JPH01192742A - Proton conductive amorphous material and production thereof - Google Patents

Proton conductive amorphous material and production thereof

Info

Publication number
JPH01192742A
JPH01192742A JP1683388A JP1683388A JPH01192742A JP H01192742 A JPH01192742 A JP H01192742A JP 1683388 A JP1683388 A JP 1683388A JP 1683388 A JP1683388 A JP 1683388A JP H01192742 A JPH01192742 A JP H01192742A
Authority
JP
Japan
Prior art keywords
group
amorphous material
metal
hydrous
heteropolyacid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1683388A
Other languages
Japanese (ja)
Inventor
Takeshi Satake
剛 佐竹
Tadahiro Yoneda
忠弘 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP1683388A priority Critical patent/JPH01192742A/en
Publication of JPH01192742A publication Critical patent/JPH01192742A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the title structurally stable material, having high proton conductivity and excellent in processability, by mixing a solution containing a specific metallic compound with a solution containing a hydrous heteropoly- acid and hydrolyzing or condensing the metallic compound. CONSTITUTION:A solution or dispersion containing a metallic compound having a hydrolyzable and/or condensable group and/or derivative thereof is homogeneously mixed with a solution containing a hydrous heteropoly-acid and/or salt thereof. The metallic compound or derivative is then hydrolyzed and/or condensed, Thereby, a proton conductive amorphous material containing the hydrous heteropoly-acid and/or salt thereof highly dispersed in an amorphous metallic oxide is obtained. The hydrous heteropoly-acid means a heteropoly-acid containing water, which may be in the form of either water of crystallization or free water.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、センサー、固体二次電池、燃料電池、エレク
トロクロミック装置等の電気化学装置の固体電解質に用
いられるプロトン伝導性非晶質材料に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a proton-conducting amorphous material used as a solid electrolyte in electrochemical devices such as sensors, solid secondary batteries, fuel cells, and electrochromic devices. .

[従来技術] 従来、電気化学装置に用いられる固体電解質の内、高い
プロトン伝導性を有するものとして、リンタングステン
酸()IsPWtgO4o舎n Hg0)、リンモリブ
デンr14 (H3PMoi20to’ nHgo)、
ケイタングステン酸(HaS i WttOao−n 
Hg0)等のへテロポリ酸が公知である。該ヘテロポリ
酸を上記の固体電解質として使用する場合、該ヘテロポ
リ酸の粉末を高圧下で加圧圧縮成型して固体電解質膜と
することが行われてきたが、該ヘテロポリ酸が含水結晶
なので、加工性悪く、薄膜化しにクク、強度も弱くもろ
い等の欠点があった。
[Prior Art] Conventionally, among the solid electrolytes used in electrochemical devices, those having high proton conductivity include phosphotungstic acid (IsPWtgO4oshanHg0), phosphomolybdenum r14 (H3PMoi20to' nHgo),
Tungstic silicoic acid (HaS i WttOao-n
Heteropolyacids such as Hg0) are known. When using the heteropolyacid as the above-mentioned solid electrolyte, the powder of the heteropolyacid has been compression molded under high pressure to form a solid electrolyte membrane, but since the heteropolyacid is a hydrous crystal, processing is difficult. It had disadvantages such as poor properties, difficulty in forming a thin film, weak strength, and brittleness.

又、該ヘテロポリ酸はまわりの雰囲気によりて水分子を
吸収したり放出したりするので経時的に結晶構造が変わ
ったり大きな結晶をつくりやすい。
Furthermore, since the heteropolyacid absorbs or releases water molecules depending on the surrounding atmosphere, its crystal structure changes over time and it tends to form large crystals.

そのため、電気化学装置等に使用される該ヘテロポリ酸
の成型体は、歪みを受けやすく、ひび割れをおこしたり
電極との密着性が悪くなったりする問題があった。
Therefore, molded bodies of the heteropolyacid used in electrochemical devices and the like are susceptible to distortion, causing problems such as cracking and poor adhesion with electrodes.

このヘテロポリ的の経時的構造変化や結晶化を阻止し抑
制するために金属酸化物に該ヘテロポリ酸を含浸させた
プロトン伝導体(特開昭60−220503号公報)が
提案されているが、金属酸化物の粉体を使う方法なので
、薄膜化等加圧性においても問題があった。
In order to prevent and suppress this heteropoly acid structural change and crystallization over time, a proton conductor in which a metal oxide is impregnated with the heteropoly acid (Japanese Patent Application Laid-Open No. 60-220503) has been proposed. Since this method uses oxide powder, there were also problems in terms of pressurability, such as thinning the film.

一方、薄膜化に適した固体電解質とするために、該ヘテ
ロポリ酸と有機ポリマーとを混合し可撓性、加工性を改
善しようとする提案(特開昭62−172084号公報
)もあるがプロトン伝導性が十分ではなく、更には高温
にきらすと固体電解質膜が着色しプロトン伝導性が低下
する等耐熱性の問題があった。
On the other hand, in order to make a solid electrolyte suitable for thinning, there is a proposal (Japanese Patent Laid-Open No. 172084/1984) to mix the heteropolyacid with an organic polymer to improve flexibility and processability. In addition to insufficient conductivity, there were also problems with heat resistance, such as the solid electrolyte membrane becoming colored and proton conductivity decreasing when exposed to high temperatures.

[発明が解決しようとする問題点] 本発明は、プロトン伝導性が高く、かつ構造的に安定で
耐熱性、耐久性、薄膜化等の加工性に優れたプロトン伝
導性非晶質材料およびその製造法を提供するものである
[Problems to be Solved by the Invention] The present invention provides a proton conductive amorphous material that has high proton conductivity, is structurally stable, and has excellent heat resistance, durability, and processability such as thinning. It provides a manufacturing method.

[問題を解決するための手段および作用]本発明は、含
水ヘテロポリ酸および/または含水ヘテロポリ酸塩を、
非晶質の金R酸化物中に高度に分散させたプロトン伝導
性非晶質材料に関する。更に、加水分解および/または
縮合して非晶質の金属酸化物となりうる金属化合物およ
び/またはその誘導体を含む溶液または分散液を、含水
ヘテロポリ酸および/または含水ヘテロポリ酸塩を含む
溶液と混合した後、該金属化合物および/またはその誘
導体を加水分解および/または縮合させることにより複
合一体化したことを特徴とするプロトン伝導性非晶質材
料の製造方法に関する。
[Means and effects for solving the problem] The present invention provides hydrous heteropolyacids and/or hydrous heteropolyacids,
This invention relates to a proton-conducting amorphous material highly dispersed in an amorphous gold R oxide. Furthermore, a solution or dispersion containing a metal compound and/or a derivative thereof that can be hydrolyzed and/or condensed to form an amorphous metal oxide is mixed with a solution containing a hydrous heteropolyacid and/or a hydrous heteropolyacid salt. The present invention then relates to a method for producing a proton-conducting amorphous material, characterized in that the metal compound and/or its derivatives are integrated into a composite material by hydrolysis and/or condensation.

