JPH01192404A - Manufacture of clad steel plate - Google Patents

Manufacture of clad steel plate

Info

Publication number
JPH01192404A
JPH01192404A JP63016350A JP1635088A JPH01192404A JP H01192404 A JPH01192404 A JP H01192404A JP 63016350 A JP63016350 A JP 63016350A JP 1635088 A JP1635088 A JP 1635088A JP H01192404 A JPH01192404 A JP H01192404A
Authority
JP
Japan
Prior art keywords
rolling
temperature
deformation resistance
steel
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63016350A
Other languages
Japanese (ja)
Inventor
Kensaburo Takizawa
瀧澤 謙三郎
Haruo Kaji
梶 晴男
Masanori Matsuoka
松岡 雅典
Mitsuaki Shibata
柴田 光明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63016350A priority Critical patent/JPH01192404A/en
Publication of JPH01192404A publication Critical patent/JPH01192404A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the quality and yield by rolling so that a sheet having a larger deformation resistance is put in the lower position and an interval between rolling passes is kept in hot rolling for a composite stock composed of a steel and one of stainless steel, Ni, and a Ni alloy. CONSTITUTION:A composite stock is formed by lapping a stainless steel sheet having a tendency of easily work hardening or a Ni alloy sheet over a steel sheet and welding their peripheral part. In welding the stock, a material having a larger high temp. deformation resistance is positioned in the lower position; an interval between rolling passes (t, sec) is specified by use of the equation based on a composite thickness (H, mm) and a clad ratio (C, %) and an average rolling temp. of the composite stock is >=950 deg.C. By this method, the yield and quality of a product are improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はクラッド鋼板の製造に係り、より詳しくは、熱
間変形抵抗の異なる母材鋼と合せ材の一組を重ね合わせ
て周縁部を溶接した組立素材を圧延してクラッド鋼板を
得る。いわゆるオープンサンドイッチ圧延法において、
圧延時の反りや周縁溶接部の破断等を防止して良好なり
ラッド鋼板を製造する方法に関する。 (従来の技術及び解決しようとする問題点)従来より、
クラッド鋼板を熱間圧延により製造する方法には種々の
方式があるが、その1つとして、母材鋼と、ステンレス
鋼、ニッケル又はニッケル合金等の合せ材とを重ね合せ
て1組とし、その周縁部を溶接した組立素材を圧延し、
1枚のクラッド鋼板を得るオープンサイドインチ圧延法
がある。すなわち、母材鋼の片面のみに合せ材を重ね、
他の面をオープンのままで圧延する方法である。 しかし、この方法では、合せ材と母材鋼とは高温変形抵
抗が異なるため、上下非対称の圧延となり、高温変形抵
抗の大きい方の材料を内側にした反りが生じる。この場
合、圧延時の反りが上反りとなると円滑な圧延を阻害す
るため、上反りを防止する方法として、高温変形抵抗の
大きい方の材料を下側にして圧延を行い、その際に生じ
る下反りはローラデープルの反力で抑える方法が採られ
ている。 しかし乍ら、この下反り抑制法においても、圧延時の先
端部がローラテーブルに接触するまでの領域では大きな
下反りが生じるため、ワークロールとローラテーブル間
に配置されたストリッパガイドへの突っ掛けも発生し、
甚しい場合には、通板不能となり、圧延が維持できなく
なるという問題があった。 また、拘束溶接部の破損頻度も高いのみならず。 その破損によって非接合部が発生し、製品が採取できな
いことが生じ、たとえ拘束、溶接部が破損まで至らずに
圧延できたとしても、合せ材厚が圧延方向に大きく変動
し、所期の目標とした板厚公差を満足できず、高歩留で
製造することができないという問題があった。 本発明は、上記従来技術の欠点を解消し、オープンサン
ドイッチ圧延法において、板反りを軽減し、拘束溶接部
の破損、厚肉化等を防止でき、高歩留でクラッド鋼板を
製造し得る方法を提供することを目的とするものである
。 (問題点を解決するための手段) 前記目的を達成するため1本発明者は、従来法における
板反り発生原因を分析すると共に下反りを軽減し得る方
策を見い出すべく鋭意実験研究を重ねた。 一組の母材鋼と当該母材鋼よりも高温変形抵抗が高いス
テンレス鋼、Ni及びNi合金等の合せ材とからなるオ
ープンサイドイッチ形コンポジットを熱間圧延するに際
しては1合せ材と母材鋼との高温変形抵抗の差異に加え
て、搬送及び圧延工程で上下面に温度差が生じて圧延工
程での反りが助長される。 しかし、上下面の温度差の発現は通常の加熱・圧延方法
では避けられないため、本発明者は、これを容認しつつ
、高温変形抵抗の点について改善策を講じる方向で検討
した結果、合せ材の組織改善により高温変形抵抗を可能
な限り低減させて合せ材と母材鋼の変形抵抗を近づける
ならば、従来具られる圧延過程における大きな反りを軽
減できるとの知見を得た。 具体的には、ステンレス鋼、Ni及びNi合金のように
再結晶を特性として有している合せ材は〜歪が加わると
変形抵抗は高くなるが、所定の温度に保持されると、再
結晶が進行して変形抵抗が低くなる性質に着目し、バス
間時間を調整することによりパス間での合せ材の回復及
び再結晶を促進させ、合せ材の変形抵抗を低減させるこ
とにより可能であることを見い出した。そこで、更にコ
ントロール条件について詳細に実験を重ね、ここに本発
明をなすに至ったものである。 すなわち、本発明に係るクラッド鋼板の製造方法は、母
材鋼と、ステンレス鋼、Ni及びNi合金のうちの1種
からなる合せ材との一組を重ね合せて周縁部を溶接した
組立素材を熱間圧延してクラッド鋼板を得る方法におい
て、高温変形抵抗の大きい方の材料を下側にし、且つ合
せ材の平均温度が950℃以上の温度範囲で次式 但し、t:パス時間(see) H:コンポジット厚さ(脂■) C:クラッド率(%) を満足するパス間時間を確保した圧延パスを少なくとも
1回行うことを特徴とするものである。 以下に本発明を更に詳細に説明する。 まず、本発明をなすに至った基礎実験について説明する
。 実験では、合せ材及び母材鋼に使用する材料としてそれ
ぞれ5US316L、8841を準備し、1バス当りの
歪(ε)を0.07〜0.20としてパス間時間(1)
を変えて多段パスの圧下を行い、各パスにおける高温変
形抵抗の挙動を調査した。コンポジット温度がそれぞれ
1100℃、1000℃、900℃の場合の高温変形温
度抵抗の挙動の一例を第1図、第2図、第3図に示す。 これより、5US316Lの変形抵抗は5S41のそれ
