JPH01192749A - Cooling of optical fiber and device therefor - Google Patents

Cooling of optical fiber and device therefor

Info

Publication number
JPH01192749A
JPH01192749A JP63014561A JP1456188A JPH01192749A JP H01192749 A JPH01192749 A JP H01192749A JP 63014561 A JP63014561 A JP 63014561A JP 1456188 A JP1456188 A JP 1456188A JP H01192749 A JPH01192749 A JP H01192749A
Authority
JP
Japan
Prior art keywords
optical fiber
cylinder
cooling
opening area
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63014561A
Other languages
Japanese (ja)
Other versions
JP2547806B2 (en
Inventor
Kohei Kobayashi
宏平 小林
Hiroaki Sano
裕昭 佐野
Hiroo Matsuda
松田 裕男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63014561A priority Critical patent/JP2547806B2/en
Publication of JPH01192749A publication Critical patent/JPH01192749A/en
Application granted granted Critical
Publication of JP2547806B2 publication Critical patent/JP2547806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To improve cooling efficiency, by inserting drawn optical fiber into a cylinder having a variable opening area and introducing a cooling gas into the cylinder to cool the optical fiber. CONSTITUTION:A preform 1 is heated and melted by a drawing furnace 2 to give a drawn optical fiber 9. Then the optical fiber 9 is inserted into a cylinder 14 of a cover 4 consisting of a great number of rectangular parallelepiped-shaped blocks 15-18. An opening area is made variable by moving the blocks 15-18 expandably and contractibly depending upon the draw speed of the optical fiber 9 and a cooling gas is simultaneously introduced into the cylinder 14 to cool the optical fiber 9 forcedly. The optical fiber is coated with a resin by a resin coater 5, the resin is cured by a curing furnace 6 and wound through a guide roller 7 on a winder 8.

Description

【発明の詳細な説明】 〈産業上の利用分母〉 本発明は光ファイバの冷却方法及びその装置に関する。[Detailed description of the invention] <Industrial usage denominator> The present invention relates to an optical fiber cooling method and apparatus.

〈従来の技術〉 光ファイバを製造する基本的な装置を第2図に示す。同
図に示される装置では、プリフォームlを線引炉2で加
熱rs融して光ファイバ9とした後、この光ファイバ9
を樹脂塗重装N5で例久ばシリコン樹脂などを樹脂被覆
し、更に、樹脂硬化炉6で樹脂を硬化させている。そし
て、ガイドローラ7で転向させて、被覆光ファイバ10
として巻取機8で巻き取っている。尚、第2図中3は外
径測定器である。
<Prior Art> A basic apparatus for manufacturing optical fibers is shown in FIG. In the apparatus shown in the figure, a preform 1 is heated and melted in a drawing furnace 2 to form an optical fiber 9, and then this optical fiber 9 is
For example, silicone resin is coated with a resin coating layer N5, and the resin is further cured in a resin curing furnace 6. Then, the coated optical fiber 10 is turned by the guide roller 7.
The winding machine 8 winds up the film as follows. In addition, 3 in FIG. 2 is an outer diameter measuring device.

しかし、第2図に示す装置では、線引きされた直後の高
温な光ファイバ9にそのまま樹脂をコーティングするた
め、光ファイバの表面温度が被WI樹脂層に影響を与え
てw!讃外径の減少や外径異常を起こすおそれがある。
However, in the apparatus shown in FIG. 2, the resin is coated on the high-temperature optical fiber 9 immediately after being drawn, so the surface temperature of the optical fiber affects the WI resin layer. There is a risk of a decrease in the outer diameter or an abnormality in the outer diameter.

このため、第3図に示すように線引炉2と樹脂塗布装置
5との間に冷却装置4を配置して、樹脂塗布の際の光フ
ァイバ9の温度を一定以下にすることが行なわれろ。
For this reason, as shown in FIG. 3, a cooling device 4 is disposed between the drawing furnace 2 and the resin coating device 5 to keep the temperature of the optical fiber 9 below a certain level during resin coating. .