本発明で使用される含水ヘテロポリ酸とは、水を含むヘ
テロポリ酸を意味し、該水としては該ヘテロポリ酸の結
晶水あるいは遊離の水いずれの形態でもかまわない。
The hydrous heteropolyacid used in the present invention means a heteropolyacid containing water, and the water may be in the form of crystal water or free water of the heteropolyacid.

ヘテロポリ酸は、2種類以上の無機酸素酸が縮合して生
成した酸の総称である。典型的なヘテロポリ酸であるリ
ンタングステン酸は、リン酸イオンとタングステン酸イ
オンを酸性条件で反応きせることにより合成される。ヘ
テロポリ酸アニオンの中心となるペテロ原子には、 ■
−■族元素が入り、酸素を介してペテロ原子に配位する
原子であるポリ原子には、Mo1 Wl Nb−、V等
の元素が入ることが知られている。ポリ原子、ペテロ原
子の種類やその縮合比により種々の構造をもつヘテロポ
リ酸が合成されており、たとえば、佐々木ら、化学の領
域、第29巻、第853頁(1975)などにより報告
されているものが代表的なものである。そのほかに混合
配位種と呼ばれる同一分子中に2種類以上のポリ原子を
含むものもある。これらのへテロポリ酸が本発明におい
て好適に使用される。また、該ヘテロポリ酸のプロトン
の一部をアルカリ金属、アルカリ土類金属、Hg、  
Ag。
Heteropolyacid is a general term for acids produced by condensation of two or more types of inorganic oxyacids. Phosphotungstic acid, a typical heteropolyacid, is synthesized by reacting phosphate ions and tungstate ions under acidic conditions. The petro atom, which is the center of the heteropolyacid anion, has ■
It is known that elements such as Mo1 Wl Nb- and V are included in the poly atom, which is an atom in which the -■ group element is incorporated and coordinates to the Peter atom via oxygen. Heteropolyacids with various structures have been synthesized depending on the types of polyatoms and peteroatoms and their condensation ratios, and have been reported, for example, by Sasaki et al., Chemistry Region, Vol. 29, p. 853 (1975). The item is representative. In addition, there are also species called mixed coordination species that contain two or more types of polyatoms in the same molecule. These heteropolyacids are preferably used in the present invention. In addition, some of the protons of the heteropolyacid can be replaced with alkali metals, alkaline earth metals, Hg,
Ag.

TI、Cu等遷移金鳳 アンモニウム豚 有機アミノ基
等と置き換えることによりヘテロポリ酸塩を合成するこ
とができるが、これらの塩も本発明の要件を満たすもの
である。ヘテロポリ酸は多くの結晶水を有することがで
き、含水ヘテロポリ酸においては水の一部または全部が
ヘテロポリ酸の結晶水として配位する。該結晶水はプロ
トン和したアクアカチオンの形態で面心立方格子型の配
列を持った結晶の構成に関与しており、プロトン伝導は
主としてこの結晶水を介して行われる。
Heteropolyacid salts can be synthesized by replacing TI, Cu, etc. with transition gold, ammonium, organic amino groups, etc., and these salts also satisfy the requirements of the present invention. A heteropolyacid can have a large amount of water of crystallization, and in a hydrous heteropolyacid, part or all of the water is coordinated as water of crystallization of the heteropolyacid. The water of crystallization is in the form of protonated aqua cations and is involved in the structure of crystals having a face-centered cubic lattice arrangement, and proton conduction is mainly carried out through this water of crystallization.

一方、本発明の非晶質の金属酸化物とは、その構造上少
なくともM−0−M (Mは金属元素、0は酸素)結合
の大部分が三次元のネットワークを形成しているものの
X線回折的には結晶構造に基づく明瞭なピークを示さな
いものを言う。その表面や内部に、原料となる金属化合
物および/またはその誘導体に由来する各種の基等が残
留しているものでもよい。該非晶質金属酸化物を構成す
る元素としては元素周期律表のII族、IV&V族を使
用することが好ましいが、特に非晶質ネットワークを形
成しやすい元素であるB、  A11Si。
On the other hand, the amorphous metal oxide of the present invention refers to a structure in which most of the M-0-M (M is a metal element, 0 is oxygen) bonds form a three-dimensional network. It refers to something that does not show clear peaks based on its crystal structure in terms of line diffraction. Various groups derived from the raw metal compound and/or its derivative may remain on its surface or inside. As the elements constituting the amorphous metal oxide, it is preferable to use Group II and Group IV&V of the Periodic Table of Elements, and B and A11Si are particularly likely to form an amorphous network.

Ge、Sn、PS TiおよびZrを使用することが好
ましい。必要なら、更にプロトン伝導性や製造時におけ
る加工性等を向上きせる目的で一部上記以外の元素、た
とえばF e、  B eSM gs  N 1sZn
% Co、 Ca、  Sr、  Ba1 Li、  
Na1 K。
Preference is given to using Ge, Sn, PS Ti and Zr. If necessary, some elements other than the above, such as Fe, BeSM gs N 1sZn, may be added for the purpose of further improving proton conductivity and processability during manufacturing.
% Co, Ca, Sr, Ba1 Li,
Na1K.

Cs等を添加し、金属酸化物ネットワークの架橋密度、
比重、誘電率、耐熱性等の物性を制御することも可能で
ある。
By adding Cs etc., the crosslinking density of the metal oxide network,
It is also possible to control physical properties such as specific gravity, dielectric constant, and heat resistance.

本発明は、含水ヘテロポリ酸および/または含水ヘテロ
ポリ酸塩を、非晶質の金属酸化物中にX線回折的に結晶
構造に基づく明瞭なピークを示さない程度にまで高度に
分散きせることによりプロトン伝導性が高く、かつ構造
的に安定で耐熱性、耐久性、加工性に優れたプロトン伝
導性非晶質材料を提供するものである。
The present invention enables protonation by highly dispersing a hydrous heteropolyacid and/or a hydrous heteropolyacid salt in an amorphous metal oxide to the extent that X-ray diffraction does not show clear peaks based on the crystal structure. The present invention provides a proton conductive amorphous material that has high conductivity, is structurally stable, and has excellent heat resistance, durability, and processability.