よりもバス間時間により大きく変化することがわかる。 すなわち、(i)パス間時間の増大により圧下初期の加
工硬化を著しく軽減できる。 (ji)パス間時間を増大させると加工硬化後、軟化が
みられ、バス間時間の長いものほど変形抵抗は低位にな
る。 また、5US316Lが低温になるほどバス間時間調整
による前記(i)、(…)の効果は小さくなるため、5
US316Lの温度が低い場合に上記の効果を発揮させ
るには、パス間時間を長くとることが必要である。 更に、5US316Lは、900℃の場合(第3図)に
は上記の効果が顕著でなくなるため、パス間時間制御の
適用しうる温度は900℃を超える温度にする必要があ
る。この点、別途実験により、その下限温度は950℃
であることが判明した。 以上の基礎実験に基づいて、有効なパス間時間を確定す
るため、コンポジット材料構成、コンポジット厚さ、ク
ラッド率等々を種々変えて実験した結果、950℃以上
の温度範囲での前記パス間時間t (sec)は、コン
ポジット厚さをH(mm)、クラッド率をC(%)とす
ると、 の関係式を満足するように設定する必要があることが判
明したのである。 なお、オープンサンドイッチ圧延法における他の条件、
例えば、コンポジットの均熱条件、周縁部の溶接法など
は特に制限されないことは云うまでもない。 以下に本発明の実施例を示す。 失胤鮭よ 母材鋼として5S41、合せ材として5US316Lを
それぞれ用い、第1表に示すコンポジット構成厚にて素
材を組立て、周縁部を溶接した後、合せ材を下側に配置
し、該コンポジットの加熱炉抽出から圧延過程に至る母
材部と5US316L部の平均温度の変化について一次
元熱伝導解析でシミュレーション実験を行い、圧延過程
での合せ材と母材鋼の平均変形抵抗の比を求めた。他の
実験条件(クラッド率、加熱・圧延条件)は第1表に示
すとおりとした。 一例として、Nalの場合の温度シミュレーション結果
の一例(パス間時間t=7sec、1パス当りの真否ε
t /pass= 0 、07 )を第4図に示し、ま
た圧延過程における5US316Lと5S41の平均変
形抵抗の比を第5図に示す。第5図より、現状のパス間
時間である7 secの場合と比較すると。 17sec以上で変形抵抗比の低減効果が顕在化し。 パス間時間の長いもの程、低減効果が大きいことがわか
る。 この合せ材と母材鋼の変形抵抗比の低減が顕在化するパ
ス間時間tをまとめると、第2表とおりである。 12表より、合せ材と母材鋼の変形抵抗比の低減が顕在
化するパス間時間tはコンポジット厚Hが小さいほど長
くなり、またクラッド率Cが小さいほど長くなることが
わかる。しかし、1パス当りの歪量によっては影響され
ない。これらの結果より、そのようなパス間時間tは前
記(1)式で表わすことができることを確認した。但し
、パス間温度制御適用の温度下限値は950℃である。
(Industrial Application Field) The present invention relates to the production of clad steel plates, and more specifically, the present invention relates to the production of clad steel plates, and more specifically, it involves rolling an assembled material in which a pair of base steel and laminate material having different hot deformation resistances are overlapped and welded at the periphery. to obtain a clad steel plate. In the so-called open sandwich rolling method,
The present invention relates to a method for manufacturing a good-quality rad steel plate by preventing warpage during rolling, breakage of peripheral welds, etc. (Conventional technology and problems to be solved) Conventionally,
There are various methods for producing clad steel plates by hot rolling, but one method is to stack base steel and a mating material such as stainless steel, nickel or nickel alloy as a set, and then The assembled material with the peripheral edges welded is rolled,
There is an open side inch rolling method to obtain a single clad steel plate. In other words, by overlapping the cladding material on only one side of the base steel,
This is a method of rolling with the other side open. However, in this method, since the laminate material and the base steel have different high-temperature deformation resistances, rolling is performed vertically asymmetrically, resulting in warpage with the material having higher high-temperature deformation resistance facing inside. In this case, if the warpage during rolling becomes upward warpage, it will impede smooth rolling, so one way to prevent upward warpage is to roll with the material with greater high-temperature deformation resistance on the bottom, and the downward A method is used to suppress warping by using the reaction force of the roller lap. However, even with this method of suppressing downward warpage, a large downward warpage occurs in the area up to the point where the tip comes into contact with the roller table during rolling. also occurs,