ここで使用される冷却装置としては、例えば線引直後の
高温な光ファイバを円筒に挿通し、この円筒内に冷却ガ
スを吹き込み、この冷゛却ガスを光ファイバに接触させ
ろことにより冷却する方法(特公昭59−7655号公
報)、あるいは適当な冷却液、例えばグリコールエーテ
ル、グリコールアセテート等を溜めた貯溜謡を通過させ
て冷却する方法(米国特許第4514205号、欧州特
許第0079186B1号)などがあるが、−殻内には
第4図に示される冷却装置が用いられている。
The cooling device used here is, for example, a method in which a hot optical fiber immediately after being drawn is inserted into a cylinder, a cooling gas is blown into the cylinder, and the cooling gas is brought into contact with the optical fiber to cool it. (Japanese Patent Publication No. 59-7655), or a method of cooling by passing through a reservoir containing a suitable cooling liquid, such as glycol ether, glycol acetate, etc. (US Patent No. 4514205, European Patent No. 0079186B1). However, a cooling device shown in FIG. 4 is used inside the shell.

即ち1.第4図に示される冷却装置は2重筒構造をなす
ものであり、内筒13内には光ファイバ9が挿通される
と共に冷却ガス28が吹き込まれる一方、その外側の外
@12内には冷却水27が流入するようになっている。
Namely 1. The cooling device shown in FIG. 4 has a double-tube structure, and an optical fiber 9 is inserted into the inner tube 13 and a cooling gas 28 is blown into it, while an outer tube 12 has a cooling gas 28 blown into the inner tube 13. Cooling water 27 is allowed to flow in.

〈発明が解決しようとする課題〉 しかしながら、前述した円筒内で冷却ガスを吹き付ける
ことにより光ファイバの冷却を行う形式の装置において
は、熱交換に関与せずに排出する冷却ガスの割合が高い
ため、冷却効率が低かった。冷却効率を高めるために、
冷却区間を延長すれば設備スペースの増大を招くことと
なり、また冷却ガスの供給量を増量すれば、ガスコスト
の面で不利となることとなる。
<Problems to be Solved by the Invention> However, in the above-mentioned device that cools the optical fiber by spraying cooling gas inside the cylinder, a high proportion of the cooling gas is discharged without participating in heat exchange. , the cooling efficiency was low. To increase cooling efficiency,
Extending the cooling section will result in an increase in equipment space, and increasing the amount of cooling gas supplied will be disadvantageous in terms of gas costs.

他の冷却効率の向上方法としては、冷却ガスの吹き込ま
れる円筒として小径のものを用いることにより、冷却ガ
スと光ファイバの接触割合を高め、冷却ガスを介した円
筒内壁面への熱伝達を効率よくする方法が考えられる。
Another way to improve cooling efficiency is to use a small-diameter cylinder into which the cooling gas is blown, increasing the contact ratio between the cooling gas and the optical fiber, and increasing the efficiency of heat transfer to the inner wall of the cylinder via the cooling gas. I can think of ways to make it better.

しかし、このようにすると、ガス流量が少なくても光フ
ァイバの張力が小さくなって、低速時に光ファイバが振
動するため、光ファイバが円筒内壁面に接触してファイ
バの断線、急激な線ブレなどの問題が生ずる。また、低
速線引の際、ファイバが過剰に冷却されるといった問題
も生ずる。
However, when doing this, the tension in the optical fiber becomes small even when the gas flow rate is low, and the optical fiber vibrates at low speeds, causing the optical fiber to come into contact with the inner wall of the cylinder, resulting in fiber breakage and sudden wire wobbling. The problem arises. Furthermore, during low-speed drawing, a problem arises in that the fiber is excessively cooled.

