JPH01191683A - Novel protease - Google Patents

Novel protease

Info

Publication number
JPH01191683A
JPH01191683A JP63016285A JP1628588A JPH01191683A JP H01191683 A JPH01191683 A JP H01191683A JP 63016285 A JP63016285 A JP 63016285A JP 1628588 A JP1628588 A JP 1628588A JP H01191683 A JPH01191683 A JP H01191683A
Authority
JP
Japan
Prior art keywords
protease
amino acid
activity
basic amino
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63016285A
Other languages
Japanese (ja)
Other versions
JPH0578305B2 (en
Inventor
Hiroaki Yamamoto
浩明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M&D Research Co Ltd
Original Assignee
M&D Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M&D Research Co Ltd filed Critical M&D Research Co Ltd
Priority to JP63016285A priority Critical patent/JPH01191683A/en
Priority to DE68922014T priority patent/DE68922014T2/en
Priority to EP89101200A priority patent/EP0336056B1/en
Priority to US07/301,988 priority patent/US5053333A/en
Priority to CA000589189A priority patent/CA1318872C/en
Priority to KR1019890000900A priority patent/KR930005454B1/en
Publication of JPH01191683A publication Critical patent/JPH01191683A/en
Publication of JPH0578305B2 publication Critical patent/JPH0578305B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

NEW MATERIAL:The protease having the following physical and chemical properties. Action and substrate specificity, especially highly hydrolyzing a C-terminal peptide bond of Y of a compound of formula X-Y- (X is Arg, Lys or Pro which have or have not peptide bond at N-terminal; Y is Arg; - is peptide bond); optimum pH, about pH 7.0 with tris-HC1 buffer solution; stable pH, 6.0-7.0; optimum temperature, 40-47 deg.C (pH7.0); heat-stability, stable at <=38 deg.C (pH 7.0 for 10min). USE:Agent for cutting the C-terminal side of a continuing basic amino acid residue in the synthesis of protein. PREPARATION:The protease can be produced by culturing a yeast belonging to genus Sporobolomyces (preferably Sporobolomyces odrus IFO 1597).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規なプロテアーゼに関し、詳しくは、スポロ
ボロマイセス属に属する酵母により産生される塩基性ア
ミノ酸残基特異的プロテアーゼに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel protease, and more particularly to a basic amino acid residue-specific protease produced by yeast belonging to the genus Sporobolomyces.

〔従来の技術〕[Conventional technology]

塩基性アミノ酸残基特異的プロテアーゼは、プロホルモ
ンからのホルモンの生合成に関与していることが示唆さ
れ、その酵素化学的性質、生理的機能などを明らかにし
、融合蛋白質からの蛋白質の合成などに利用するため各
種起源より精製が試みられてきた。現在までに完全に精
製され報告されているのは、豚脳下垂体からのプロテア
ーゼ(IRCM−Serine Protease 1
;J、Biol。
It has been suggested that basic amino acid residue-specific proteases are involved in the biosynthesis of hormones from prohormones, and we have clarified their enzymatic chemical properties and physiological functions, and are interested in the synthesis of proteins from fusion proteins. Attempts have been made to purify it from various sources in order to utilize it. The protease that has been completely purified and reported to date is porcine pituitary gland protease (IRCM-Serine Protease 1).
; J, Biol.

Chem、 、2f)J、10850 (1986) 
)、牛脳下垂体からのプロテアーゼ(POMC−変換酵
素; J、Biol、 CheIll、。
Chem, , 2f) J, 10850 (1986)
), protease from bovine pituitary gland (POMC-converting enzyme; J, Biol, CheIll.).

17194 (1985)、J、 Biol、 Che
m、、 261 14392(1986)) 、酵母か
らのプロテアーゼ(Phorces i nY−1;N
ature 309,558(1984))のみであり
、プロテアーゼの分類では、IRCM−3erine 
Protease。
17194 (1985), J. Biol, Che.
m, 261 14392 (1986)), protease from yeast (Phoces in Y-1; N
ture 309, 558 (1984)), and in the classification of proteases, IRCM-3erine
Protease.

Phorcesinはセリン・プロテアーゼに、POM
C−変換酵素は、アスパルティク・プロテアーゼに分類
されている。切断部位はIRCM−3erine Pr
oteasel、POMC−変換酵素は、連続する塩基
性アミノ酸のC末端側を、Phorcesin Y−1
は、連続する塩基性アミノ酸残基の間を特異的に加水分
解する。また、部分精製ではあるが、サツカロマイセス
°セレビシェ(Saccharomyces cere
visiae)より連続する塩基性アミノ酸残基対のC
末端側を選択的に加水分解するCa”−依存性Th1o
lProteaseも報告されている(Biochem
、 Biophys。
Phorcesin is a serine protease, POM
C-converting enzymes are classified as aspartic proteases. The cleavage site is IRCM-3erine Pr
oteasel, POMC-converting enzyme, converts the C-terminal side of consecutive basic amino acids into Phorcesin Y-1
specifically hydrolyzes between consecutive basic amino acid residues. In addition, although it is partially purified, Saccharomyces cerevisiae (Saccharomyces cerevisiae)
C of consecutive basic amino acid residue pairs from
Ca''-dependent Th1o that selectively hydrolyzes the terminal side
lProtease has also been reported (Biochem
, Biophys.