In severe cases, there was a problem in that the sheet could not be threaded and rolling could not be maintained. In addition, not only is the frequency of failure of restraint welds high. The damage causes non-joint parts, making it impossible to collect the product, and even if the restrained and welded parts can be rolled without breaking, the thickness of the laminate varies greatly in the rolling direction, and the desired target cannot be achieved. There was a problem in that the plate thickness tolerance could not be satisfied, making it impossible to manufacture with a high yield. The present invention solves the above-mentioned drawbacks of the prior art, reduces plate warping, prevents breakage of constraint welds, thickening, etc. in the open sandwich rolling method, and produces a clad steel plate with a high yield. The purpose is to provide the following. (Means for Solving the Problems) In order to achieve the above object, the inventors of the present invention analyzed the causes of sheet warping in conventional methods and conducted intensive experimental research to find a method for reducing downward warping. When hot rolling an open side switch type composite consisting of a pair of base steel and a laminate such as stainless steel, Ni, and Ni alloy, which have higher high temperature deformation resistance than the base steel, one laminate and the base metal are hot rolled. In addition to the difference in high-temperature deformation resistance from steel, a temperature difference occurs between the upper and lower surfaces during the conveyance and rolling process, which promotes warping during the rolling process. However, since the occurrence of a temperature difference between the upper and lower surfaces cannot be avoided by normal heating and rolling methods, the inventors of the present invention have considered ways to improve the high-temperature deformation resistance while accepting this. We have found that if we reduce the high-temperature deformation resistance as much as possible by improving the structure of the material and bring the deformation resistance of the laminate and base steel closer together, it is possible to reduce the large warpage that occurs in the conventional rolling process. Specifically, laminate materials that have recrystallization characteristics such as stainless steel, Ni, and Ni alloys have a high deformation resistance when strain is applied, but recrystallization occurs when held at a certain temperature. This is possible by focusing on the property that deformation resistance decreases as deformation progresses, and by adjusting the time between baths to promote recovery and recrystallization of the laminate between passes and reduce the deformation resistance of the laminate. I discovered that. Therefore, we conducted further detailed experiments regarding control conditions, and hereby we have achieved the present invention. That is, the method for manufacturing a clad steel plate according to the present invention involves producing an assembled material in which a set of base steel and a laminate made of one of stainless steel, Ni, and Ni alloy are stacked together and the peripheral edges are welded. In the method of obtaining a clad steel plate by hot rolling, the material with higher high-temperature deformation resistance is placed on the lower side, and the average temperature of the laminate is in a temperature range of 950°C or higher. H: Composite thickness (fat ■) C: Cladding ratio (%) It is characterized by performing at least one rolling pass with an interpass time that satisfies the following. The present invention will be explained in more detail below. First, basic experiments that led to the present invention will be explained. In the experiment, 5US316L and 8841 were prepared as the materials used for the cladding material and the base material steel, respectively, and the strain (ε) per bus was set to 0.07 to 0.20, and the interpass time (1)
A multi-pass reduction was performed by changing the temperature, and the behavior of high-temperature deformation resistance in each pass was investigated. Examples of the behavior of high temperature deformation temperature resistance when the composite temperatures are 1100°C, 1000°C, and 900°C are shown in Figs. 1, 2, and 3, respectively. From this, it can be seen that the deformation resistance of 5US316L changes more greatly depending on the inter-bus time than that of 5S41. That is, (i) work hardening at the initial stage of rolling can be significantly reduced by increasing the time between passes. (ji) When the inter-pass time is increased, softening is observed after work hardening, and the longer the inter-pass time is, the lower the deformation resistance is. Also, the effects of (i) and (...) above due to inter-bus time adjustment become smaller as the temperature of 5US316L becomes lower.
In order to exhibit the above effect when the temperature of US316L is low, it is necessary to take a long time between passes. Furthermore, in the case of 5US316L, the above effect becomes less noticeable at 900° C. (FIG. 3), so the temperature to which inter-pass time control can be applied needs to be a temperature higher than 900° C. In this regard, separate experiments have shown that the lower limit temperature is 950℃.
It turned out to be. Based on the above basic experiments, in order to determine the effective inter-pass time, we conducted experiments with various composite material compositions, composite thicknesses, cladding ratios, etc., and found that the inter-pass time t in a temperature range of 950°C or higher. It has been found that (sec) needs to be set so as to satisfy the following relational expression, where H (mm) is the composite thickness and C (%) is the cladding ratio. In addition, other conditions in the open sandwich rolling method,
For example, it goes without saying that there are no particular restrictions on the soaking conditions for the composite, the welding method for the peripheral edge, etc. Examples of the present invention are shown below. Using 5S41 as the base material steel and 5US316L as the cladding material, the materials were assembled with the composite thickness shown in Table 1, and after welding the periphery, the cladding material was placed on the lower side, and the composite was assembled. A simulation experiment was conducted using one-dimensional heat conduction analysis on the change in the average temperature of the base metal part and 5US316L part from the heating furnace extraction to the rolling process, and the ratio of the average deformation resistance of the laminate and base metal steel during the rolling process was determined. Ta. Other experimental conditions (clad ratio, heating/rolling conditions) were as shown in Table 1. As an example, an example of the temperature simulation results in the case of Nal (interpass time t = 7 sec, true/false ε per pass
t /pass=0,07) is shown in FIG. 4, and the ratio of average deformation resistance of 5US316L and 5S41 during the rolling process is shown in FIG. As shown in FIG. 5, this is compared with the current inter-pass time of 7 seconds. The effect of reducing the deformation resistance ratio becomes apparent after 17 seconds or more. It can be seen that the longer the inter-pass time, the greater the reduction effect. Table 2 summarizes the inter-pass time t during which the reduction in deformation resistance ratio between the laminate material and the base material steel becomes apparent. From Table 12, it can be seen that the inter-pass time t during which the reduction in the deformation resistance ratio between the laminate material and the base material steel becomes apparent becomes longer as the composite thickness H becomes smaller, and becomes longer as the cladding ratio C becomes smaller. However, it is not affected by the amount of distortion per pass. From these results, it was confirmed that such inter-pass time t can be expressed by the above equation (1). However, the lower limit of temperature for application of inter-pass temperature control is 950°C.

【以下余白】[Left below]

去JLfL影 次に、実施例1でのモデル計算から得られたパス間時間
を指標として、5S41(母材鋼)+5US316L(
合せ材)のオープンサンドイッチ形コンポジットの圧延
実験を行い、板反りの最大量、拘束溶接部の健全性、接
合性及び合せ材部の先端部の厚肉化の程度を調査した。 なお、コンポジット厚Hは200■m+(S S 41
 :170mm+5US316L:30mm)、クラッ
ド率は15%である。また加熱炉での加熱温度を120
0℃とした。圧延開始から被圧延材の厚みが90%にな
るまではパス間時間tは現状の7 secで圧延し、そ
れ以降は、1000℃までパス間時間調整を行った。圧
延仕上り厚は301101とした。実験結果を第3表に
示す。 第3表より、パス間時間7 secの従来法では、圧延
時の反りが大きく、反り矯正時に拘束溶接部が破損して
非接合部が発生し、また合せ材の先後端部に顕著な厚肉
化領域が発生したのに対して、パス間時間30secの
本発明法では、圧延時の反りが小さく、円滑に圧延でき
、また拘束溶接部及びクラッド部は健全であり、合せ材
の先後端部の厚肉化領域も軽減していることがわかる。 なお、上記実施例では、母材鋼として5S41、合せ材
として5US318Lを用いるコンポジットの例を示し
たが、他のステンレス鋼、ニッケル及びニッケル合金等
を合せ材として用いることができ、また母材鋼としても
他の鋼種を用いることができることは云うまでもなく、
要は1合せ材としては母材鋼よりも高温変形抵抗が高い
材料を選定すればよい。勿論、いずれを母材鋼とし或い
は合せ材とするかは相対的に決定されるものである。 (以下余白] (発明の効果) 以上詳述したように、本発明によれば、母材鋼と合せ材
とのコンポジットを特定の一方を下側にして熱間圧延す
る際に、所定の温度範囲でパス間時間制御する圧延パス
を経るので、オープンサンドイッチ圧延法の如く非対称
圧延によっても板反りが著減でき、その効果として拘束
溶接部の砿損が防止でき、クラッド鋼板の接合性が確保
できると共に、圧延材の先後端部における合せ材の厚肉
化も抑制でき、良好なりラッド鋼板を安定して高歩留で
製造することが可能である。
Next, using the interpass time obtained from the model calculation in Example 1 as an index, 5S41 (base metal steel) + 5US316L (
A rolling experiment was conducted on an open sandwich-type composite of laminates, and the maximum amount of sheet warpage, soundness of restraint welds, bondability, and degree of thickening at the tip of laminate parts were investigated. In addition, the composite thickness H is 200 m + (S S 41
:170mm+5US316L:30mm), and the cladding ratio is 15%. Also, the heating temperature in the heating furnace was set to 120
The temperature was 0°C. From the start of rolling until the thickness of the material to be rolled reached 90%, rolling was performed at the current interpass time t of 7 sec, and after that, the interpass time was adjusted up to 1000°C. The finished rolling thickness was 301101 mm. The experimental results are shown in Table 3. Table 3 shows that in the conventional method with an inter-pass time of 7 seconds, the warpage during rolling was large, the restraint welded part was damaged during warp correction, resulting in a non-joined part, and there was a noticeable thickness at the leading and trailing ends of the laminate. In contrast, in the method of the present invention with an inter-pass time of 30 seconds, the warping during rolling was small and rolling was possible smoothly, and the constraint welds and cladding areas were sound, and the leading and trailing edges of the laminate were intact. It can be seen that the thickened areas of the parts have also been reduced. In addition, in the above example, an example of a composite using 5S41 as the base material steel and 5US318L as the laminate material was shown, but other stainless steels, nickel, nickel alloys, etc. can be used as the laminate material, and the base material steel However, it goes without saying that other steel types can be used.
In short, it is sufficient to select a material with higher high temperature deformation resistance than the base material steel as the first laminate material. Of course, which steel is to be used as the base material steel or which material is to be used as the laminate material is determined relatively. (Margin below) (Effects of the Invention) As detailed above, according to the present invention, when hot rolling a composite of a base steel and a laminate with one specific side facing down, a predetermined temperature is applied. Since the rolling passes are performed with inter-pass time controlled within a range, sheet warpage can be significantly reduced even by asymmetric rolling such as open sandwich rolling, and as a result, it is possible to prevent coring loss of restraint welds and ensure the bondability of clad steel sheets. At the same time, it is possible to suppress the thickening of the laminated material at the leading and trailing ends of the rolled material, and it is possible to stably produce good rad steel plates at a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は5US316L、 5S41の平均変形抵抗の
一例を示す図。 第2図乃至第4図はそれぞれパス間時間を変えた場合の
温度シミュレーション結果を示す図、第5図はパス間時
間を変えた場合の各パスにおける合せ材(SUS316
L)と母材(SS41)の平均変形抵抗の比を示す図で
ある。 第3図 X(Σ′Ei
FIG. 1 is a diagram showing an example of the average deformation resistance of 5US316L and 5S41. Figures 2 to 4 are diagrams showing the temperature simulation results when the inter-pass time is changed, and Figure 5 is a diagram showing the results of the temperature simulation when the inter-pass time is changed.
It is a figure which shows the ratio of the average deformation resistance of L) and a base material (SS41). Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)母材鋼と、ステンレス鋼、Ni及びNi合金のう
ちの1種からなる合せ材との一組を重ね合せて周縁部を
溶接した組立素材を熱間圧延してクラッド鋼板を得る方
法において、高温変形抵抗の大きい方の材料を下側にし
、且つ合せ材の平均温度が950℃以上の温度範囲で次
式 t≧6・exp(3000/H・C) 但し、t:パス間時間(sec) H:コンポジット厚さ(mm) C:クラッド率(%) を満足するパス間時間を確保した圧延パスを少なくとも
1回行うことを特徴とするクラッド鋼板の製造方法。
(1) A method of obtaining a clad steel plate by hot rolling an assembled material in which a set of base steel and a laminate made of one type of stainless steel, Ni, or Ni alloy is laminated and welded at the periphery. , the material with greater high-temperature deformation resistance is on the lower side, and the average temperature of the laminate is in a temperature range of 950°C or higher, using the following formula t≧6・exp (3000/H・C), where t: time between passes (sec) H: Composite thickness (mm) C: Cladding ratio (%) A method for manufacturing a clad steel plate, characterized by performing at least one rolling pass with an inter-pass time that satisfies the following.
JP63016350A 1988-01-26 1988-01-26 Manufacture of clad steel plate Pending JPH01192404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63016350A JPH01192404A (en) 1988-01-26 1988-01-26 Manufacture of clad steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63016350A JPH01192404A (en) 1988-01-26 1988-01-26 Manufacture of clad steel plate

Publications (1)

Publication Number Publication Date
JPH01192404A true JPH01192404A (en) 1989-08-02

Family

ID=11913917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63016350A Pending JPH01192404A (en) 1988-01-26 1988-01-26 Manufacture of clad steel plate

Country Status (1)

Country Link
JP (1) JPH01192404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105508042A (en) * 2015-12-03 2016-04-20 赵立增 Movable silent generator set
WO2018199328A1 (en) 2017-04-28 2018-11-01 新日鐵住金株式会社 High strength steel sheet and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105508042A (en) * 2015-12-03 2016-04-20 赵立增 Movable silent generator set
WO2018199328A1 (en) 2017-04-28 2018-11-01 新日鐵住金株式会社 High strength steel sheet and method for manufacturing same
KR20190105048A (en) 2017-04-28 2019-09-11 닛폰세이테츠 가부시키가이샤 High strength steel sheet and its manufacturing method

Similar Documents

Publication Publication Date Title
CN105057386B (en) Device and method for producing metal composite sheet strips through corrugated-flat continuous rolling
US4348131A (en) Welded structure having improved mechanical strength and process for making same
JP3742340B2 (en) Method for producing aluminum composite material
JPH01192404A (en) Manufacture of clad steel plate
US2800709A (en) Method of making composite stock
US2898667A (en) Method of preventing edge cracking in the rolling of stainless steel
JPS63207401A (en) Method for assembling for pack rolling material
JPS62110880A (en) Production of two-phase stainless steel clad steel
RU84763U1 (en) BIMETALLIC PROCESSING
JPH0484682A (en) Production of clad material having high base metal toughness
JPS63238987A (en) Manufacture of clad steel plate having uniform cladding material thickness
JPH06226303A (en) Manufacture of clad steel sheet
KR102405037B1 (en) Method of manufacturing clad steel plate
JPS59104202A (en) Cold rolling method of ferritic stainless steel
JP4349504B2 (en) Manufacturing method of high gloss BA finish stainless steel using tandem mill
JPS62104625A (en) Camber straightening method for two layer clad metallic plate
JPS59212103A (en) Manufacture of rolled shape-sheet
JPH02295602A (en) Production of corrugated steel sheet
JPS58145382A (en) Manufacture of clad steel plate
JPH04313472A (en) Production of stainless steel foil clad aluminum sheet
JPH10110244A (en) Double cold rolling finished steel sheet for welded can in which flange forming is easily executable and its production
JPH04309476A (en) Production of copper-clad steel plate
JPS6221404A (en) Hot rolling method for three-layered stainless clad steel slab
JPH05169283A (en) Manufacture of clad steel sheet
JPH0760460A (en) Production of rolled aluminum clad foil