本発明は上記実情に鑑み、冷却効率を向上させつつも光
ファイバの断線等を回避することのできる光ファイバの
冷却方法及びその装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide an optical fiber cooling method and apparatus that can improve cooling efficiency while avoiding optical fiber breakage.

く課題を解決するための手段〉 斯かる目的を、達成する本発明の光ファイバの冷却装置
にかかる構成はプリフォームを線引炉で加熱溶融して光
ファイバに線引きした後、該光ファイバに樹脂を塗布す
る前に、該光ファイバを同体内に押通すると共に該同体
内に冷却ガスを吹き込んで強制的に冷却する装置におい
て、前記筒体内の開口面積を可変にしたことを特徴とす
る。
Means for Solving the Problem> The configuration of the optical fiber cooling device of the present invention that achieves the above object is to heat and melt a preform in a drawing furnace and draw it into an optical fiber, and then to draw the optical fiber. The apparatus for forcibly cooling the optical fiber by forcing it through the body and blowing cooling gas into the body before applying resin, characterized in that the opening area in the cylinder body is made variable. .

また、上記目的を達成する本発明の光ファイバの冷却方
法に係る構成はプリフォームを線引炉で加熱溶融して光
ファイバに線引きした後、該光ファイバに樹脂を塗布す
る前に、該光ファイバを筒体内に押通すると共に該筒体
内に冷却ガスを吹き込んで強制的に冷却する方法におい
て、前記光ファイバの線速に応じて前記筒体内の開口面
積を制御することを特徴とする。
Further, the configuration of the optical fiber cooling method of the present invention that achieves the above object is such that after heating and melting a preform in a drawing furnace to draw an optical fiber, and before applying resin to the optical fiber, the optical fiber is heated and melted. A method of forcibly cooling a fiber by forcing it through a cylindrical body and blowing cooling gas into the cylindrical body, the method is characterized in that an opening area within the cylindrical body is controlled according to the linear velocity of the optical fiber.

く作   用〉 光ファイバが押通されると共に冷却ガスの吹き込まれる
筒体内の開口面積を縮小すると、冷却ガスと光ファイバ
との接触割合が高くなって、冷却ガスを介した筒体内壁
への熱伝達を効率良くすることができ、また逆に筒体内
の開口面積を増大すれば、光ファイバの筒体への接触に
よる断線等は起こりに(くなる。
Effect〉 When the optical fiber is pushed through and the opening area in the cylinder into which the cooling gas is blown is reduced, the contact ratio between the cooling gas and the optical fiber increases, and the contact with the cylinder wall through the cooling gas is reduced. Heat transfer can be made more efficient, and conversely, by increasing the opening area within the cylinder, breakage of the optical fiber due to contact with the cylinder becomes less likely to occur.

従って、光ファイバの断線等を回避しつつも、その範囲
内で最良の冷却効率を達成できる。
Therefore, the best cooling efficiency can be achieved within this range while avoiding optical fiber breakage and the like.

く実 施 例〉 以下、本発明の実施例について図面を参照して#細に説
明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

?IZ 11に4 (a) ibJに本発明にかかる光
フアイバ冷却装置の一実施例を示す。両図に示すように
、本実施例の冷却装置では、筒体14が4つの直方体状
のブロック15,16,17,18から構成され、各ブ
ロック15〜18を拡縮自在に摺動させて、四角形状の
開口の面積を可変とできるようにしたものである。そし
て、本実施例の冷却装置は、第3図に示すように線引炉
2と樹脂塗布装置5との間に配置されて使用されろもの
である。
? IZ 11 to 4 (a) ibJ shows an embodiment of the optical fiber cooling device according to the present invention. As shown in both figures, in the cooling device of this embodiment, the cylindrical body 14 is composed of four rectangular parallelepiped blocks 15, 16, 17, and 18, and each block 15 to 18 is slidably expanded and contracted. The area of the rectangular opening can be made variable. The cooling device of this embodiment is used by being placed between the drawing furnace 2 and the resin coating device 5, as shown in FIG.