本発明において、該プロトン伝導性非晶質材料は、加水
分解および/または縮合可能な基を有する金属化合物わ
よび/またはその誘導体を溶媒に溶解もしくは分散し、
含水ヘテロポリ酸および/または含水ヘテロポリ酸塩を
含む溶液とを均一に混合し、必要であれば水および触媒
として酸もしくはアルカリ等を加え、加熱し、金属化合
物および/またはその誘導体を加水分解および/または
縮合させて製造される。本発明の方法によれば、含水ヘ
テロポリ酸あるいはその塩はまず溶媒中で溶解もしくは
分子状に分散されるので、加水分解および/または縮合
反応により、これらが非晶質ネットワーク中に高度に分
散された状態で固定化される。このことは、生成した該
プロトン伝導性非晶質材料の赤外線吸収スペクトルでは
含水ヘテロポリ酸あるいはその塩特有の振動スペクトル
が観察されるのに、X線回折では含水ヘテロポリ酸ある
いはその塩特有の回折ピークが観察されないことから確
認された。また、本発明の方法によれば溶液から固相を
生成きせるのでディッピングやキャスト法等による薄膜
化も好適に行うことができる。
In the present invention, the proton-conducting amorphous material is obtained by dissolving or dispersing a metal compound and/or a derivative thereof having a hydrolyzable and/or condensable group in a solvent;
A solution containing a hydrated heteropolyacid and/or a hydrated heteropolyacid salt is mixed uniformly, water and an acid or alkali as a catalyst are added if necessary, and the metal compound and/or its derivative is hydrolyzed and/or heated. Or produced by condensation. According to the method of the present invention, the hydrous heteropolyacid or its salt is first dissolved or molecularly dispersed in a solvent, so that it is highly dispersed in an amorphous network through hydrolysis and/or condensation reactions. It is fixed in a fixed state. This means that in the infrared absorption spectrum of the proton-conducting amorphous material produced, a vibrational spectrum characteristic of a hydrated heteropolyacid or its salt is observed, but in X-ray diffraction, a diffraction peak characteristic of a hydrated heteropolyacid or its salt is observed. This was confirmed by the fact that it was not observed. Further, according to the method of the present invention, since a solid phase can be generated from a solution, it is possible to suitably form a thin film by dipping, casting, or the like.

該加水分解および/または縮合可能な基を有する金属化
合物とは、三次元的にネットワークを形成しうるもので
、金属ハロゲン化物、硝酸金属塩、硫酸金属塩、金属ア
ンモニウム塩、有機金属化合物、アルコキシ金属化合物
等を意味し、単独でまたは混合して用いることができる
。好ましい金属化合物としては、一般式 (R’)、M  (R2)  、、(X)、(Y)。
The metal compound having a hydrolyzable and/or condensable group is one that can form a three-dimensional network, and includes metal halides, metal nitrates, metal sulfates, metal ammonium salts, organometallic compounds, alkoxy It means a metal compound, etc., and can be used alone or in combination. Preferred metal compounds include general formulas (R'), M (R2) , (X), and (Y).

(但し、Mは金属元素、Xは酸素またはSO4、Yはア
ンモニウム基または有機アミノ基 R1は水素または置
換基があってもよい炭素数10までのアルキル基、アリ
ル基、不飽和脂肪族残基の群か、ら選ばれる少なくとも
一種の&R2はハロゲン、NOl、水酸基、アシロキシ
基、アルコキシ基からなる群から選ばれた少なくとも一
種の基、rrh  pおよびqは0または正の数であり
、かつnは正の数で、 2p+m+n−q=金属元素Mの原子価を満足する。ま
た、m個のR1は異なっていてもよ<、n個のR2、p
個のX% 9個のYも同様である。) で示されるものが挙げられる。上記R1+が、ハロゲン
、NO3等の場合、製造したプロトン伝導性材料が電気
化学装置等の電極を腐食しやすくなることが起こり得る
ので、・利用分野によってはこれらの基を持つ化合物の
使用を避けたほうが好ましい場合もある。従ってRzと
しては、水酸基 アシロキシ基、アルコキシ基がより好
ましく用いられる。また、上記Xも同様な理由でSO4
基の使用を避けたほうが好ましい場合もある。なお、n
が3以上の金属化合物は単独で使用可能であるが、n=
1または2で代表きれるような金属化合物は加水分解性
基を3個以上有する原料と共に使用しうる。
(However, M is a metal element; &R2 is at least one group selected from the group consisting of halogen, NOl, hydroxyl group, acyloxy group, and alkoxy group, rrh p and q are 0 or a positive number, and n is a positive number and satisfies the valence of 2p+m+n-q=metal element M.Also, m R1s may be different<, n R2, p
The same goes for 9 Y. ). If the above R1+ is a halogen, NO3, etc., the produced proton conductive material may easily corrode the electrodes of electrochemical devices, etc. Therefore, depending on the field of use, avoid using compounds with these groups. In some cases, it may be preferable to do so. Therefore, as Rz, hydroxyl, acyloxy, and alkoxy groups are more preferably used. Also, the above X also has SO4 for the same reason.
In some cases it may be preferable to avoid the use of groups. In addition, n
A metal compound with 3 or more can be used alone, but n=
Metal compounds represented by 1 or 2 can be used together with raw materials having three or more hydrolyzable groups.

上記R1のは換基数mは0または正の数であるが、生成
する金属酸化物の可撓性や電極との密着性を向上させる
目的で、mがOでない金属化合物を適当に使用すること
が有効である。
In the above R1, the number of substituents m is 0 or a positive number, but in order to improve the flexibility of the generated metal oxide and the adhesion with the electrode, a metal compound where m is not O may be appropriately used. is valid.

上記一般一式(R1)=M (R2)、(X)、(Y)
The above general set (R1) = M (R2), (X), (Y)
.

