthesis and characterization of high yield multiwalled carbon nanotubes by ternary catalyst
Zhang et al. Layered growth of aligned carbon nanotube arrays by pyrolysis
US7144564B2 (en) Process for producing single wall nanotubes using unsupported metal catalysts and single wall nanotubes produced according to this method
Bai et al. Effects of temperature and catalyst concentration on the growth of aligned carbon nanotubes
JPH01192824A (en) Carbon fiber produced by vapor phase process
CN1061706C (en) Preparation process of gas-phase grown nanometer carbon fibre
Zhang et al. Influence of growth temperature on the structure, composition and bonding character of nitrogen-doped multiwalled carbon nanotubes
JP2890548B2 (en) Carbonaceous fiber and method for producing the same
JP4196017B2 (en) Carbonaceous nanofiber and method for producing the same
Mordkovich et al. Synthesis of multishell fullerenes by laser vaporization of composite carbon targets
Chen et al. Carbon nanotubes grown over Fe− Mo− Mg− O composite catalysts
JP2006219358A (en) Nanocarbon and method for producing the nanocarbon
Jeong et al. Time evolution of nucleation and vertical growth of carbon nanotubes during plasma-enhanced chemical vapor deposition
JPS6278217A (en) Vapor-phase production of carbon fiber
Chen et al. Preparation of carbon microcoils by catalytic methane hot-wire CVD process
JPS59152298A (en) New production process for carbon fiber