従って、ブロック15〜18からなる筒体14に光ファ
イバ9が押通されると共に冷却ガスが吹き込まれるが、
光ファイバ9が振動するような場合には第1図(a)に
示すように筒体14の開口面積を比較的大きくして断線
を@Mするようにすると良い。過冷却の場合も同様であ
る。また、光ファイバ9の林速か高くなる場合は第1図
fb)に示すように筒体14の開口面積を比較的小さく
して冷却効率を高めるようにすれば良い。
Therefore, while the optical fiber 9 is pushed through the cylindrical body 14 made up of blocks 15 to 18, cooling gas is blown into it.
When the optical fiber 9 vibrates, it is preferable to make the opening area of the cylindrical body 14 relatively large to prevent wire breakage as shown in FIG. 1(a). The same applies to supercooling. Furthermore, when the fiber speed of the optical fiber 9 increases, the opening area of the cylinder 14 may be made relatively small to increase the cooling efficiency, as shown in FIG. 1 fb).

つまり、光ファイバ等の断線等を回避しつつ、その範囲
内で最良の冷却効率が得られるのである。
In other words, the best cooling efficiency can be obtained within this range while avoiding breakage of optical fibers, etc.

尚、本発明は上記実施例に示されろ筒体14に限られる
ものではない。例えば、第5図に示す第2の実施例のよ
うに中空状の筒体19の外壁を薄い金属板20とすると
共にその内壁及び上下の端部を熱伝導率の良好なゴム製
#膜21とし、更に外壁と内壁の間に冷媒を圧入してゴ
ム製薄膜21を伸縮させ、開口面積を可変とするように
しても良い。また、第6図に示す第3の実施例のように
羽根状のブロック22を多数個円周上に配置して、これ
らを摺動させることにより開口面積を可変とするように
した筒体23としても良い。更には、第7図に示す第4
の実施例のように、熱伝導率が良好で引張力の強いゴム
製フィルム24をローラ式ストッパ25で三方向に引っ
張って、三角柱状の筒体26としたものであっても良い
Note that the present invention is not limited to the filter cylinder 14 shown in the above embodiment. For example, as in the second embodiment shown in FIG. 5, the outer wall of the hollow cylindrical body 19 is made of a thin metal plate 20, and the inner wall and upper and lower ends thereof are made of a rubber film 20 having good thermal conductivity. Furthermore, the opening area may be made variable by injecting a refrigerant between the outer wall and the inner wall to expand and contract the rubber thin film 21. Further, as in the third embodiment shown in FIG. 6, a cylindrical body 23 in which a large number of blade-like blocks 22 are arranged on the circumference and the opening area is made variable by sliding them. It's good as well. Furthermore, the fourth
As in the embodiment, a rubber film 24 having good thermal conductivity and strong tensile force may be pulled in three directions by a roller stopper 25 to form a triangular prism-shaped cylinder 26.

次に、本発明の試験例について説明する。Next, test examples of the present invention will be explained.

試  験  例 まず、プリフォームを線引炉で加熱溶融して光ファイバ
に線引きし、室温の大気中へ引き出した。光ファイバの
直径は125−である。線引きされた直後の高温の光フ
ァイバはその後第1図Cal (blに示される冷却装
置により冷却した。冷却装置直下20cmの位置におけ
ろ光ファイバの温度T、を光ファイバの線速vF及び開
口面積Sを変えて測定した。また、比較例として開口面
積一定の従来の冷却装置による測定を行い、これらの測
定結果を表−1にまとめた。また、冷却しなかった場合
についても併せて記載した。
Test Example First, a preform was heated and melted in a drawing furnace, drawn into an optical fiber, and then pulled out into the atmosphere at room temperature. The diameter of the optical fiber is 125-. The high-temperature optical fiber immediately after being drawn was then cooled by the cooling device shown in Figure 1. Measurements were made while changing the area S. In addition, as a comparative example, measurements were taken using a conventional cooling device with a constant opening area, and the measurement results are summarized in Table 1. Also, the case where no cooling was performed is also described. did.