で示される金属化合物の具体例としては、ホウ酸、ホウ
酸アンモニウム、三臭化ホウ素、三塩化ホウ素、二塩化
メチルホウ乳 ホウ酸トリメチル、ホウ酸トリエチル、
ホウ酸トリイソプロピル、ホウ酸トリブチル、メチルホ
ウ酸、メチルホウ酸ジメチル、水酸化アルミニウム、塩
化アルミニウム、硝酸アルミニウム、硫酸アルミニウム
、硫酸アルミニウムアンモニウム、アルミニウムトリメ
トキシド、アルミニウムトリエトキシド、アルミニウム
トリイソプロポキシド、アルミニウムトリブトキシド、
ジメチルアルミニウムメトキシド、イソプロピルアルミ
ニウムジクロライド、エチルエトキシアルミニウムクロ
ライド、四塩化ケイ素、トリメチルクロルシラン、ジメ
チルジクロルシラン、メチルトリクロルシラン、ジメチ
ルエトキシシラン、フェニルトリヒドロキシシラン、ト
リメチルヒドロキシシラン、ジメチルジヒドロキシシラ
ン、メチルトリアセトキシシラン、ジメチルジアセトキ
シシラン、トリメチルアセトキシシラン、テトラメトキ
シシラン、テトラエトキシシラン、テトライソプロポキ
シシラン、テトラブトキシシラン、トリメトキシシラン
、トリエトキシシラン、メチルトリメトキシシラン、ト
リメトキシビニルシラン、トリエトキシビニルシラン、
3−グリシドキシプロビル←リメトキシシラン、3−ク
ロロプロピルトリメトキシシラン、3−メルカプトプロ
ピルトリメトキシシラン、3−(2−アミノエチルアミ
ノプロビル)トリメトキシシラン、フェニルトリメトキ
シシラン、フェニルトリエトキシシラン、ジメトキシジ
メチルシラン、ジメトキシメチルシラン、ジェトキシメ
チルシラン、ジェトキシ−3−グリシドキシプロビルメ
チルシラン、3−クロロプロピルジメトキシメチルシラ
ン、ジメトキシジフェニルシラン、ジメトキシメチルフ
ェニルシラン、トリメチルメトキシシラン、トリメチル
エトキシシラン、ジメチルジェトキシシラン、ジメトキ
シジェトキシシラン、四塩化ゲルマニウム、メチルゲル
マニウムトリクロライド、ジメチ。
Specific examples of metal compounds represented by are boric acid, ammonium borate, boron tribromide, boron trichloride, methyl borate dichloride, trimethyl borate, triethyl borate,
Triisopropyl borate, tributyl borate, methyl boric acid, dimethyl methyl borate, aluminum hydroxide, aluminum chloride, aluminum nitrate, aluminum sulfate, aluminum ammonium sulfate, aluminum trimethoxide, aluminum triethoxide, aluminum triisopropoxide, aluminum tributoxide,
Dimethylaluminum methoxide, isopropylaluminum dichloride, ethyl ethoxyaluminum chloride, silicon tetrachloride, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, dimethylethoxysilane, phenyltrihydroxysilane, trimethylhydroxysilane, dimethyldihydroxysilane, methyltrichloride Acetoxysilane, dimethyldiacetoxysilane, trimethylacetoxysilane, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, trimethoxysilane, triethoxysilane, methyltrimethoxysilane, trimethoxyvinylsilane, triethoxyvinylsilane,
3-glycidoxyprobyl ← Rimethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-(2-aminoethylaminoprobyl)trimethoxysilane, phenyltrimethoxysilane, phenyltrimethoxysilane Ethoxysilane, dimethoxydimethylsilane, dimethoxymethylsilane, jetoxymethylsilane, jetoxy-3-glycidoxypropylmethylsilane, 3-chloropropyldimethoxymethylsilane, dimethoxydiphenylsilane, dimethoxymethylphenylsilane, trimethylmethoxysilane, trimethyl Ethoxysilane, dimethyljethoxysilane, dimethoxyjethoxysilane, germanium tetrachloride, methylgermanium trichloride, dimethy.

ルゲルマニウムジクロライド、トリメチルゲルマニウム
クロライド、メチルゲルマニウムトリアセテート、ジメ
チルゲルマニウムジアセテート、トリメチルゲルマニウ
ムアセテート、ゲルマニウムテトラメトキシド、ゲルマ
ニウムテトラエトキシド、メチルゲルマニウムトリエト
キシド、ジメチルアルミニウムメトキシド、トリメチル
ゲルマニウムメトキシド、塩化第一錫、塩化第二錫、メ
チル錫トリクロライド、ジメチル錫ジクロライド、トリ
メチル錫クロライド、ジブチル錫ジアセテート、トリブ
チル錫ハイドライド、トリメチル錫フォルメート、トリ
メチル錫アセテート、 トリエチル錫ヒドロキシド、ジ
メチル錫ジメトキシド、トリメチル錫メトキシド、ジメ
チル錫ジェトキシド、ジブチル錫ジブトキシド、亜リン
酸、リン酸、三塩化リン、オキシ塩化リン、五塩化リン
、リン酸−アンモニウム、リン酸三アンモニウム、リン
酸三アンモニウム、メチル亜リン酸ジクロライド、フェ
ニルリン酸ジクロライド、ジメチル亜リン酸クロライド
、メチルリン酸ジクロライド、メチル亜リン酸、メチル
リン酸、亜リン酸トリメチル、亜リン酸トリエチル、亜
リン酸トリエチル、亜リン酸トリブチル、亜リン酸トリ
フェニル、メチル亜リン酸ジエチル、フェニル亜リン酸
ジエチル、ジメチル亜リン酸エチル、ジフェニル亜リン
酸エチル、リン酸トリメチル、リン酸トリエチル、リン
酸トリフェニル、メチルリン酸ジメチル、エチルリン酸
ジエチル、ジメチルリン酸エチル、ジエチルリン酸メチ
ル、四塩化チタン、硫酸チタニル、メチルトリクロルチ
タン、ジメチルジクロルチタン、テトラメトキシチタン
、テトラエトキシチタン、テトライソプロポキシチタン
、テトラブトキシチタン、テトラ(2−エチルへキシロ
キシ)チタン、ジェトキシジブトキシチタン、イソプロ
ポキシチタントリイソステアレート、イソプロポキシチ
タントリオクタレート、ジイソプロポキシジアクリレー
ト、トリブトキシチタンステアレート、四塩化ジルコニ
ウム、オキシ塩化ジルコニウム、ジルコニウムアセテー
ト、ジルコニウムラクテート、ジルコニウムテトラメト
キシド、ジルコニウムテトラエトキシド、ジルコニウム
テトライソプaボキシド、ジルコニウムテトラブトキシ
ド等が挙げられる。
germanium dichloride, trimethylgermanium chloride, methylgermanium triacetate, dimethylgermanium diacetate, trimethylgermanium acetate, germanium tetramethoxide, germanium tetraethoxide, methylgermanium triethoxide, dimethylaluminum methoxide, trimethylgermanium methoxide, primary chloride Tin, stannic chloride, methyltin trichloride, dimethyltin dichloride, trimethyltin chloride, dibutyltin diacetate, tributyltin hydride, trimethyltin formate, trimethyltin acetate, triethyltin hydroxide, dimethyltin dimethoxide, trimethyltin methoxide, Dimethyltin jetoxide, dibutyltin dibutoxide, phosphorous acid, phosphoric acid, phosphorus trichloride, phosphorus oxychloride, phosphorus pentachloride, ammonium phosphate, triammonium phosphate, triammonium phosphate, methylphosphite dichloride, phenyl phosphorus Acid dichloride, dimethyl phosphite chloride, methyl phosphorous dichloride, methyl phosphorous acid, methyl phosphorous acid, trimethyl phosphite, triethyl phosphite, triethyl phosphite, tributyl phosphite, triphenyl phosphite, methyl phosphorous Diethyl acid, diethyl phenyl phosphite, ethyl dimethyl phosphite, ethyl diphenyl phosphite, trimethyl phosphate, triethyl phosphate, triphenyl phosphate, dimethyl methyl phosphate, diethyl ethyl phosphate, ethyl dimethyl phosphate, diethyl phosphate Methyl, titanium tetrachloride, titanyl sulfate, methyltrichlortitanium, dimethyldichlorotitanium, tetramethoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium, tetrabutoxytitanium, tetra(2-ethylhexyloxy)titanium, jetoxydibutoxytitanium , isopropoxy titanium triisostearate, isopropoxy titanium trioctate, diisopropoxy diacrylate, tributoxy titanium stearate, zirconium tetrachloride, zirconium oxychloride, zirconium acetate, zirconium lactate, zirconium tetramethoxide, zirconium tetraethoxy Examples include zirconium tetrabutoxide, zirconium tetraisopropoxide, and zirconium tetrabutoxide.

