JPH01191754A - Manufacture of nitride grain-containing amorphous alloy - Google Patents

Manufacture of nitride grain-containing amorphous alloy

Info

Publication number
JPH01191754A
JPH01191754A JP1423988A JP1423988A JPH01191754A JP H01191754 A JPH01191754 A JP H01191754A JP 1423988 A JP1423988 A JP 1423988A JP 1423988 A JP1423988 A JP 1423988A JP H01191754 A JPH01191754 A JP H01191754A
Authority
JP
Japan
Prior art keywords
nitride
alloy
amorphous
atom
denotes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1423988A
Other languages
Japanese (ja)
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Masahiro Oguchi
小口 昌弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPR Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd filed Critical Teikoku Piston Ring Co Ltd
Priority to JP1423988A priority Critical patent/JPH01191754A/en
Publication of JPH01191754A publication Critical patent/JPH01191754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain an alloy constituted of an amorphous mother phase and having excellent wear resistance in which hard metallic nitride fine grains are uniformly dispersed and incorporated by melting the alloy material constituted of the elements for forming an amorphous mother phase contg. carbon and nitride forming metallic elements in an N2-contg. gas and quenching it. CONSTITUTION:The alloy having the compsn. expressed by the general formulaalpha100-x-y-zbetaxCyM2(alpha denotes one or more kinds of elements among Fe, Co, Ni, Cu and Pd, beta denotes one or more kinds among E, Si, P and Ge, C denotes carbon, M denotes nitride forming metallic elements such as V, Cr, Zr, Ti, Ta, Nb, Hf, Mo, W and Al and 10-35 atom% x, 2-15 atom% y, 2-25 atom% z and 12-40 atom% x + y are regulated) is subjected to plasma arc melting in an N2 gascontg. atmosphere and is thereafter subjected to super quenching at 10<4>-10<6> deg.C/sec cooling speed. The amorphous alloy having excellent wear resistance in which the hard fine grains constituted of the nitride of M are uniformly dispersed into the amorphous matrix formed by alpha and beta can be obtd.

Description

【発明の詳細な説明】 「技術分野」 本発明は、非晶質は相中に窒化物粒子を含有させた窒化
物粒子含有非晶質合金の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing an amorphous alloy containing nitride particles, in which the amorphous phase contains nitride particles.

「従来技術およびその問題点」 従来、金属溶湯に窒化物や炭化物の粉末を強制的に添加
し急冷することによって、非晶質母相中に窒化物や炭化
物粒子を分散させた合金が得られることが知られている
。このような非晶質合金は、硬度が高<、耐腐食性に優
れるという非晶質合金の特性を備えると共に1分散した
窒化物や炭化物によって硬度や耐摩耗性などの材料特性
がさらに向上する。
"Prior art and its problems" Conventionally, by forcibly adding nitride or carbide powder to molten metal and rapidly cooling it, an alloy with nitride or carbide particles dispersed in an amorphous matrix can be obtained. It is known. Such amorphous alloys have the characteristics of amorphous alloys such as high hardness and excellent corrosion resistance, and the material properties such as hardness and wear resistance are further improved by dispersed nitrides and carbides. .

しかしながら、上記のような製造方法では、金属溶湯中
に窒化物や炭化物の粉末を添加する際、溶湯との濡れ性
の悪いことや、比重の違い等によって粉末を均一に分散
させることが困難であった。また、窒化物などの粉末は
、高価であるという問題点もあった。
However, with the above manufacturing method, when adding nitride or carbide powder to molten metal, it is difficult to uniformly disperse the powder due to poor wettability with the molten metal and differences in specific gravity. there were. Another problem is that powders such as nitrides are expensive.

「発明の目的J 本発明の目的は、非晶質合金からなる母相中にプラズマ
アーク反応によって生成された窒化物の微細な粒子を均
一に分散させることにより、強度、硬度、磁気特性など
に優れた効果を有する窒化物粒子含有非晶質合金の製造
法を提供することにある。
"Objective of the Invention J The object of the present invention is to improve strength, hardness, magnetic properties, etc. by uniformly dispersing fine nitride particles generated by plasma arc reaction in a matrix consisting of an amorphous alloy. An object of the present invention is to provide a method for producing an amorphous alloy containing nitride particles that has excellent effects.

「発明の構成」 本発明による窒化物粒子含有非晶質合金の製造法は、窒
化物形成可能な元素を含有する非晶質合金材料を窒素あ
るいは窒素を含む混合ガス中でプラズマアークにより溶
解し、その溶湯を液体急冷法で急冷凝固することにより
、非晶質母相中に窒化物が均一分散した合金を得ること
を特徴とする。
"Structure of the Invention" The method for producing an amorphous alloy containing nitride particles according to the present invention involves melting an amorphous alloy material containing an element capable of forming nitrides by plasma arc in nitrogen or a mixed gas containing nitrogen. The molten metal is rapidly solidified using a liquid quenching method to obtain an alloy in which nitrides are uniformly dispersed in an amorphous matrix.

このように、窒化物形成可能な元素を含有する非晶質合
金材料を窒素ガス中でアーク溶解したとき、プラズマ中
で活性化された窒素と溶融金属との反応により窒化物を
生成し、この溶湯を液体急冷することにより非晶質の組
織が形成されると共に、窒化物を均一に分散した合金を
得ることができる。
In this way, when an amorphous alloy material containing an element capable of forming nitrides is arc melted in nitrogen gas, nitrides are generated by the reaction between the nitrogen activated in the plasma and the molten metal. By rapidly liquid cooling the molten metal, an amorphous structure is formed and an alloy in which nitrides are uniformly dispersed can be obtained.

そして、この合金は、窒化物からなる粒径的0.5〜5
μmの微細な粒子が均一に分散していることから、強度
および硬度が向上し、磁気特性、特に高周波領域の向上
が図られ、結晶化温度も高くなるなど、優れた性質を有
しており、薄帯、細線、圧粉体などとして、例えば磁気
ヘッド、高周波用巻鉄心などの電子部品材料、高強度部
品材料、耐摩耗性材料などとして好適なものである。
This alloy consists of nitrides with a grain size of 0.5 to 5.
Because micron-sized particles are uniformly dispersed, it has excellent properties such as improved strength and hardness, improved magnetic properties, especially in the high frequency range, and a higher crystallization temperature. It is suitable as a thin ribbon, a fine wire, a powder compact, etc., for example, as a material for electronic parts such as magnetic heads and high-frequency wound cores, a material for high-strength parts, and a wear-resistant material.

本発明において、窒化物形成可能な元素を含有する非晶
質合金材料としては、窒化物を形成する元素を有し、液
体急冷凝固したときに非晶質となる合金組成でなければ
ならない、この場合、窒化物形成元素としては、V、C
r、Zr、Ti、Ta、Nb、Hf、Mo、W、AIか
ら選ばれた一+iまたは二種以上が用いられる。
In the present invention, the amorphous alloy material containing an element that can form a nitride must have an alloy composition that contains an element that forms a nitride and becomes amorphous when solidified by rapid liquid cooling. In this case, the nitride-forming elements include V, C
One+i or two or more selected from r, Zr, Ti, Ta, Nb, Hf, Mo, W, and AI are used.

上記のような非晶質合金材料としては、−8式%式% Co、Ni、Cu、Pdからなる群より選ばれたー神ま
たは二種以上の元素、βはB、Si、“P、Geからな
る群より選ばれた一種または二種以上の元素、Cは炭素
1Mは窒化物形成元素であるV、Cr、Zr、Ti、T
a、Nb、Hf。
The above-mentioned amorphous alloy materials include -8 formula % formula % - element or two or more elements selected from the group consisting of Co, Ni, Cu, Pd, β is B, Si, "P, One or more elements selected from the group consisting of Ge, C is carbon 1M is a nitride forming element V, Cr, Zr, Ti, T
a, Nb, Hf.

Mo、W、AIから選ばれた一種または二種以上の元素
を表わし、XはlO〜35原子%、yは2〜15原子%
、Zは2〜25原子%であり、かつx+yは12〜40
原子%である。)で示される合金材料が使用できる。こ
こで、α、βは非晶質の母相を形成する元素であり、C
,Mは窒化物形成の際必要な元素である。上記一般式に
おいて、Xが10未満あるいはXが35を超えると、元
素α、βによって非晶質な母相を形成することが困難と
なる。また、yが2未満では、窒化物の形成が困難とな
り、yが15を超えると窒化物粒子が大きくなり、脆く
なる傾向がある。また、Zが2未満では窒化物形成が困
難となり、Zが25を超えると、非晶質母相形成が困難
となる。なお、Xとyとの加算量が12未満あるいは4
0以上では、非晶質母相形成が困難となる。
Represents one or more elements selected from Mo, W, and AI, where X is lO to 35 at% and y is 2 to 15 at%.
, Z is 2 to 25 atom%, and x+y is 12 to 40
It is atomic percent. ) can be used. Here, α and β are elements that form an amorphous matrix, and C
, M are elements necessary for nitride formation. In the above general formula, when X is less than 10 or exceeds 35, it becomes difficult to form an amorphous matrix due to the elements α and β. Furthermore, when y is less than 2, it becomes difficult to form nitrides, and when y exceeds 15, nitride particles tend to become large and brittle. Further, when Z is less than 2, it becomes difficult to form a nitride, and when Z exceeds 25, it becomes difficult to form an amorphous matrix. In addition, if the addition amount of X and y is less than 12 or 4
If it is 0 or more, it becomes difficult to form an amorphous matrix.

本発明では、まず、上記の合金を窒素あるいは窒素を含
む混合ガス雰囲気中でアーク溶解する。
In the present invention, first, the above alloy is arc melted in an atmosphere of nitrogen or a mixed gas containing nitrogen.

ここで、窒素を含む混合ガスとしては、例えば窒素+ア
ルゴン、窒素十水素、窒素+ヘリウムなどの混合ガスが
使用される。また、アーク溶解は。
Here, as the mixed gas containing nitrogen, a mixed gas such as nitrogen + argon, nitrogen dehydrogen, nitrogen + helium, etc. is used. Also, arc melting.

例えば水冷銅ハース上の試料(陽極)とタングステン電
極(陰極)の間でアークを発生させ、試料を溶解するこ
とによりなされる。このアーク溶解により、窒素プラズ
マ−金属間の反応が起こり、溶湯中に微細な窒化物が生
成する。生成する窒化物粒子の量および寸法は、主にア
ーク溶解時の窒素分圧および合金中の窒化物形成元素M
の種類と量に強く依存する。
For example, this is done by generating an arc between a sample (anode) on a water-cooled copper hearth and a tungsten electrode (cathode) to melt the sample. This arc melting causes a reaction between the nitrogen plasma and the metal, producing fine nitrides in the molten metal. The amount and size of the nitride particles produced are mainly determined by the nitrogen partial pressure during arc melting and the nitride-forming element M in the alloy.
strongly depends on the type and amount of

次に、上記溶湯を液体急冷法により急冷凝固させる。こ
の液体急冷法とは、溶融した金属、合金を急速に冷却し
て適冷させ、その構造を凍結させて非晶質(アモルファ
ス)とする方法をいい、例えば薄帯材料を得るには、単
ロール法、双ロール法、ハンマーアンビル法などが特に
有効であり、これらの方法は10’〜10’℃/秒の冷
却速度を有している。この単ロール法、双ロール法など
により薄帯材料を製造するには、上記合金の溶湯を、液
体状態の温度より、ノズル孔を通して、約300〜lo
ooorpmで回転している直径30〜3000mmの
銅あるいはクロム鋼製などの金属製ロール上に溶湯を噴
出すればよく、これにより、幅約1〜200mmで、厚
さが約5〜200μmの薄帯材料を容易に得ることがで
きる。また、ハンマーアンビル法で薄板材料を製造する
には、水冷銅ハース上で溶融した溶湯を銅製のハンマー
で叩くことにより得ることができる。
Next, the molten metal is rapidly solidified by a liquid quenching method. This liquid quenching method refers to a method in which a molten metal or alloy is rapidly cooled and cooled appropriately, and its structure is frozen to become amorphous. For example, to obtain a thin strip material, a single Particularly effective are the roll method, twin roll method, hammer anvil method, etc., and these methods have a cooling rate of 10' to 10'C/sec. To produce a ribbon material by this single roll method, twin roll method, etc., the molten metal of the above alloy is heated from a liquid state temperature through a nozzle hole to a
The molten metal may be spouted onto a metal roll made of copper or chrome steel with a diameter of 30 to 3000 mm rotating at ooorpm, thereby forming a thin strip with a width of approximately 1 to 200 mm and a thickness of approximately 5 to 200 μm. Materials can be easily obtained. Further, in order to produce a thin plate material by the hammer anvil method, it can be obtained by hitting molten metal melted on a water-cooled copper hearth with a copper hammer.

このように、プラズマアーク溶解後の溶湯状態から液体
急冷法により急冷凝固させると、例えば母相中に1粒径
が0.5〜5μm程度の非常に微細な窒化物粒子が、1
〜4μm程度の間隔で均一に分散した組織となり、前述
したような優れた特性を有する窒化物粒子含有非晶質合
金が得られる。また、上記工程において、プラズマアー
ク溶解後、−旦凝固させた合金を原料として液体急冷法
に供しても同様な特徴を有する合金が得られる。さらに
1本発明の合金は、例えば回転水中紡糸法による線材、
ガス噴霧法や回転板法などによる粉体としても得ること
ができる。
In this way, when the molten metal after plasma arc melting is rapidly solidified by the liquid quenching method, very fine nitride particles with a grain size of about 0.5 to 5 μm are formed in the matrix, for example.
A uniformly dispersed structure is obtained at intervals of about 4 μm, and an amorphous alloy containing nitride particles having excellent properties as described above is obtained. Moreover, in the above process, an alloy having similar characteristics can be obtained by subjecting the solidified alloy to a liquid quenching method as a raw material after plasma arc melting. Furthermore, the alloy of the present invention can be used, for example, as a wire rod produced by a rotating underwater spinning method.
It can also be obtained as a powder by a gas atomization method or a rotating plate method.

「発明の実施例」 実施例1〜4、比較例1 第1表に示す各種組成よりなる合金を、窒素十アルゴン
(1: l)混合ガス雰囲気中でプラズマアークにより
溶解し、プラズマ中で活性化された窒素と溶融金属とを
反応せしめた後、ハンマーアンビル法で液体急冷するこ
とにより、直径40mm、厚さ100μmの薄板材料を
得た。こうして得られた各薄板材料の結晶化温度Tx 
(K)、ビッカース硬度)1v (DPN)、引張強さ
(Kgf/mm”)を測定した。この結果を第1表に示
す。
"Embodiments of the Invention" Examples 1 to 4, Comparative Example 1 Alloys having various compositions shown in Table 1 were melted by a plasma arc in a nitrogen/ten argon (1: l) mixed gas atmosphere, and activated in the plasma. A thin plate material having a diameter of 40 mm and a thickness of 100 μm was obtained by reacting the molten metal with the molten nitrogen and then liquid quenching using a hammer anvil method. Crystallization temperature Tx of each thin plate material thus obtained
(K), Vickers hardness) 1v (DPN), and tensile strength (Kgf/mm"). The results are shown in Table 1.

第1表から、非晶質の母相中にZrN、NbNなどの窒
化物粒子を分散させた実施例1〜4の薄板材料は、非晶
質母相のみからなる比較例1の薄板材料に比べて、結晶
化温度Txが高くなり、ビッカース硬度も向上している
ことがわかる。
From Table 1, it can be seen that the thin plate materials of Examples 1 to 4 in which nitride particles such as ZrN and NbN are dispersed in an amorphous matrix are different from the thin plate material of Comparative Example 1 consisting only of an amorphous matrix. In comparison, it can be seen that the crystallization temperature Tx is higher and the Vickers hardness is also improved.

実施例1および実施例3で得られた薄板のCu−Kal
lによるX線回折チャートを第1図に示す、第1図中、
・はNbNの位置を示し、マはZrNの位置を示してい
る。この結果より、実施例1で得られた薄板は非晶質+
Nb (C,N)。
Cu-Kal thin plates obtained in Example 1 and Example 3
Figure 1 shows an X-ray diffraction chart according to l, in Figure 1,
* indicates the position of NbN, and ma indicates the position of ZrN. From this result, the thin plate obtained in Example 1 is amorphous +
Nb(C,N).

実施例3で得られた薄板は非晶質+Zr (C。The thin plate obtained in Example 3 was amorphous + Zr (C.

N)の組織になっていることがわかる。It can be seen that the organization is N).

また、第2図に実施例1で得られた薄板材料の断面の光
学顕微鏡組織写真を示す、この写真から非晶質の母相中
に、粒径が約0.5〜3μmの非常に微細な窒化物粒子
が、およそ2〜4μmの間隔で均一に分散した組織を有
していることが確認された。
In addition, Fig. 2 shows an optical microscopic structure photograph of the cross section of the thin plate material obtained in Example 1. From this photograph, it can be seen that there are very fine grains with a diameter of about 0.5 to 3 μm in the amorphous matrix. It was confirmed that the nitride particles had a structure in which they were uniformly dispersed at intervals of approximately 2 to 4 μm.

実施例5、比較例1 第2表に示す組成よりなる合金を、窒素+アルボン(1
: l)混合ガス雰囲気中でプラズマアークにより溶解
した後、凝固させた母材を原料として、単ロール法で液
体急冷することにより1幅約3mm、厚さ約15μmの
薄帯材料を得た。こうして得られた薄帯材料をキュリ温
度以上50にで10分焼きなましした後、空冷した試料
の実効透磁率(0,010e6a場)を測定した。第2
表に見るように、実施例5で得られた薄帯は、飽和磁化
は若干低(なるが、高周波領域における透磁率の低下が
比較例2に比べて非常に小さく、高周波用鉄心材料とし
て好ましい特性を有していることが確認された。
Example 5, Comparative Example 1 An alloy having the composition shown in Table 2 was mixed with nitrogen + arbon (1
: l) A thin strip material having a width of about 3 mm and a thickness of about 15 μm was obtained by liquid quenching using a single roll method using the solidified base material as a raw material after being melted by a plasma arc in a mixed gas atmosphere. The ribbon material thus obtained was annealed for 10 minutes at 50°C above the Curie temperature, and then the effective magnetic permeability (0,010e6a field) of the air-cooled sample was measured. Second
As seen in the table, the saturation magnetization of the ribbon obtained in Example 5 is slightly low (although the decrease in magnetic permeability in the high frequency region is very small compared to Comparative Example 2), making it preferable as a high frequency iron core material. It was confirmed that it has the following characteristics.

(以下、余白) 実施例6〜10 第3表に示す組成よりなる合金を、窒素ガス雰囲気中で
プラズマアークにより溶解したインゴットを用いて、ア
ルゴンガス噴霧装置により液体急冷して、約10〜80
μm径の粒状粉末材料を得た。こうして得られた粉末の
X線回折組織、光学顕微鏡による粒子形態を調べた。第
3表に見るように、実施例6〜10の各試料は、いずれ
も非晶質母相と窒化物粒子からなり、粒子は0.1〜5
μm径で、1〜4μmの間隔で均一に分散しているのが
確認された。
(Hereinafter, blank space) Examples 6 to 10 Using an ingot melted by a plasma arc in a nitrogen gas atmosphere, an alloy having the composition shown in Table 3 was quenched with an argon gas atomizer, and the alloy was melted to about 10 to 80%
A granular powder material with a diameter of μm was obtained. The powder thus obtained was examined for its X-ray diffraction structure and particle morphology using an optical microscope. As shown in Table 3, each sample of Examples 6 to 10 consists of an amorphous matrix and nitride particles, and the particles are 0.1 to 5
It was confirmed that the particles were uniformly dispersed at intervals of 1 to 4 μm in diameter.

(以下、余白) 「発明の効果」 以上説明したように1本発明によれば、非晶質の母相中
に1粒径約0.5〜5μmの微細な窒化物粒子が均一に
分散した合金を得ることができ、この合金は、強度およ
び硬度が向上し、磁気特性、特に高周波領域の向上が図
られ、結晶化温度も高くなるなど、優れた性質を有して
おり、例えば電磁材料、強度材料、耐摩耗材料などとし
て好適なものである。
(Hereinafter, blank space) "Effects of the Invention" As explained above, according to the present invention, fine nitride particles each having a diameter of about 0.5 to 5 μm are uniformly dispersed in the amorphous matrix. This alloy has excellent properties such as improved strength and hardness, improved magnetic properties, especially in the high frequency range, and a higher crystallization temperature. For example, it can be used as an electromagnetic material. It is suitable as a strength material, a wear-resistant material, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1.3で得られた合金のX線回
折チャート、第2図は本発明の実施例1で得られた合金
の断面を示す光学顕微鏡組織写真である。
FIG. 1 is an X-ray diffraction chart of the alloy obtained in Example 1.3 of the present invention, and FIG. 2 is an optical micrograph showing the cross section of the alloy obtained in Example 1 of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)窒化物形成可能な元素を含有する非晶質合金材料
を窒素あるいは窒素を含む混合ガス中でプラズマアーク
により溶解し、その溶湯を液体急冷法で急冷凝固させる
ことを特徴とする窒化物粒子含有非晶質合金の製造法。
(1) A nitride is produced by melting an amorphous alloy material containing an element capable of forming a nitride using a plasma arc in nitrogen or a mixed gas containing nitrogen, and rapidly solidifying the molten metal using a liquid quenching method. Method for producing particle-containing amorphous alloy.
(2)特許請求の範囲第1項において、前記窒化物形成
可能な元素を含有する非晶質合金材料として、α_1_
0_0_−_x_−_y_−_zβ_xC_yM_z(
ここで、αはFe、Co、Ni、Cu、Pdからなる群
より選ばれた一種または二種以上の元素、βはB、Si
、P、Geからなる群より選ばれた一種または二種以上
の元素、Cは炭素、Mは窒化物形成元素であるV、Cr
、Zr、Ti、Ta、Nb、Hf、Mo、W、Alから
選ばれた一種または二種以上の元素を表わし、xは10
〜35原子%、yは2〜15原子%、zは2〜25原子
%であり、かつx+yは12〜40原子%である。)で
示される合金材料を使用する窒化物粒子含有非晶質合金
の製造法。
(2) In claim 1, the amorphous alloy material containing the nitride-forming element is α_1_
0_0_-_x_-_y_-_zβ_xC_yM_z(
Here, α is one or more elements selected from the group consisting of Fe, Co, Ni, Cu, and Pd, β is B, Si
, P, one or more elements selected from the group consisting of Ge, C is carbon, and M is a nitride-forming element V, Cr
, Zr, Ti, Ta, Nb, Hf, Mo, W, and Al, and x represents 10
~35 atom %, y is 2 to 15 atom %, z is 2 to 25 atom %, and x+y is 12 to 40 atom %. ) A method for producing an amorphous alloy containing nitride particles using the alloy material shown in
JP1423988A 1988-01-25 1988-01-25 Manufacture of nitride grain-containing amorphous alloy Pending JPH01191754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1423988A JPH01191754A (en) 1988-01-25 1988-01-25 Manufacture of nitride grain-containing amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1423988A JPH01191754A (en) 1988-01-25 1988-01-25 Manufacture of nitride grain-containing amorphous alloy

Publications (1)

Publication Number Publication Date
JPH01191754A true JPH01191754A (en) 1989-08-01

Family

ID=11855533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1423988A Pending JPH01191754A (en) 1988-01-25 1988-01-25 Manufacture of nitride grain-containing amorphous alloy

Country Status (1)

Country Link
JP (1) JPH01191754A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884936A (en) * 1981-11-13 1983-05-21 Nissan Motor Co Ltd Manufacture of heat resistant aluminum alloy
JPS6017029A (en) * 1983-07-09 1985-01-28 Alps Electric Co Ltd Production of second phase particle dispersion type ultraquickly cooled alloy
JPS6017028A (en) * 1983-07-09 1985-01-28 Alps Electric Co Ltd Production of second phase particle dispersion type ultraquickly cooled alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884936A (en) * 1981-11-13 1983-05-21 Nissan Motor Co Ltd Manufacture of heat resistant aluminum alloy
JPS6017029A (en) * 1983-07-09 1985-01-28 Alps Electric Co Ltd Production of second phase particle dispersion type ultraquickly cooled alloy
JPS6017028A (en) * 1983-07-09 1985-01-28 Alps Electric Co Ltd Production of second phase particle dispersion type ultraquickly cooled alloy

Similar Documents

Publication Publication Date Title
JP2611994B2 (en) Fe-based alloy powder and method for producing the same
US6302939B1 (en) Rare earth permanent magnet and method for making same
EP1198605B1 (en) Methods of forming steel
JP5253781B2 (en) Alloy target material for soft magnetic film layer in perpendicular magnetic recording media
EP0187235A2 (en) Production of increased ductility in articles consolidated from a rapidly solidified alloy
JPWO2005012591A1 (en) Sputtering target and manufacturing method thereof
US5509975A (en) Soft magnetic bulky alloy and method of manufacturing the same
JPH0621326B2 (en) High strength, heat resistant aluminum base alloy
US20080083616A1 (en) Co-Fe-Zr BASED ALLOY SPUTTERING TARGET MATERIAL AND PROCESS FOR PRODUCTION THEREOF
JPS61250123A (en) Compressed article prepared from heat-treated amorphous lumpy parts
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JPH0851010A (en) Green compact of soft magnetic alloy, production method thereof and coating powder therefor
JP2010159491A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL
JP4515596B2 (en) Bulk amorphous alloy, method for producing bulk amorphous alloy, and high strength member
JP2868121B2 (en) Method for producing Fe-based magnetic alloy core
JPS5842741A (en) Wear resistant alloy with high permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
JP3655321B2 (en) Method for producing Fe-based soft magnetic alloy powder
JPS61243152A (en) High magnetic premeability amorphous alloy and its production
JPS6212296B2 (en)
JPH01191754A (en) Manufacture of nitride grain-containing amorphous alloy
EP0577944B1 (en) High-strength aluminum-based alloy, and compacted and consolidated material thereof
JP2018137306A (en) Soft magnetic powder, magnetic part and powder-compact magnetic core
KR900007666B1 (en) Amorphous alloy for use in magnetic heads
JPH05247642A (en) Target member and manufacture therefor
US20050183797A1 (en) Fine grained sputtering targets of cobalt and nickel base alloys made via casting in metal molds followed by hot forging and annealing and methods of making same