これらの結果から明らかなように、開口面積Sが一定の
場合、線速を増大させるに従って光ファイバの温度TF
が上昇するが、本実施例では線速vFを増大させるに従
って開口面積Sを拡大しているので、光ファイバの温2
T。
As is clear from these results, when the aperture area S is constant, the temperature TF of the optical fiber increases as the linear velocity increases.
However, in this example, as the linear velocity vF increases, the aperture area S is expanded, so the temperature of the optical fiber 2 increases.
T.

は一定となる。つまり、本発明では筒体の開口面積をf
fdJ御することにより光ファイバの温度を一定とする
ことができるのである。
becomes constant. In other words, in the present invention, the opening area of the cylinder is f
By controlling fdJ, the temperature of the optical fiber can be kept constant.

表−1 更に、表−2に示すように冷却ガス流量を増大させると
光ファイバの温度を低下させることが確かめられた。
Table 1 Furthermore, as shown in Table 2, it was confirmed that increasing the cooling gas flow rate lowered the temperature of the optical fiber.

表−2 つまり、筒体の開口面積を増減するだけでなく、冷却ガ
ス流量を加減することにより、光ファイバの温度をその
後の樹脂塗布に最適となるよう効率よく安定して制御で
きる。
Table 2 In other words, by not only increasing or decreasing the opening area of the cylinder, but also adjusting the flow rate of the cooling gas, the temperature of the optical fiber can be efficiently and stably controlled to be optimal for the subsequent resin coating.

その後、冷却された光ファイバは樹脂被覆装置で紫外線
硬化型樹脂を塗布され、続いて、樹脂硬化炉で紫外線に
より樹脂硬化され、脅取機で巻取られることとなる。
After that, the cooled optical fiber is coated with an ultraviolet curable resin in a resin coating device, then the resin is cured with ultraviolet rays in a resin curing furnace, and the fiber is wound up in a winding machine.

尚、前述した実施例は冷却ガスによる光ファイバの冷却
を行っているが、冷却液による冷却を併用しても良い。
Incidentally, in the above-mentioned embodiment, the optical fiber is cooled by cooling gas, but cooling by cooling liquid may also be used.

例えば、開口面積可変な筒体の外側に外筒を設けて、そ
の中に冷却液を注入するようにしても良い。
For example, an outer cylinder may be provided outside the cylinder whose opening area is variable, and the cooling liquid may be poured into the outer cylinder.

〈発明の効果〉 以上、実施例に基づいて具体的に説明したように本発明
によれば、筒体の開口面積を制御することによって光フ
ァイバの断線等を回避しつつ、冷却効率を高めることが
できる。
<Effects of the Invention> As described above in detail based on the embodiments, according to the present invention, by controlling the opening area of the cylindrical body, it is possible to improve the cooling efficiency while avoiding disconnection of the optical fiber, etc. Can be done.