また、他の好ましい化合物として、上記金属化合物の誘
導体がある。これらの誘導体としては、たとえば、R”
基の一部をジカルボン酸基、オキシカルボンIt!in
、  β−ジケトン基、β−ケトエステル基、β−ジエ
ステル纂 アルカノールアミン基等のキレート化合物を
形成しうる基で置換した金属化合物、あるいは該金属化
合物および/または該キレート置換金属化合物を部分的
に加水分解および/または縮合してえられる反応性オリ
ゴマー、ポリマー8よび粒径0. 1μ以下の金属酸化
物微粒子等が挙げられる。
Further, other preferable compounds include derivatives of the above metal compounds. These derivatives include, for example, R''
Some of the groups are dicarboxylic acid groups, oxycarbon It! in
, β-diketone group, β-ketoester group, β-diester group, a metal compound substituted with a group capable of forming a chelate compound such as an alkanolamine group, or the metal compound and/or the chelate-substituted metal compound partially hydrated. A reactive oligomer obtained by decomposition and/or condensation, a polymer 8, and a particle size of 0. Examples include metal oxide fine particles of 1 μm or less.

上記のキレート置換金属化合物としては、たとえば、ジ
イソプロポキシチタンジアセチルアセトナート、オキシ
チタンジアセチルアセトナート、ジブトキシチタンビス
トリエタノールアミネート、ジヒドロキシチタンジラク
テート、ジルコニウムアセチルアセトネート、アセチル
アセトンジルコニウムブトキシド、アセト酢酸エチルジ
ルコニウムブトキシド、トリエタノールアミンジルコニ
ウムブトキシド、アルミニウムアセチルアセトネート等
があげられる。
Examples of the above chelate-substituted metal compounds include diisopropoxytitanium diacetylacetonate, oxytitanium diacetylacetonate, dibutoxytitanium bistriethanolaminate, dihydroxytitanium dilactate, zirconium acetylacetonate, acetylacetone zirconium butoxide, and ethyl acetoacetate. Examples include zirconium butoxide, triethanolamine zirconium butoxide, aluminum acetylacetonate, and the like.

上記の、反応性オリゴマー、ポリマー及び粒径0、 1
μ以下の金属酸化物微粒子は、該金属化合物および/ま
たは該キレート置換化合物を部分加水分解して得てもよ
いが、簡便には市販の反応性オリゴマー、ポリマー、た
とえば反応性のジメチルポリシロキサン類を使用するこ
とができるし、またシリカ、アルミナ、チタニア等の水
分散性ゾルまたはオルガノゾル等も好適に使用すること
ができる。
Reactive oligomers, polymers and particle sizes of 0 and 1 as described above
The metal oxide fine particles having a size of less than μ may be obtained by partial hydrolysis of the metal compound and/or the chelate-substituted compound, but it is convenient to use commercially available reactive oligomers and polymers, such as reactive dimethylpolysiloxane. In addition, water-dispersible sols or organosols of silica, alumina, titania, etc. can also be suitably used.

〔本発明の効果〕[Effects of the present invention]

本発明の材料は金rrArm化物中に該含水ヘテロポリ
酸および/または含水ヘテロポリ酸塩が高度に分散され
ているのでプロトン伝導性が高く、耐熱性、耐久性にも
優れており、しかもディッピングやキャスト法でH膜化
するのに適しており、電気化学装置用固体電解質として
好適なものである。
The material of the present invention has the hydrated heteropolyacid and/or hydrated heteropolyacid salt highly dispersed in the gold rrArm compound, so it has high proton conductivity, excellent heat resistance, and durability. It is suitable for forming an H film by a method, and is suitable as a solid electrolyte for electrochemical devices.

[実施例] 以下に実施例をあげて本発明の詳細な説明するが、この
実施例によって本発明の範囲が制限されるものではない
[Examples] The present invention will be explained in detail by way of Examples below, but the scope of the present invention is not limited by these Examples.

案J【倒」− 含水ワンタングステン酸(HzP W two 4(1
・29820、日本無機化学工業99製、以下PWと略
する)7.88gを水10g中に溶解し、つぎにテトラ
メトキシシラン(以下MSと略する)10gとメタノー
ルLogの混合溶液中へ攪拌下層下した。加熱しながら
約10分間攪拌後、溶液の一部をとりシャーレの中に流
し込んだ。室温で1週間風乾し、厚さ1.51の透明な
非晶質のガラス状薄膜を得た。この薄膜を一部とり、白
金電極で挟み交流インピーダンスメータでコールコール
プロットをかかせることによりプロトン伝導率を測定し
たところ2.  OX 10−”Sew−’であった。
Plan J - Hydrous wontungstic acid (HzP W two 4 (1
・Dissolve 7.88 g of 29820 (manufactured by Japan Inorganic Chemical Industry 99, hereinafter abbreviated as PW) in 10 g of water, and then stir it into a mixed solution of 10 g of tetramethoxysilane (hereinafter abbreviated as MS) and methanol Log. I put it down. After stirring for about 10 minutes while heating, a portion of the solution was taken and poured into a petri dish. After air drying at room temperature for one week, a transparent amorphous glassy thin film with a thickness of 1.51 mm was obtained. A portion of this thin film was taken, sandwiched between platinum electrodes, and the proton conductivity was measured by applying a Cole-Cole plot using an AC impedance meter.2. It was OX 10-"Sew-'.