Res、Commun、、 144.807(1987
))。
Res, Commun, 144.807 (1987
)).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

プロテアーゼを融合蛋白質からの蛋白質の合成に利用す
る場合、該プロテアーゼは連続する塩基性アミノ酸残基
のC末端側を特異的に切断するものであることが望まし
く、この様なプロテアーゼの探索が期待されている。
When a protease is used to synthesize a protein from a fusion protein, it is desirable that the protease specifically cleaves the C-terminal side of consecutive basic amino acid residues, and the search for such a protease is expected. ing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、上記現状に鑑み、大量に調製できることか
ら、その起源として酵母を選択し、酵母より上記性質を
有するプロテアーゼの探索を行い、スポロボロマイセス
(Sporobolomyces)属に属する酵母がこ
の様な性質を有するプロテアーゼを生産することを見出
し、このプロテアーゼを精製しその理化学的性質を明ら
かにし本発明を完成した。
In view of the above-mentioned current situation, the present inventor selected yeast as the origin because it can be prepared in large quantities, and searched for proteases from yeast that have the above-mentioned properties. They discovered that a protease with unique properties can be produced, purified this protease, clarified its physicochemical properties, and completed the present invention.

即ち、本発明は次の(1)〜(5)に示す理化学的性質
を有するプロテアーゼを提供するものである。
That is, the present invention provides a protease having the following physicochemical properties (1) to (5).

■ 作用および基質特異性 ペプチド鎖中に存在する一X−Arg−配列(XはAr
g、 LysまたはPro)のArgのC末端側のペプ
チド結合を加水分解する。
■ Action and substrate specificity One X-Arg-sequence (X is Ar) present in the peptide chain.
The peptide bond on the C-terminal side of Arg in Lys or Pro) is hydrolyzed.

↓ (−X−Arg−の矢印部分を加水分解する)■ 至適
pH:)’Jスス−酸緩衝液pH7,0付近。
↓ (Hydrolyze the arrow part of -X-Arg-)■ Optimum pH: )'J Susu-acid buffer pH around 7.0.

■ pn安定性: pH6,0〜8.0で最も安定(pH6〜8で30℃1
30分の処理後にも80%以上の残存活性を有する)。
■ PN stability: Most stable at pH 6.0 to 8.0 (at 30℃1 at pH 6 to 8)
(Has more than 80% residual activity even after 30 minutes of treatment).

■ 至適温度:40〜470℃付近(pH7,0)。■ Optimum temperature: around 40-470°C (pH 7.0).

■ 熱安定性: 38℃以下で安定(p)l 7.0.10分間の熱処理
で活性の低下がない)。
■ Thermal stability: Stable below 38°C (p)l 7.0. No decrease in activity after 10 minutes of heat treatment).

本発明のプロテアーゼの上記以外の理化学的性質、およ
び酵素学的性質は以下の通りである。
The physicochemical properties and enzymatic properties of the protease of the present invention other than those described above are as follows.

■ 活性化剤: 塩化カルシウム、塩化コバルト、塩化マンガン、塩化マ
グネシウム、塩化ニッケルなどにより活性化される。特
に低濃度の塩化カルシウムにより最も活性化される。ま
た、ルプロールPX (Lubrol PX)やトリト
ンX−100(TritonX−100)などの界面活
性剤により活性化される。
■ Activator: Activated by calcium chloride, cobalt chloride, manganese chloride, magnesium chloride, nickel chloride, etc. In particular, it is most activated by low concentrations of calcium chloride. It is also activated by surfactants such as Lubrol PX and Triton X-100.

■ ■害剤: エチレンジアミン4酢酸(以下EDTAと略す)、エチ
レングリコールビス(2−アミノエチルエーテル)4酢
酸(以下Efl;TAと略す)などの金属キレータ−や
、硫酸銅、塩化亜鉛、塩化水銀などの重金属により阻害
される。また、パラクロロ水銀安息香酸(以下p−C)
IBと略す)やパラアミジノフェニルメタンスルフォニ
ルフルオリド(以下p−APMSFと略す)によっても
阻害される。
■ Harmful agents: Metal chelators such as ethylenediaminetetraacetic acid (hereinafter abbreviated as EDTA), ethylene glycol bis(2-aminoethyl ether)tetraacetic acid (hereinafter abbreviated as Efl; TA), copper sulfate, zinc chloride, mercury chloride. It is inhibited by heavy metals such as. Also, parachloromercuric benzoic acid (hereinafter p-C)
It is also inhibited by paraamidinophenylmethanesulfonyl fluoride (hereinafter abbreviated as p-APMSF).

■ 分子量: TSK gel G30005WxLによるゲル濾過で
約5.6万、また5O5−PAGEで約4.7万■ 等
電点:等電点電気泳動により4.5尚、本発明において
、プロテアーゼの活性は以下に示す方法により行った。
■ Molecular weight: Approximately 56,000 by gel filtration with TSK gel G30005WxL, and approximately 47,000 by 5O5-PAGE■ Isoelectric point: 4.5 by isoelectric focusing This was done by the method shown below.

活性測定法ニ ドリス−塩酸緩衝液pH7,050μmol 、ルブロ
ールPX  10mg、塩化カルシウムQ、5μmol
Activity measurement method Nidris-hydrochloric acid buffer pH 7,050 μmol, Lubrol PX 10 mg, calcium chloride Q, 5 μmol
.

Boc−Gin−Arg−Arg−MCA (Bocは
、t−ブトキシカルボニル(t−Bu toxycar
bony l)基の略、MCAは4−メチルクマリン−
7−アミド(4−Methyl−coumarin−7
−an+1de)の略) 0.1 μmolおよび酵素
を含有する反応液中で30℃で反応させ、生成する7−
アミノ−4−メチルクマリン(7−Amino−4−m
ethylcoumarin;  以下AMCと略す)
に由来する螢光(励起波長380nm、発光波長460
nm)を経時的に測定した。IUは1分間に1 nmo
lのAMCの遊離を触媒する酵素量とした。以下、この
測定条件を標準反応条件とする。
Boc-Gin-Arg-Arg-MCA (Boc is t-Butoxycarbonyl
bony l) group, MCA is 4-methylcoumarin-
7-amide (4-Methyl-coumarin-7
-an+1de)) 7- produced by reacting at 30°C in a reaction solution containing 0.1 μmol and enzyme.
Amino-4-methylcoumarin (7-Amino-4-m
ethylcoumarin; hereinafter abbreviated as AMC)
(excitation wavelength 380 nm, emission wavelength 460 nm)
nm) was measured over time. IU is 1 nmo per minute
The amount of enzyme was defined as the amount of enzyme that catalyzes the release of 1 of AMC. Hereinafter, these measurement conditions will be referred to as standard reaction conditions.

本発明において使用する微生物は、塩基性アミノ酸残基
特異的プロテアーゼを生産することができるスポロボロ
マイセス属に属する全ての。
The microorganisms used in the present invention are all those belonging to the genus Sporobolomyces that can produce basic amino acid residue-specific proteases.

菌株、突然変異株、変種を含む。それらのうち好ましい
菌株は、スポロボロマイセス・オドラス(Sporob
olomyces odrus)IFO1597である
Including strains, mutants, and variants. Among them, the preferred strain is Sporobolomyces odorus (Sporobolomyces odorus).
olomyces odrus) IFO1597.

本発明の塩基性アミノ酸残基特異的プロテアーゼは、例
えば、スポロボロマイセス属に属する塩基性アミノ酸残
基特異的プロテアーゼ生産能を有する菌株をYM培地な
どの通常の培地で培養することにより、培養物から取得
することができる。培養液中に特に誘導物質は必要とし
ない。また、培養温度は25〜30℃が好ましく、培養
時間は、1日から3日程度が好ましい。
The basic amino acid residue-specific protease of the present invention can be obtained by culturing, for example, a strain having the ability to produce a basic amino acid residue-specific protease belonging to the genus Sporobolomyces in a conventional medium such as YM medium. It can be obtained from things. No particular inducer is required in the culture medium. Further, the culture temperature is preferably 25 to 30°C, and the culture time is preferably about 1 to 3 days.

生産された塩基性アミノ酸残基特異的プロテアーゼの精
製は、通常の方法を組み合わせることによって行われる
。例えば、培養物を遠心分離して菌体を回収し、グイノ
ーミルなどにより菌体を破砕し、破砕液を低速で遠心分
離することにより菌体残渣などを分離し、得られた上清
を超遠心分離(例えば105.000g、60分)する
ことにより膜画分を調製する。この膜画分より界面活性
剤によって酵素を可溶化し、可溶化した酵素は、硫安分
画、熱処理、イオン交換クロマトグラフィー、アフィニ
ティークロマトグラフィー、ゲル濾過などによって精製
される。
The produced basic amino acid residue-specific protease is purified by a combination of conventional methods. For example, the culture is centrifuged to collect the bacterial cells, the bacterial cells are disrupted using guinomil, etc., the crushed liquid is centrifuged at low speed to separate the bacterial cell residue, and the resulting supernatant is ultracentrifuged. Membrane fractions are prepared by separation (eg 105.000 g, 60 minutes). The enzyme is solubilized from this membrane fraction with a surfactant, and the solubilized enzyme is purified by ammonium sulfate fractionation, heat treatment, ion exchange chromatography, affinity chromatography, gel filtration, and the like.

〔実施例〕〔Example〕

以下、実施例により本発明の詳細な説明するが、本発明
はこれに限定されるものではない。
Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

実施例1 (塩基性アミノ酸残基特異的プロテアーゼのスポロボロ
マイセス・オドラスIPO1597からの精製) スポロボロマイセス・オドラスIFO1597をYM培
地(グルコース10g1バクトーペプトン5g1酵母エ
キス3g、麦芽エキス3g/133p中で2日培養し、
培養液を遠心分離して265g (湿重量)の菌体を回
収した。この菌体を300 @7の緩衝液1(10mM
)リス−塩酸pl+’7. o、 o、 5mM Ca
C1z)に懸濁しグイノーミルで菌体を破砕し、破砕液
を1,000g、 10分間の遠心分離により菌体残渣
を除去し、得られに上清を105.000g、 60分
の超遠心分離により沈殿として膜画分を調製した。この
膜画分を60mfの抽出用緩衝液(10mM )リス−
塩酸pt+7.0.0.5mM CaC1z、  1%
ルプロールpx。
Example 1 (Purification of basic amino acid residue-specific protease from Sporobolomyces odorus IPO1597) Sporobolomyces odorus IFO1597 was cultured in YM medium (glucose 10g1 Bacto peptone 5g1 yeast extract 3g, malt extract 3g/133p) Cultured for 2 days in
The culture solution was centrifuged to collect 265 g (wet weight) of bacterial cells. The bacterial cells were mixed with 300@7 buffer 1 (10mM
) Lis-hydrochloric acid pl+'7. o, o, 5mM Ca
Cells were suspended in C1z) and disrupted with guinomil, the crushed solution was centrifuged at 1,000g for 10 minutes to remove bacterial cell residues, and the resulting supernatant was ultracentrifuged at 105,000g for 60 minutes. A membrane fraction was prepared as a precipitate. This membrane fraction was added to 60mf of extraction buffer (10mM).
Hydrochloric acid pt+7.0.0.5mM CaC1z, 1%
Luprol px.

0.1M NaC1)に懸濁し一晩撹拌して酵素を抽出
した。上記条件で超遠心分離し上清として膜抽出液を得
た。
The enzyme was extracted by suspending it in 0.1M NaCl) and stirring overnight. Ultracentrifugation was performed under the above conditions to obtain a membrane extract as a supernatant.

この膜抽出液に硫安を30%飽和になるまで添加し、6
.000g、 20分の遠心分離により上清を得、この
上清に更に硫安を70%飽和になるまで添加し、6.O
QOg、 20分の遠心分離により沈殿画分を30%−
70%硫安画分として回収した。
Ammonium sulfate was added to this membrane extract until it reached 30% saturation.
.. A supernatant was obtained by centrifugation at 000g for 20 minutes, and ammonium sulfate was further added to this supernatant until it reached 70% saturation.6. O
QOg, the precipitate fraction was reduced to 30% by centrifugation for 20 minutes
It was recovered as a 70% ammonium sulfate fraction.

この沈殿を少量の緩衝液2 (10mM )リス−塩酸
+ 0.5mM CaC1z+ 0.2%ルブロールP
X) pH8,0に溶解し、同緩衝液に透析したあと5
0℃IO分間の熱処理を行った。生じた沈殿を39,0
00g、 20分の遠心分離により除去し熱処理画分と
した。
This precipitate was mixed with a small amount of buffer 2 (10mM) Lis-HCl + 0.5mM CaC1z + 0.2% Lubrol P.
X) After dissolving at pH 8.0 and dialyzing against the same buffer,
Heat treatment was performed for IO minutes at 0°C. The resulting precipitate was 39.0
The fraction was removed by centrifugation at 00g for 20 minutes to obtain a heat-treated fraction.

この両分を緩衝液2 (pH8,0)で予め平衡化した
DEAE−Toyopearl 650M  (東ソー
■製) (2,5X45cm)に注入し、充分同緩衝液
で洗浄してから0からIM NaC1の勾配溶出法によ
り酵素を溶出し活性画分を得た。この時の溶出パターン
を第1図に示した。
Both volumes were injected into DEAE-Toyopearl 650M (manufactured by Tosoh Corporation) (2.5 x 45 cm) equilibrated with buffer solution 2 (pH 8.0), thoroughly washed with the same buffer solution, and then injected into a gradient of IM NaC1 from 0. The enzyme was eluted using an elution method to obtain an active fraction. The elution pattern at this time is shown in FIG.

活性画分を限外濾過により濃縮した後、緩衝液2 (p
l+7.0)に透析し同緩衝液で予め平衡化したArg
inine−Sepharose(ファルマシア社製)
 (2,5X10cm)に注入した。カラムを同緩衝液
で充分に洗浄した後、0から0.5M NaC1の勾配
溶出法で溶出した。この溶出パターンを第2図に示した
。活性画分を濃縮しArg−Sepharose画分と
した。
After concentrating the active fraction by ultrafiltration, buffer solution 2 (p
Arg dialyzed against l+7.0) and pre-equilibrated with the same buffer.
inine-Sepharose (manufactured by Pharmacia)
(2.5 x 10 cm). After thoroughly washing the column with the same buffer, elution was performed using a gradient elution method from 0 to 0.5M NaCl. This elution pattern is shown in FIG. The active fraction was concentrated and used as an Arg-Sepharose fraction.

Arg−Sepharose画分を0.5M NaC1
を含む緩衝液2 (pH7,0)で平衡化したCon 
A−Sepharose(ファルマシア社製)(1,6
X25cm)に注入した。充分に同緩衝液で洗浄した後
、0.5M NaC1,0,5Mα−メチル−D−マン
ノサイド(α−Methyl−D−mannos 1d
e)を含む緩衝液2 (pH7,0)で溶出した。
Arg-Sepharose fraction was treated with 0.5M NaCl
Con equilibrated with buffer 2 (pH 7,0) containing
A-Sepharose (manufactured by Pharmacia) (1,6
x25cm). After washing thoroughly with the same buffer, 0.5M NaCl, 0.5M α-Methyl-D-mannoside (α-Methyl-D-mannos 1d
Elution was performed with buffer 2 (pH 7,0) containing e).

活性画分を濃縮しCon A−Sepharose画分
とした。
The active fraction was concentrated and used as a Con A-Sepharose fraction.

Con A−Sepharose画分を緩衝液1 (p
H7,0)に透析し、同緩衝液で平衡化したMono 
Q (ファルマシア社製)に注入し、0からQ、6M 
NaC1の勾配溶出法で溶出した。活性画分を濃縮しM
ono 0画分とした。
Con A-Sepharose fraction was added to buffer 1 (p
Mono dialyzed against H7,0) and equilibrated with the same buffer.
Inject into Q (manufactured by Pharmacia), 0 to Q, 6M
Elution was performed using a NaCl gradient elution method. Concentrate the active fraction and M
It was set as ono 0 fraction.

Mono 0画分を緩衝液1 (pH7,0)で平衡化
した5uperose 12(ファルマシア社製)でゲ
ル濾過し活性画分を得、これを濃縮し5uperose
 12画分とした。この精製酵素は、ゲル濾過および5
OS−PAGEでともに均一であった。
The Mono 0 fraction was gel-filtered with 5uperose 12 (manufactured by Pharmacia) equilibrated with buffer solution 1 (pH 7,0) to obtain an active fraction, which was concentrated and 5uperose
It was divided into 12 fractions. This purified enzyme was purified by gel filtration and
Both were uniform on OS-PAGE.

精製の要約を第1表に示した。A summary of the purification is shown in Table 1.

第1表 スポロボロマイセス・オドラスIFO1597
からの塩基性アミノ酸残基特異的プロテアーゼの精製 実施例2 (塩基性アミノ酸残基特異的プロテアーゼの基質特異性
) 標準反応条件において螢光性基質をかえて活性を測定し
、それぞれの基質に対する活性をBoc−Gin−Ar
g−Arg−MCAに対する活性を100とした相対活
性で表し、第2表に示した。
Table 1 Sporobolomyces odorus IFO1597
Purification Example 2 of Basic Amino Acid Residue-Specific Protease (Substrate Specificity of Basic Amino Acid Residue-Specific Protease) The activity was measured by changing the fluorescent substrate under standard reaction conditions, and the activity against each substrate was measured. Boc-Gin-Ar
The activity was expressed as a relative activity with the activity against g-Arg-MCA set as 100, and is shown in Table 2.

実施例3 (塩基性アミノ酸残基特異的プロテアーゼの至適pH) 標準反応条件において緩衝液の種類およびpHを変化さ
せて活性を測定した。緩衝液としては、50IIIMト
リスー塩酸緩衝液pH6,0〜9.0.14.3mM 
Br1tton and Robinson緩衝液pH
4,5〜10.0を用い、各条件における活性をトリス
−塩酸緩衝液pH7,0における活性を100とした相
対活性で表し、第3図に示した。
Example 3 (Optimal pH of basic amino acid residue-specific protease) Activity was measured under standard reaction conditions by varying the type of buffer and pH. As a buffer solution, 50IIIM Tris-HCl buffer pH 6.0-9.0.14.3mM
Br1tton and Robinson buffer pH
4.5 to 10.0, and the activity under each condition was expressed as relative activity with the activity in Tris-HCl buffer pH 7.0 set as 100, and is shown in FIG.

実施例4 (塩基性アミノ酸残基特異的プロテアーゼのpH安定性
) 11.9 mM Br1tton and Robin
son緩衝液pH4〜11、0.2%ルプロールPX、
 0.5 mM CaC1z中で酵素を30℃130分
間インキエベートした後、当量の100 mM )リス
−塩酸p)l 7.0を添加してpi(を7に戻してか
ら標準反応条件で残存活性を測定した。各処理後の残存
活性を無処理の活性を100とした相対活性で表し、第
4図に示した。
Example 4 (pH stability of basic amino acid residue-specific protease) 11.9 mM Br1tton and Robin
son buffer pH 4-11, 0.2% Luprole PX,
After incubation of the enzyme in 0.5 mM CaC1z for 130 min at 30°C, residual activity was determined by adding an equivalent volume of 100 mM ) Lis-HCl (p)l 7.0 to return pi to 7. The residual activity after each treatment was expressed as relative activity, with the untreated activity set as 100, and is shown in FIG.

実施例5 (塩基性アミノ酸残基特異的プロテアーゼの至適温度) 標準反応条件において反応温度のみを25〜60℃まで
変化させて活性を測定した。各温度における活性を45
℃における活性を100とした相対活性で表し、第5図
に示した。
Example 5 (Optimal temperature of basic amino acid residue-specific protease) Activity was measured under standard reaction conditions by changing only the reaction temperature from 25 to 60°C. The activity at each temperature is 45
The relative activity is shown in FIG. 5, with the activity at 100° C. being taken as 100.

実施例6 (塩基性アミノ酸残基特異的プロテアーゼの熱安定性) 酵素を各温度で10分間インキュベートした後、氷水中
で急冷し、残存活性を標準反応条件で測定した。無処理
の活性を100とした相対活性で各温度における残存活
性を表し、第6図に示した。
Example 6 (Thermostability of basic amino acid residue-specific protease) The enzyme was incubated at each temperature for 10 minutes, then rapidly cooled in ice water, and the residual activity was measured under standard reaction conditions. The residual activity at each temperature is expressed as a relative activity with the untreated activity as 100, and is shown in FIG.

実施例7 (塩基性アミノ酸残基特異的プロテアーゼの各種阻害剤
に対する挙動) 基質不在下において各種阻害剤を含む反応条件液中で、
酵素を25℃130分間インキュベートし、その後基質
を添加して反応させた。阻害剤不在下において同様な処
理をしたあとの酵素活性を100とした相対活性で残存
活性を表し、第3表に示した。
Example 7 (Behavior of basic amino acid residue-specific protease toward various inhibitors) In the reaction condition solution containing various inhibitors in the absence of a substrate,
The enzyme was incubated at 25° C. for 130 minutes, and then the substrate was added and reacted. The residual activity was expressed as a relative activity based on the enzyme activity after the same treatment in the absence of an inhibitor as 100, and is shown in Table 3.

実施例8 (塩基性アミノ酸残基特異的プロテアーゼの活性に及ぼ
す界面活性剤の影響) 標準反応液において界面活性剤の種類および濃度を変え
て反応を行い、3%ルプロールPX存在下における活性
を100とした相対活性で表し、第7図に示した。
Example 8 (Influence of surfactant on the activity of basic amino acid residue-specific protease) A reaction was carried out by changing the type and concentration of surfactant in the standard reaction solution, and the activity in the presence of 3% Luprole PX was 100%. It is expressed in relative activity as shown in FIG.

実施例9 (塩基性アミノ酸残基特異的プロテアーゼの活性に及ぼ
すCaC1zの影響) 0.1%EDTA存在下にCaC1g濃度を変化させて
活性を測定した。0.5mM CaC1z存在下におけ
る活性を100とした相対活性で表し、第8図に示した
。尚、遊離のCaC1g濃度は、EDTAのCaC1g
に対する見かけの解離定数に1をlog K、=7.3
として計算により求めた。
Example 9 (Influence of CaC1z on the activity of basic amino acid residue-specific protease) The activity was measured in the presence of 0.1% EDTA by varying the concentration of CaC1g. The relative activity is shown in FIG. 8, with the activity in the presence of 0.5mM CaC1z set as 100. In addition, the concentration of free CaC1g is 1g of CaC in EDTA.
Log 1 to the apparent dissociation constant for K, = 7.3
It was calculated as follows.

実施例10 (EDTA処理後の塩基性アミノ酸残基特異的プロテア
ーゼの活性の回復に及ぼす各種金属イオンの影響) 基質非存在下1 mM EDTAを含む標準反応液中で
酵素を25℃930分間処理し、各種金属イオンを1.
5 mMになるように添加して30℃,5分間インキュ
ベートしてから活性を測定した。各条件における活性を
無処理における活性を100とした相対活性で表し、第
4表に示した。
Example 10 (Influence of various metal ions on recovery of basic amino acid residue-specific protease activity after EDTA treatment) Enzymes were treated for 930 minutes at 25°C in a standard reaction solution containing 1 mM EDTA in the absence of substrate. , various metal ions 1.
It was added to a concentration of 5 mM, incubated at 30°C for 5 minutes, and then the activity was measured. The activity under each condition was expressed as relative activity with the activity under no treatment as 100, and is shown in Table 4.

第4表 EDT^処理塩基性アミノ酸残基特異的プロテ
アーゼの活性回復に及ぼす各種金 属イオンの影響 実施例11 (塩基性アミノ酸残基特異的プロテアーゼの分子量及び
等電点) 7.5%ゲルを用いた5O5−PAGEにより見かけの
分子量は約4.7万であった(第9図)。また、TSK
 gel G30005Wxtを用いたゲル濾過では約
5.6万であった(第10図)。
Table 4 Effect of various metal ions on the activity recovery of EDT^-treated basic amino acid residue-specific protease Example 11 (Molecular weight and isoelectric point of basic amino acid residue-specific protease) Using 7.5% gel The apparent molecular weight was determined to be approximately 47,000 by 5O5-PAGE (Fig. 9). Also, TSK
In gel filtration using gel G30005Wxt, it was about 56,000 (Figure 10).

IEFge139を用いた等電点電気泳動により本酵素
のplは4.5であった(第11図)。
The pl of this enzyme was found to be 4.5 by isoelectric focusing using IEFge139 (Figure 11).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスポロボロマイセス・オドラスIFO1597
由来塩基性アミノ酸残基特異的プロテアーゼの精製時に
おけるEDAE−Toyopearl 650Mクロマ
トグラムである。 第2図はスポロボロマイセス・オドラスIF01597
由来塩基性アミノ酸残基特異的プロテアーゼのArg−
Sepharoseクロマトグラムである。 第3図は本発明の塩基性アミノ酸残基特異的プロテアー
ゼの至適pl+を表した図である。 第4図は本発明の塩基性アミノ酸残基特異的プロテアー
ゼのpH安定性を表した図である。 第5図は本発明の塩基性アミノ酸残基特異的プロテアー
ゼの至適温度を表した図である。 第6図は本発明の塩基性アミノ酸残基特異的プロテアー
ゼの温度安定性を表した図である。 第7図は本発明の塩基性アミノ酸残基特異的プロテアー
ゼの活性に及ぼす界面活性剤の影響を表した図である。 第8図は本発明の塩基性アミノ酸残基特異的プロテアー
ゼの活性に及ぼすCaC1gの影響を表した図である。 第9図は本発明の塩基性アミノ酸残基特異的プロテアー
ゼの7.5%ゲルを用いた電気泳動における分子量測定
の結果を表した図である。 第10図は本発明の塩基性アミノ酸残基特異的プロテア
ーゼのTSK get G30005Wxtを用いたゲ
ル濾過による分子量測定の結果を表した図である。 第11図は本発明の塩基性アミノ酸残基特異的プロテア
ーゼのIEF gel 3−9を用いた等電点電気泳動
の結果を表した図である。
Figure 1 shows Sporobolomyces odorus IFO1597.
It is an EDAE-Toyopearl 650M chromatogram during purification of derived basic amino acid residue-specific protease. Figure 2 shows Sporobolomyces odorus IF01597.
Basic amino acid residue-specific protease derived from Arg-
Sepharose chromatogram. FIG. 3 is a diagram showing the optimum pl+ of the basic amino acid residue-specific protease of the present invention. FIG. 4 is a diagram showing the pH stability of the basic amino acid residue-specific protease of the present invention. FIG. 5 is a diagram showing the optimum temperature of the basic amino acid residue-specific protease of the present invention. FIG. 6 is a diagram showing the temperature stability of the basic amino acid residue-specific protease of the present invention. FIG. 7 is a diagram showing the influence of surfactants on the activity of the basic amino acid residue-specific protease of the present invention. FIG. 8 is a diagram showing the influence of CaClg on the activity of the basic amino acid residue-specific protease of the present invention. FIG. 9 is a diagram showing the results of molecular weight measurement of the basic amino acid residue-specific protease of the present invention in electrophoresis using a 7.5% gel. FIG. 10 is a diagram showing the results of molecular weight measurement by gel filtration using TSK get G30005Wxt of the basic amino acid residue-specific protease of the present invention. FIG. 11 is a diagram showing the results of isoelectric focusing of the basic amino acid residue-specific protease of the present invention using IEF gel 3-9.

Claims (1)

【特許請求の範囲】 1、次の(1)〜(5)に示す理化学的性質を有するプ
ロテアーゼ。 (1)作用および基質特異性: ペプチド鎖中に存在する−X−Arg−配列(XはAr
g、LysまたはPro)のArgのC末端側のペプチ
ド結合を加水分解する。 (2)至適pH:トリス−塩酸緩衝液pH7.0付近。 (3)pH安定性:pH6.0〜8.0で最も安定。 (4)至適温度:40〜470℃付近(pH7.0)。 (5)熱安定性:38℃以下で安定(pH7.0、10
分間)。 2、スポロボロマイセス(Sporobolomyce
s)属に属する酵母を培養し、その培養物から得られる
、下記の(1)に示す性質を有するプロテアーゼ。 (1)作用および基質特異性: ペプチド鎖中に存在する−X−Arg−配列(XはAr
g、LysまたはPro)のArgのC末端側のペプチ
ド結合を加水分解する。 3、スポロボロマイセス属に属する酵母がスポロボロマ
イセス・オドラス(Sporobolomyces・o
drus)IFO1597である請求項2記載のプロテ
アーゼ。
[Scope of Claims] 1. A protease having the physical and chemical properties shown in the following (1) to (5). (1) Action and substrate specificity: -X-Arg- sequence (X is Ar
The peptide bond on the C-terminal side of Arg of G, Lys or Pro) is hydrolyzed. (2) Optimal pH: Tris-HCl buffer pH around 7.0. (3) pH stability: Most stable at pH 6.0 to 8.0. (4) Optimal temperature: around 40 to 470°C (pH 7.0). (5) Thermal stability: Stable below 38°C (pH 7.0, 10
minutes). 2. Sporobolomyces
s) A protease having the properties shown in (1) below, obtained from a culture of yeast belonging to the genus. (1) Action and substrate specificity: -X-Arg- sequence (X is Ar
The peptide bond on the C-terminal side of Arg of G, Lys or Pro) is hydrolyzed. 3. The yeast belonging to the genus Sporobolomyces is Sporobolomyces odorus.
3. The protease according to claim 2, which is IFO1597.
JP63016285A 1988-01-27 1988-01-27 Novel protease Granted JPH01191683A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63016285A JPH01191683A (en) 1988-01-27 1988-01-27 Novel protease
DE68922014T DE68922014T2 (en) 1988-01-27 1989-01-24 Protease.
EP89101200A EP0336056B1 (en) 1988-01-27 1989-01-24 Protease
US07/301,988 US5053333A (en) 1988-01-27 1989-01-26 Protease
CA000589189A CA1318872C (en) 1988-01-27 1989-01-26 Protease
KR1019890000900A KR930005454B1 (en) 1988-01-27 1989-01-27 Protease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63016285A JPH01191683A (en) 1988-01-27 1988-01-27 Novel protease

Publications (2)

Publication Number Publication Date
JPH01191683A true JPH01191683A (en) 1989-08-01
JPH0578305B2 JPH0578305B2 (en) 1993-10-28

Family

ID=11912279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63016285A Granted JPH01191683A (en) 1988-01-27 1988-01-27 Novel protease

Country Status (1)

Country Link
JP (1) JPH01191683A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992006211A1 (en) * 1990-10-09 1992-04-16 M & D Research Co., Ltd. Process for producing peptide or protein

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992006211A1 (en) * 1990-10-09 1992-04-16 M & D Research Co., Ltd. Process for producing peptide or protein
US5506120A (en) * 1990-10-09 1996-04-09 M & D Research Co., Ltd. Method of producing peptides or proteins as fusion proteins

Also Published As

Publication number Publication date
JPH0578305B2 (en) 1993-10-28

Similar Documents

Publication Publication Date Title
Blumentals et al. Characterization of sodium dodecyl sulfate-resistant proteolytic activity in the hyperthermophilic archaebacterium Pyrococcus furiosus
Bressollier et al. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus
Nordwig et al. A collagenolytic enzyme from Aspergillus oryzae: purification and properties
Griffin et al. Isolation and characterization of an alkaline protease from the marine shipworm bacterium
Thibault et al. Tonin, an esteroprotease from rat submaxillary glands
Dostál et al. The precursor of secreted aspartic proteinase Sapp1p from Candida parapsilosis can be activated both autocatalytically and by a membrane-bound processing proteinase
Shimoi et al. Leucine dehydrogenase of a thermophilic anaerobe, Clostridium thermoaceticum: gene cloning, purification and characterization
Hofmann [49] Penicillocarboxypeptidases S-1 and S-2
Farley et al. The purification and properties of yeast proteinase B from Candida albicans
Roncari et al. [43] Thermophilic aminopeptidase I
EP0336056B1 (en) Protease
Fukasawa et al. Some properties of two proteinases from a luminous bacterium, Vibrio harveyi strain FLN-108
JPH05992B2 (en)
JPH01191683A (en) Novel protease
US5369016A (en) Peptide amidase and the use thereof
IsHiDA et al. Characteristics of psychrophilic alkaline phosphatase
EP4289943A1 (en) Protein deamidating enzyme
JP3518868B2 (en) Method for producing aminopeptidase and natural protein derived from Bacillus licheniformis strain
JPH0249585A (en) Novel protease
JP3463951B2 (en) Thermostable pyroglutamyl peptidase and its gene
JP3478410B2 (en) Hyperthermostable proteasome
JP2794371B2 (en) Alkaline protease K-16H
JPH0244511B2 (en) TAINETSUSEIARUKARIKINZOKUPUROTEAAZEOYOBISONOSEIZOHO
Suzuki et al. [49] Purification of prekallikrein with arginine-agarose
Masaki et al. Purification and Some Properties of Achromobacter Protease la from Achromobacter lyticus M497-1