このため、光ファイバの線速が低速から高速に至るまで
、光ファイバを一定の温度にまで冷却することが可能で
ある。
Therefore, it is possible to cool the optical fiber to a constant temperature even when the linear velocity of the optical fiber ranges from low to high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b)はそれぞれ本発明の一実施例に係
る光フアイバ冷却装置を示す斜視図、第2図は基本的な
光フアイバ製造装置の概略構成図、第3図は冷却装置を
有する光フアイバ製造装置の概略構成図、第4図は冷却
装置の断面図、第5図、第6図、第7図はそれぞれ本発
明の第2゜第3.第4の実施例に係る光フアイバ冷却装
置を示す斜視図である。 図面中、 1はプリフォーム、 2は線引炉、 3は外径測定器、 4は光フアイバ冷却装置、 5は樹脂塗布装置、 6は樹脂硬化炉、 7はガイドローラ1 8は巻取機、 9は光ファイバ、 10は被覆光ファイバ、 12は外筒、 13は内筒、 14.19,23,26は筒体1 、15〜18はブロック、 20ば金属板、 21はゴム製薄膜、 22はブロック、 24はゴム製フィルム、 26はローラ式ストッパ、 27は冷却水1 .28は冷却ガスである。 第tWHa)       第f rEJ(b)第2v
A   第3図    第41 第5図 第6図
1(a) and (b) are perspective views showing an optical fiber cooling device according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of a basic optical fiber manufacturing device, and FIG. 3 is a cooling device. FIG. 4 is a cross-sectional view of the cooling device, and FIGS. 5, 6, and 7 respectively show the second and third aspects of the present invention. It is a perspective view showing an optical fiber cooling device concerning a 4th example. In the drawings, 1 is a preform, 2 is a drawing furnace, 3 is an outer diameter measuring device, 4 is an optical fiber cooling device, 5 is a resin coating device, 6 is a resin curing furnace, 7 is a guide roller 1, and 8 is a winding machine , 9 is an optical fiber, 10 is a coated optical fiber, 12 is an outer cylinder, 13 is an inner cylinder, 14. 19, 23, and 26 are cylinders 1, 15 to 18 are blocks, 20 is a metal plate, and 21 is a rubber thin film. , 22 is a block, 24 is a rubber film, 26 is a roller stopper, 27 is a cooling water 1. 28 is a cooling gas. tWHa)th f rEJ(b) 2ndv
A Figure 3 Figure 41 Figure 5 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)プリフォームを線引炉で加熱溶融して光ファイバ
に線引きした後、該光ファイバに樹脂を塗布する前に、
該光ファイバを筒体内に挿通すると共に該筒体内に冷却
ガスを吹き込んで強制的に冷却する装置において、前記
筒体内の開口面積を可変にしたことを特徴とする光ファ
イバの冷却装置。
(1) After heating and melting the preform in a drawing furnace and drawing it into an optical fiber, before applying resin to the optical fiber,
An optical fiber cooling device for forcibly cooling the optical fiber by inserting the optical fiber into the cylinder and blowing cooling gas into the cylinder, characterized in that an opening area in the cylinder is made variable.
(2)プリフォームを線引炉で加熱溶融して光ファイバ
に線引きした後、該光ファイバに樹脂を塗布する前に、
該光ファイバを筒体内に挿通すると共に該筒体内に冷却
ガスを吹き込んで強制的に冷却する方法において、前記
光ファイバの線速に応じて前記筒体内の開口面積を制御
することを特徴とする光ファイバの冷却方法。
(2) After heating and melting the preform in a drawing furnace and drawing it into an optical fiber, before applying resin to the optical fiber,
The method of forcibly cooling the optical fiber by inserting the optical fiber into the cylinder and blowing cooling gas into the cylinder is characterized by controlling an opening area in the cylinder according to the linear velocity of the optical fiber. Optical fiber cooling method.
(3)前記筒体は多数のブロックから構成されると共に
該ブロックを拡縮自在に摺動させて、その開口面積を可
変としたことを特徴とする特許請求の範囲第1項記載の
光ファイバの冷却装置。
(3) The optical fiber according to claim 1, wherein the cylindrical body is composed of a large number of blocks, and the blocks are slidably expanded and contracted to make the opening area variable. Cooling system.
JP63014561A 1988-01-27 1988-01-27 Method and apparatus for cooling optical fiber Expired - Fee Related JP2547806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63014561A JP2547806B2 (en) 1988-01-27 1988-01-27 Method and apparatus for cooling optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63014561A JP2547806B2 (en) 1988-01-27 1988-01-27 Method and apparatus for cooling optical fiber

Publications (2)

Publication Number Publication Date
JPH01192749A true JPH01192749A (en) 1989-08-02
JP2547806B2 JP2547806B2 (en) 1996-10-23