更に、上記のガラス拭RM’AのX線回折分析を行った
ところ、PWに特有の回折ピークは認められずシリカゲ
ル様のブロードなピークのみしか認められなかった。し
かし、赤外吸収スペクトルではPWに特有の振動スペク
トル(1080,985,887,807am−’)が
あられれた。これらのことからPWはシリカ非晶質ネッ
トワーク中に高度に分散された状態で存在していると考
えられた。
Furthermore, when the above-mentioned glass wipe RM'A was subjected to X-ray diffraction analysis, no diffraction peak specific to PW was observed, and only a broad peak similar to silica gel was observed. However, in the infrared absorption spectrum, a vibrational spectrum (1080,985,887,807 am-') peculiar to PW was observed. From these results, it was considered that PW existed in a highly dispersed state in the silica amorphous network.

裏胤月2 PW3.3gを水5gに溶解し、つぎにMS4.2gと
イソプロピルアルコール87.5gの混合i1!F液中
へ攪拌下滴下した。50℃で24時間攪拌後、表面をき
れいに洗浄したスライドガラス上にプロトン伝導性薄膜
をディッピング法により形成し、はぼ透明な膜を得た。
Uratanegetsu 2 Dissolve 3.3g of PW in 5g of water, then mix 4.2g of MS and 87.5g of isopropyl alcohol i1! The mixture was added dropwise to the F solution while stirring. After stirring at 50° C. for 24 hours, a proton conductive thin film was formed on a glass slide whose surface had been thoroughly cleaned by dipping to obtain a transparent film.

80℃で1時間乾燥後膜厚を測定したところ、平均10
00人であった。このrIj膜にくし型金電極を真空蒸
着し、30℃、85%RH(相対湿度)中で24時間放
置後、実施例1と同じ方法でプロトン伝導性を測定した
ところ2X10″″3Sew−’であった。更に、この
薄膜のプロトン伝導率を85%RH中で温度を10.3
0.50.80℃と変化させて測定した。3 結果を表
−1に示す。
When the film thickness was measured after drying at 80°C for 1 hour, the average thickness was 10
There were 00 people. A comb-shaped gold electrode was vacuum-deposited on this rIj film, and after leaving it for 24 hours at 30°C and 85% RH (relative humidity), the proton conductivity was measured in the same manner as in Example 1. Met. Furthermore, the proton conductivity of this thin film was adjusted to 10.3 at a temperature of 85% RH.
The temperature was changed to 0.50.80°C and measured. 3 The results are shown in Table-1.

表−1 また、この薄膜を、100℃、100時間処理した後、
実施例1と同じ方法でプロトン伝導率を測定したところ
2. 2X 10−3Sc+s−’であった。
Table 1 Also, after treating this thin film at 100°C for 100 hours,
Proton conductivity was measured using the same method as in Example 1.2. It was 2X 10-3Sc+s-'.

伝導率の対数を絶対温度の逆数にたいしてプロットする
とほぼ直線となり、その傾きから活性化エネルギーは約
21KJ/molと計算された。
When the logarithm of the conductivity is plotted against the reciprocal of the absolute temperature, it becomes a nearly straight line, and the activation energy was calculated to be about 21 KJ/mol from the slope.

これは、水素結合エネルギーと同等であり、この薄膜の
伝導性もシリカ非晶質中に分散された水分子を介してプ
ロ゛トンが移動していくものと考えられる。更に、10
0℃耐熱試験後の#膜のX線回折分析を行ったところ試
験前とほとんど同じ非晶質状態を維持していた。このこ
とより、この構造の安定性が伝導率の経時劣化を抑えて
いると考えられる。
This is equivalent to hydrogen bond energy, and the conductivity of this thin film is thought to be due to the movement of protons via water molecules dispersed in the amorphous silica. Furthermore, 10
X-ray diffraction analysis of the #film after the 0°C heat resistance test revealed that it maintained almost the same amorphous state as before the test. This suggests that the stability of this structure suppresses the deterioration of conductivity over time.

裏塵1広し=1旦 PW3.3gのかわりに表2に示す含水ヘテロポリ、酸
を、MS4.2gのかわりに表2に示す金属化合物およ
び/またはその誘導体を使用した以外は実施例2と同様
に行い、プロトン伝導率を測定した。結果を表−2に示
す(なお、表中の略号は以下のとうりである)。また、
いずれもX線回折分析では、PWに特有の回折ピークは
認められなかった。
Example 2 except that 1 width of back dust = 1 hydrated heteropolymer acid shown in Table 2 was used instead of 3.3 g of PW, and the metal compound and/or its derivative shown in Table 2 was used instead of 4.2 g of MS. The proton conductivity was measured in the same manner. The results are shown in Table 2 (abbreviations in the table are as follows). Also,
In all cases, no diffraction peak specific to PW was observed in X-ray diffraction analysis.

く表中の略号〉 ES−−−φ・テトラエトキシシラン MTMS・・・メチルトリメトキシシランGTMS・・
・7−ゲリシドキシブロビルトリメトキシシラン TMB・・・・ホウ酸トリメチル TBA・・・・アルミニウムトリブトキシドTEG−Φ
一番ゲルマニウムトリエトキシドTEP・・・・リン酸
トリエチル DPAT・・・チタンジイソプロポキシアセチルアセト
ナート T B Z・・・・ジルコニウムテトラブトキシドBT
A・・・・ジブチル錫ジアセテートKFIOI・・信越
化学工業9勢製、  エポキシ変成ポリジメチルシロキ
サン 5TXN・・・日産化学工業■製、シリカゾルN521
0・・6原産業(111製、チタニアゾルTBT−ψ・
・テトラブトキシチタン 比1「例」。
Abbreviations in the table> ES---φ・Tetraethoxysilane MTMS...Methyltrimethoxysilane GTMS...
・7-Gelicidoxybrobyltrimethoxysilane TMB・・Trimethyl borate TBA・・Aluminum tributoxide TEG-Φ
Ichiban germanium triethoxide TEP...Triethyl phosphate DPAT...Titanium diisopropoxy acetylacetonate T B Z...Zirconium tetrabutoxide BT
A...Dibutyltin diacetate KFIOI...manufactured by Shin-Etsu Chemical Co., Ltd., epoxy modified polydimethylsiloxane 5TXN...manufactured by Nissan Chemical Industries, Ltd., Silica Sol N521
0...6 Hara Sangyo (manufactured by 111, Titania Sol TBT-ψ・
・Tetrabutoxytitanium ratio 1 "Example".

PWを厚き1. 5m−に加圧成型した。この成型体に
ついてプロトン伝導性を測定したところ8×10−”S
 cva−”であった。この成型体を実施例4と同様に
100℃の耐熱試験を行ったが、100時間後成型体は
ひび割れており耐久性に問題があった。
PW thick 1. It was pressure molded to a length of 5 m. The proton conductivity of this molded body was measured to be 8×10-”S.
cva-''. This molded body was subjected to a heat resistance test at 100° C. in the same manner as in Example 4, but the molded body was cracked after 100 hours and had a problem in durability.

比ntz ポバール(PVA−203、クラレ■製)1.97gを
水15gに加熱溶解し、これにPW3.97gを水5g
に溶解させた溶液を攪拌下適下した。1時間加熱攪拌す
ると高粘度で透明な液体となった。この液体を白金リー
ド線の付いたネサガラスに挾み、30℃、85%RH中
で24時間放置後プロトン伝導性を測定したところ 1
×10″″’Saw″″lであり伝導率としては低いも
のであった。更に、耐熱試験のため温度を80℃に上げ
ると、徐々に失透し1時間後には黒く着色しプロトン伝
導率も低下した。
Heat and dissolve 1.97g of POVAL (PVA-203, manufactured by Kuraray ■) in 15g of water, and add 3.97g of PW to this and 5g of water.
A solution of the solution was added under stirring. After heating and stirring for 1 hour, it became a highly viscous and transparent liquid. This liquid was sandwiched between Nesagalas with platinum lead wires, and the proton conductivity was measured after leaving it at 30°C and 85% RH for 24 hours. 1
×10'''''Saw''''l, and the conductivity was low. Furthermore, when the temperature was raised to 80° C. for a heat resistance test, the material gradually devitrified, turned black after 1 hour, and the proton conductivity decreased.

特許出願人 日本触媒化学工業株式会社手続補正書 (
自発) 昭和63年4月11日
Patent applicant Nippon Shokubai Chemical Co., Ltd. Procedural amendment (
(Voluntary) April 11, 1986

Claims (1)

【特許請求の範囲】 1 含水ヘテロポリ酸および/または含水ヘテロポリ酸
塩を、非晶質の金属酸化物中に高度に分散させたプロト
ン伝導性非晶質材料。 2 金属酸化物が元素周期律表のIII族、IV族、V族の
各元素からなる群から選ばれた少なくとも一種の金属酸
化物である請求項1に記載のプロトン伝導性非晶質材料
。 3 金属酸化物がB、Al、Si、Ge、Sn、P、T
iおよびZrからなる群から選ばれた少なくとも一種の
金属酸化物である請求項1に記載のプロトン伝導性非晶
質材料。 4 加水分解および/または縮合可能な基を有する金属
化合物および/またはその誘導体を含む溶液もしくは分
散液と、含水ヘテロポリ酸および/または含水ヘテロポ
リ酸塩を含む溶液とを均一に混合した後、該金属化合物
またはその誘導体を加水分解および/または縮合させる
ことを特徴とする請求項1に記載のプロトン伝導性非晶
質材料の製造方法。 5 金属化合物が、一般式 (R^1)_mM(R^2)_n(X)_p(Y)_q
(但し、Mは金属元素、Xは酸素またはSO_4、Yは
アンモニウム基または有機アミノ基、 R^1は水素または置換基があってもよい炭素数10ま
でのアルキル基、アリル基、不飽和脂肪族残基の群から
選ばれる少なくとも一種の基、R^2はハロゲン、NO
_3、水酸基、アシロキシ基、アルコキシ基からなる群
から選ばれた少なくとも一種の基、m、pおよびqは0
または正の数であり、かつnは正の数で、2p+m+n
−q=金属元素Mの原子価 を満足する。また、m個のR^1は異なっていてもよく
、n個のR^2、p個のXおよびq個のYも同様である
。) で示されることを特徴とする請求項4に記載のプロトン
伝導性非晶質材料の製造方法。 6 金属化合物の置換基R^2が、水酸基、アシロキシ
基、アルコキシ基からなる群から選ばれた少なくとも一
種の基からなることを特徴とする請求項5に記載のプロ
トン伝導性非晶質材料の製造方法。 7 金属化合物の置換基Xが、酸素であることを特徴と
する請求項5に記載のプロトン伝導性非晶質材料の製造
方法。 8 金属化合物の金属元素Mが、元素周期率表のIII族
、IV族、V族の各元素からなる群から選ばれた少なくと
も一種の金属元素であることを特徴とする請求項5に記
載のプロトン伝導性非晶質材料の製造方法。 9 金属化合物の金属元素Mが、B、Al、Si、Ge
、Sn、P、TiおよびZrからなる群から選ばれた少
なくとも一種の金属元素であることを特徴とする請求項
5に記載のプロトン伝導性非晶質材料の製造方法。
[Scope of Claims] 1. A proton-conducting amorphous material in which a hydrous heteropolyacid and/or a hydrous heteropolyacid salt are highly dispersed in an amorphous metal oxide. 2. The proton conductive amorphous material according to claim 1, wherein the metal oxide is at least one metal oxide selected from the group consisting of elements of Group III, Group IV, and Group V of the Periodic Table of Elements. 3 Metal oxide is B, Al, Si, Ge, Sn, P, T
The proton conductive amorphous material according to claim 1, which is at least one metal oxide selected from the group consisting of i and Zr. 4. After uniformly mixing a solution or dispersion containing a metal compound and/or its derivative having a hydrolyzable and/or condensable group and a solution containing a hydrous heteropolyacid and/or a hydrous heteropolyacid salt, the metal 2. The method for producing a proton-conducting amorphous material according to claim 1, which comprises hydrolyzing and/or condensing a compound or a derivative thereof. 5 The metal compound has the general formula (R^1)_mM(R^2)_n(X)_p(Y)_q
(However, M is a metal element; at least one group selected from the group of group residues, R^2 is halogen, NO
_3, at least one group selected from the group consisting of hydroxyl group, acyloxy group, and alkoxy group, m, p and q are 0
or a positive number, and n is a positive number, 2p+m+n
-q=the valence of the metal element M is satisfied. Further, the m R^1's may be different, and the same applies to the n R^2, the p X's, and the q Y's. ) The method for producing a proton conductive amorphous material according to claim 4, characterized in that: 6. The proton conductive amorphous material according to claim 5, wherein the substituent R^2 of the metal compound consists of at least one group selected from the group consisting of a hydroxyl group, an acyloxy group, and an alkoxy group. Production method. 7. The method for producing a proton conductive amorphous material according to claim 5, wherein the substituent X of the metal compound is oxygen. 8. The metal element M of the metal compound according to claim 5, wherein the metal element M is at least one metal element selected from the group consisting of elements of group III, group IV, and group V of the periodic table of elements. A method for producing a proton-conducting amorphous material. 9 The metal element M of the metal compound is B, Al, Si, Ge
6. The method for producing a proton conductive amorphous material according to claim 5, wherein the metal element is at least one metal element selected from the group consisting of , Sn, P, Ti, and Zr.
JP1683388A 1988-01-29 1988-01-29 Proton conductive amorphous material and production thereof Pending JPH01192742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1683388A JPH01192742A (en) 1988-01-29 1988-01-29 Proton conductive amorphous material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1683388A JPH01192742A (en) 1988-01-29 1988-01-29 Proton conductive amorphous material and production thereof

Publications (1)

Publication Number Publication Date
JPH01192742A true JPH01192742A (en) 1989-08-02

Family

ID=11927199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1683388A Pending JPH01192742A (en) 1988-01-29 1988-01-29 Proton conductive amorphous material and production thereof

Country Status (1)

Country Link
JP (1) JPH01192742A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001054216A2 (en) * 2000-01-18 2001-07-26 Ramot University Authority For Applied Research And Industrial Development Ltd. Fuel cell with proton conducting membrane
JP2002203575A (en) * 2000-11-14 2002-07-19 Nuvera Fuel Cells Europ Srl Film electrode assembly for high polymer film fuel cell
US6447943B1 (en) 2000-01-18 2002-09-10 Ramot University Authority For Applied Research & Industrial Development Ltd. Fuel cell with proton conducting membrane with a pore size less than 30 nm
CN110284190A (en) * 2019-07-29 2019-09-27 合肥学院 A kind of 12 phosphomolybdate H3PMo12O40·21H2The preparation method of O crystalline material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001054216A2 (en) * 2000-01-18 2001-07-26 Ramot University Authority For Applied Research And Industrial Development Ltd. Fuel cell with proton conducting membrane
WO2001054216A3 (en) * 2000-01-18 2002-02-21 Univ Ramot Fuel cell with proton conducting membrane
US6447943B1 (en) 2000-01-18 2002-09-10 Ramot University Authority For Applied Research & Industrial Development Ltd. Fuel cell with proton conducting membrane with a pore size less than 30 nm
US6492047B1 (en) 2000-01-18 2002-12-10 Ramot University Authority For Applied Research & Industrial Development Ltd. Fuel cell with proton conducting membrane
US7413824B2 (en) 2000-01-18 2008-08-19 Tel Aviv University Future Technology Development L.P. Direct oxidation fuel cell with a divided fuel tank having a movable barrier pressurized by anode effluent gas
US8092955B2 (en) 2000-01-18 2012-01-10 Tel-Aviv Univrsity Future Technology Development L.P. Fuel cell having fuel tank directly attached to anode allowing pump-free fuel delivery
JP2002203575A (en) * 2000-11-14 2002-07-19 Nuvera Fuel Cells Europ Srl Film electrode assembly for high polymer film fuel cell
CN110284190A (en) * 2019-07-29 2019-09-27 合肥学院 A kind of 12 phosphomolybdate H3PMo12O40·21H2The preparation method of O crystalline material

Similar Documents

Publication Publication Date Title
JP3733410B2 (en) Electrochromic thin film system and its constituent materials
KR101536803B1 (en) Infrared blocking particle, method for producing the same, infrared blocking particle dispersion using the same, and infrared blocking base
Terry et al. Tris (tert-butoxy) siloxy complexes as single-source precursors to homogeneous zirconia-and hafnia-silica materials. An alternative to the sol-gel method
El Nahrawy et al. Compositional effects and optical properties of P 2 O 5 doped magnesium silicate mesoporous thin films
JP4225402B2 (en) Zinc oxide fine particles and their uses
WO1998039253A1 (en) Process for producing composite sols, coating composition, and optical member
KR101021659B1 (en) Method for producing solar collector module coating solution
WO2000037359A1 (en) Fine particle, sol having fine particles dispersed, method for preparing said sol and substrate having coating thereon
JP2768442B2 (en) Manufacturing method of semiconductor-containing glass
US5460738A (en) Modified stannic oxide-zirconium oxide composite sol and process for preparing the same
JP5827107B2 (en) Method for preparing film forming composition and method for producing solar cell module
WO2004050560A1 (en) Modified stannic oxide sol, stannic oxide-zirconium oxide composite sol, coating composition and optical member
JPH01192742A (en) Proton conductive amorphous material and production thereof
JPH07286114A (en) Coating liquid for forming film and substrate with film applied thereto
KR101555443B1 (en) Manufacturing method of high refractive index hard coating solution for ophthalmic plastic lenses using the titania-zirconia-tin oxide mixed oxide sols
Orel et al. Electrochemical and optical properties of sol-gel-derived Ce02 and mixed CeO2/SnO2 coatings
WO1998054094A1 (en) PROCESS FOR PREPARING In2O3-SnO2 PRECURSOR SOL AND PROCESS FOR PREPARING THIN FILM OF In2O3-SnO¿2?
KR101959045B1 (en) Process for preparing high refractive organic-inorganic hybrid sol
JP2913257B2 (en) Method for producing titania-silica and transparent thin film
JP2686103B2 (en) Zirconia-based composite sol
JPH07305000A (en) Antistatic coating composition
WO1998041481A1 (en) Composition for forming colored coating and process for producing glass article coated with colored coating
JPH06212125A (en) Coating fluid, its production, and coated base material
KR101795751B1 (en) Preparation of high refractive index zironia organic-inorganic composit
JPH08175815A (en) Electrically conductive oxide particle