Family

ID=11864567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63014561A Expired - Fee Related JP2547806B2 (en) 1988-01-27 1988-01-27 Method and apparatus for cooling optical fiber

Country Status (1)

Country Link
JP (1) JP2547806B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418627U (en) * 1990-06-05 1992-02-17
EP1076045A2 (en) * 1999-08-09 2001-02-14 Lucent Technologies Inc. Apparatus for cooling an optical fibre drawn from a preform
WO2004087595A1 (en) * 2003-04-04 2004-10-14 L'air Liquide Societe Anonyme À Directoire Et Conseil De Surveillance Pour L'etude Et Exploitation Des Procedes Georges Claude Method and apparatus for cooling a fiber during drawing
JP2014208578A (en) * 2013-03-28 2014-11-06 住友電気工業株式会社 Manufacturing method of optical fiber
CN115650577A (en) * 2022-11-10 2023-01-31 长飞光纤光缆股份有限公司 Optical fiber cooling device, pneumatic rotating device thereof and cooling method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418627U (en) * 1990-06-05 1992-02-17
EP1076045A2 (en) * 1999-08-09 2001-02-14 Lucent Technologies Inc. Apparatus for cooling an optical fibre drawn from a preform
EP1076045A3 (en) * 1999-08-09 2001-05-16 Lucent Technologies Inc. Apparatus for cooling an optical fibre drawn from a preform
WO2004087595A1 (en) * 2003-04-04 2004-10-14 L'air Liquide Societe Anonyme À Directoire Et Conseil De Surveillance Pour L'etude Et Exploitation Des Procedes Georges Claude Method and apparatus for cooling a fiber during drawing
JP2014208578A (en) * 2013-03-28 2014-11-06 住友電気工業株式会社 Manufacturing method of optical fiber
CN115650577A (en) * 2022-11-10 2023-01-31 长飞光纤光缆股份有限公司 Optical fiber cooling device, pneumatic rotating device thereof and cooling method
CN115650577B (en) * 2022-11-10 2024-02-27 长飞光纤光缆股份有限公司 Optical fiber cooling device, pneumatic rotating device thereof and cooling method

Also Published As

Publication number Publication date
JP2547806B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
US4514205A (en) Fiber cooling apparatus
US4437870A (en) Optical waveguide fiber cooler
JP3160422B2 (en) Optical waveguide fiber drawing apparatus and method
US4838918A (en) Inert atmosphere cooler for optical fibers
CA1213441A (en) Optical waveguide fiber cooler
JPS61258062A (en) Method and apparatus for coating fiber
CA2311537A1 (en) Method and apparatus for cooling optical fibers
JPH01192749A (en) Cooling of optical fiber and device therefor
JPH09124336A (en) Melting furnace for apparatus for drawing optical fiber and supporting structure for base material for optical fiber
JPS6046954A (en) Device for drawing optical fiber
JP2003095689A (en) Method for manufacturing optical fiber and device for manufacturing it
JPH02184544A (en) Apparatus for cooling optical fiber and cooling method
JP2004051480A (en) Cooling unit for high-speed drawing
JPH1067531A (en) Production of optical fiber and device for the same
JP4418059B2 (en) Plastic optical fiber cable manufacturing method and apparatus, and plastic optical fiber curl removal method
JP2003226559A (en) Method of manufacturing optical fiber
JPH11337745A (en) Apparatus for production of plastic optical fiber and its production
JP3378704B2 (en) Optical fiber drawing coating method
JPS62162647A (en) Drawing device for optical fiber
JPH09241043A (en) Method for coating optical fiber
JP2001305353A (en) Heat treatment method and heat treatment device for plastic optical fiber
JPH06219767A (en) Method of drawing glass preform for optical fiber
JPH03153541A (en) Device and method for cooling optical fiber
JPS61158838A (en) Production of quartz hollow fiber
JP2522550Y2 (en) Optical fiber manufacturing equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees