JPH0118954B2 - - Google Patents

Info

Publication number
JPH0118954B2
JPH0118954B2 JP56095054A JP9505481A JPH0118954B2 JP H0118954 B2 JPH0118954 B2 JP H0118954B2 JP 56095054 A JP56095054 A JP 56095054A JP 9505481 A JP9505481 A JP 9505481A JP H0118954 B2 JPH0118954 B2 JP H0118954B2
Authority
JP
Japan
Prior art keywords
gelatin
solution
diaphragm
concentration
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56095054A
Other languages
Japanese (ja)
Other versions
JPS57209975A (en
Inventor
Tomohiko Yoshikawa
Yoshiteru Yahiro
Tooru Imanara
Nobuyuki Shishido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Techno Engineers Ltd
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Techno Engineers Ltd
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Techno Engineers Ltd, Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Techno Engineers Ltd
Priority to JP9505481A priority Critical patent/JPS57209975A/en
Publication of JPS57209975A publication Critical patent/JPS57209975A/en
Publication of JPH0118954B2 publication Critical patent/JPH0118954B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高分子水溶液の濃縮方法に関するもの
である。詳しくは本発明は、高分子水溶液を多孔
質隔膜を用いて濃縮する方法に関するものであ
る。特に本発明は稀薄な高分子水溶液を中間濃度
にまで濃縮する方法に関するものである。 水溶性高分子化合物は稀薄な水溶液として得ら
れることがあり、これを濃縮して製品とすること
がしばしば要求される。例えばゼラチンの製造に
際しては、動物の皮、骨等のコラーゲンを熱水で
抽出して2〜10%(無水ゼラチンとしての濃度、
本明細書においてゼラチン濃度は特記しない限り
無水物としての濃度である。)のゼラチン水溶液
を得、これを蒸発缶で中間濃度にまで濃縮し、さ
らに特殊な蒸発器で25〜30%のゼラチン水溶液に
まで濃縮して製品化している。しかし、このよう
な蒸発濃縮法は大量のエネルギーを消費する。ま
た、抽出液中に存在する塩類がそのまま濃縮液中
に移行するので、製品に許容される塩含有量によ
つては抽出工程と濃縮工程との中間に脱塩工程を
必要とする。さらに蒸発缶では一般にスケールが
発生するので、蒸発缶を出たゼラチン水溶液は
過してから後段の蒸発器に供給しなければならな
い。 本発明はこれらの困難を回避する方法を提供す
るものである。 本発明は、無機質の多孔質隔膜の壁面に沿つ
て、アルミナゾル、オキシ塩化ジルコニウム又は
ポリアクリル酸を高圧下に流通させることによつ
て無機質の多孔質隔膜の壁面にダイナミツク膜を
形成させ、得られたダイナミツク膜に沿つて、ゼ
ラチン水溶液、ポリエチレングリコール水溶液又
はポリアクリルアミド水溶液を加圧下に流通さ
せ、該水溶液中の水分の一部を該ダイナミツク膜
を通して外部に排除することを特徴とする高分子
水溶液の濃縮方法を要旨とするものである。 本発明についてさらに詳細に説明すると、本発
明は無機質の多孔質隔膜の一方の面に沿つて高分
子水溶液を加圧下に流通させると、水や塩類は隔
膜を通過するが高分子化合物は実質的に隔膜を通
過しないという現象を利用するものである。多孔
質隔膜としては、孔径が0.02〜2.0μm、好ましく
は0.05〜0.2μmで、金属、セラミツクス、ガラス、
炭素など無機材料からなるものが用いられる。こ
のような無機の多孔質隔膜は機械的強度が大き
く、かつ耐熱性、耐薬品性に富んでいる。高分子
水溶液は一般に低温では粘度が高いので、昇温下
に取扱うのが望ましいことが多い。従つて隔膜が
耐熱性に富むことは、操作上多大の利益をもたら
すものである。同様に隔膜が耐薬品性に富むこと
は、隔膜が目詰りを起した際に隔膜を薬品で処理
して目詰りを解消することを可能にする。好適な
隔膜はアルミナ等の金属酸化物の焼結物である。 このような無機の多孔質隔膜に沿つて高分子水
溶液を加圧下に流通させると、高分子化合物が隔
膜面に沈着してダイナミツク膜となり、水は隔膜
を通過するが高分子化合物の通過は阻止される。 本発明においては、多孔質隔膜の表面に無機化
合物をプレコートしてから用いる。例えば種々の
金属(水)酸化物、アルミン酸ソーダ、オキシ塩
化ジルコニウム等の無機化合物の水溶液を流動状
態で隔膜表面に沈着させてダイナミツク膜を形成
させてから本発明方法に用いる。このような無機
化合物の沈着したダイナミツク膜は、一般に高分
子溶液の濃縮に用いた場合に透過流束、すなわち
隔膜単位面積、単位時間当りの透過水量が多く、
かつ目詰りを起し難い。また目詰を起した際もア
ルカリ水溶液等で処理することにより無機化合物
の沈着層を隔膜から容易に剥離させて隔膜を再生
することができる。さらに、無機化合物を沈着さ
せた上に高分子化合物の水溶液を同じく流動状態
で沈着させて、分離能をさらに大きくするように
膜の性能を改質することもできる。これらの無機
化合物および高分子化合物は、高圧下に沈着させ
ると、生成するダイナミツク膜が塩分離能を有す
るようになる。従つてゼラチン水溶液の濃縮のよ
うに濃縮と同時に脱塩も行ないたいときは低い圧
力下、通常は25Kg/cm2G以下、好ましくは10〜20
Kg/cm2Gの圧力下で沈着させる。生成するダイナ
ミツク膜の透過流束流速が大きく且つ塩分離能が
小さい点よりして、好ましくはアルミナゾルを沈
着させる。 本発明方法で濃縮操作の対象となるのは、ポリ
エチレングリコールやポリアクリルアマイド等の
合成高分子化合物の水溶液およびゼラチン等の天
然の高分子化合物の水溶液である。特に本発明は
動物の骨や皮等を温湯で抽出して得たゼラチン抽
出液を18〜22%水溶液にまで濃縮するのに好適で
ある。ゼラチン抽出液は高温ほど粘度が小さく操
作が容易でかつ透過流束流速が大きいので、ゼラ
チンが変質しない限度でできるだけ高い温度で多
孔質隔膜を備えた流路内を加圧下に通過させる。
通常は40〜90℃、特に60℃程度で操作するのが好
ましい。操作圧力は5〜25Kg/cm2Gが適当であ
る。この範囲においては圧力が大きいほど透過流
束が大きくなるが、圧力を25Kg/cm2G以上にして
も透過流束はあまり変化しない。好適な操作圧力
は10〜20Kg/cm2Gである。また、流路内のゼラチ
ン抽出液の隔膜面に平行方向に流通する速度は
0.5〜3m/秒が適当である。一般にこの速度が
大きいほど透過流束が大きくなるが、3m/秒以
上の速度にしてもそれによる透過流束の増加は小
さい。好適な速度は1〜2m/秒である。ゼラチ
ン水溶液の濃度も透過流束に大きく影響し、濃度
が高くなるほど透過流束は小さくなる。従つて本
発明方法によりゼラチン抽出液を製品化に必要な
最終濃度にまで濃縮するのはあまり有利ではな
く、それよりもゼラチン抽出液を本発明方法によ
り18〜22%の中間濃度にまで濃縮し、次いで従来
の薄膜蒸発器等により最終濃度にまで濃縮するの
が有利である。 ゼラチン水溶液を上述の条件下に前述の多孔質
隔膜で構成された流路内を流通させると、水分が
隔膜を通して排除されゼラチンが濃縮される。ま
たこの水分中には原料のゼラチン水溶液とほぼ同
濃度の塩分が含まれている。従つて本発明方法に
よれば濃縮と同時にゼラチンの塩含有量を低減さ
せることができる。 さらに、ゼラチンの一部も水分と共に隔膜を通
過するが、透過液中のゼラチンの分子量分布は、
原液中のゼラチンの分子量分布よりも低分子量側
にかたよつている。これはゼラチン中の有機不純
物が選択的に隔膜を通して排除されていることを
示している。従つて本発明方法によれば濃縮と同
時にゼラチンの精製効果も奏される。 なお、以上は主にゼラチン水溶液の濃縮を例に
とつて説明したが、本発明が他の高分子化合物の
濃縮にも適用しうることは、後記の実施例からも
明らかである。 次に実施例により本発明をさらに具体的に説明
するが、本発明はその要旨をこえない限り、以下
の実施例に限定されるものではない。 実施例 1 内径2mm、外径5mm、長さ500mmで一端の閉じ
たセラミツク製の多孔質中空円筒(表層部の孔径
は約0.1μmで内部の孔径はこれよりも大きい)を
第1図の如く外筒中に挿入して濃縮装置を構成し
た。 試料導入口から、水1中に塩化ナトリウム
0.05モルとアルミナゾル(商品名、アルミナゾル
−200、日産化学社製品)0.5gを添加した溶液
を、室温、20Kg/cm2Gの圧力下に供給し、装置内
を3m/秒の速度で30分間流通させた。 次いで室温の脱塩水を同じく20Kg/cm2Gの圧力
下に流通させて装置内を洗浄したのち、水1中
に塩化ナトリウム0.05モルとポリアクリル酸(商
品名、ジユリマーAC−10L、分子量20000〜
40000、日本純薬社製品)0.1gを添加した溶液を
同じく室温、20Kg/cm2G、3m/秒で30分間流通
させた。 なお、ポリアクリル酸水溶液のPHは、塩酸と苛
性ソーダとを用いて、PH2.5からPH7.0まで順次上
昇させた。さらに脱塩水を流通させて装置内を洗
浄し、アルミナゾルおよびポリアクリル酸のプレ
コート層を有するセラミツク製の多孔質隔膜を備
えた濃縮装置とした。 この濃縮装置に、市販の食品用ゼラチンを温湯
に溶解した溶液を20Kg/cm2G、80℃で3m/秒の
速度で通液し、ゼラチン水溶液の濃縮を行なつ
た。装置に供給したゼラチン水溶液の濃度と隔膜
の単位外表面積当りの水の透過量との関係を第2
図に、供給ゼラチン水溶液の濃度とゼラチンの分
離率〔1−{透過水中のゼラチン濃度(g/−
水)/供給溶液中のゼラチン濃度(g/−
水)}〕×100との関係を第3図に示す。 なお、第2図および第3図には、アルミナゾル
のプレコートを行なつただけでポリアクリル酸の
プレコートを行なわない隔膜を用いた場合および
アルミナゾルのプレコートもポリアクリル酸のプ
レコートも行なわない隔膜を行つた場合の結果も
併記してある。 実施例 2 実施例1で用いたのと同じ多孔質中空円筒18本
を間隔をおいて並列に配置して収容した第1図の
ものと類似の濃縮装置を用いて、市販の食品用ゼ
ラチンの濃縮を行なつた。 隔膜には実施例1と同様にしてアルミナゾルの
プレコートを行なつた。濃縮は20Kg/cm2G、60
℃、速度0.6m/秒で行ない、濃縮装置から流出
したゼラチン溶液を再循環することにより、ゼラ
チン溶液を6.64%から25.54%まで濃縮した。結
果を第1表に示す。
The present invention relates to a method for concentrating an aqueous polymer solution. Specifically, the present invention relates to a method for concentrating an aqueous polymer solution using a porous diaphragm. In particular, the present invention relates to a method for concentrating a dilute aqueous polymer solution to an intermediate concentration. Water-soluble polymer compounds are sometimes obtained as dilute aqueous solutions, which are often required to be concentrated into products. For example, when manufacturing gelatin, collagen from animal skin, bone, etc. is extracted with hot water to give a concentration of 2 to 10% (concentration as anhydrous gelatin,
In this specification, gelatin concentrations are as anhydrous unless otherwise specified. ) is obtained, concentrated to an intermediate concentration in an evaporator, and further concentrated to a 25-30% gelatin solution in a special evaporator to produce a product. However, such evaporative concentration methods consume a large amount of energy. Furthermore, since the salts present in the extract are transferred directly to the concentrate, a desalting step may be required between the extraction step and the concentration step depending on the salt content allowed in the product. Furthermore, since scale generally occurs in the evaporator, the aqueous gelatin solution leaving the evaporator must be filtered before being supplied to the subsequent evaporator. The present invention provides a method to avoid these difficulties. The present invention allows a dynamic film to be formed on the wall surface of an inorganic porous diaphragm by flowing alumina sol, zirconium oxychloride, or polyacrylic acid under high pressure along the wall surface of the inorganic porous diaphragm. An aqueous polymer solution characterized in that an aqueous gelatin solution, an aqueous polyethylene glycol solution or an aqueous polyacrylamide solution is passed under pressure along a dynamic membrane, and a part of the water in the aqueous solution is expelled to the outside through the dynamic membrane. The gist is the concentration method. To explain the present invention in more detail, when an aqueous polymer solution is passed under pressure along one side of an inorganic porous diaphragm, water and salts pass through the diaphragm, but substantially no polymer compound is passed through the diaphragm. This method takes advantage of the phenomenon that the membrane does not pass through the diaphragm. The porous diaphragm has a pore diameter of 0.02 to 2.0 μm, preferably 0.05 to 0.2 μm, and is made of metal, ceramics, glass,
Materials made of inorganic materials such as carbon are used. Such an inorganic porous diaphragm has high mechanical strength, and is rich in heat resistance and chemical resistance. Since aqueous polymer solutions generally have high viscosity at low temperatures, it is often desirable to handle them at elevated temperatures. Therefore, having a diaphragm with high heat resistance brings great operational benefits. Similarly, the high chemical resistance of the diaphragm makes it possible to eliminate the clogging by treating the diaphragm with chemicals when the diaphragm becomes clogged. A preferred membrane is a sintered metal oxide such as alumina. When an aqueous polymer solution is passed under pressure along such an inorganic porous diaphragm, the polymer compound is deposited on the diaphragm surface and forms a dynamic membrane, allowing water to pass through the diaphragm but blocking the passage of the polymer compound. be done. In the present invention, the surface of the porous diaphragm is precoated with an inorganic compound before use. For example, aqueous solutions of inorganic compounds such as various metal (hydr)oxides, sodium aluminate, and zirconium oxychloride are deposited in a fluid state on the membrane surface to form a dynamic membrane, which is then used in the method of the present invention. Dynamic membranes with such inorganic compounds deposited generally have a large permeation flux, that is, a large amount of permeated water per unit area of the diaphragm and per unit time, when used for concentrating polymer solutions.
And it is hard to cause clogging. Furthermore, even when clogging occurs, the deposited layer of inorganic compounds can be easily peeled off from the diaphragm and the diaphragm can be regenerated by treating it with an alkaline aqueous solution or the like. Furthermore, the performance of the membrane can be modified to further increase the separation capacity by depositing an aqueous solution of a polymer compound in a fluidized state on top of the deposited inorganic compound. When these inorganic and polymeric compounds are deposited under high pressure, the resulting dynamic membrane has salt separation ability. Therefore, when desalting is desired at the same time as concentrating an aqueous gelatin solution, the pressure is low, usually 25 Kg/cm 2 G or less, preferably 10 to 20 G.
Deposited under a pressure of Kg/cm 2 G. Preferably, alumina sol is deposited because the generated dynamic membrane has a high permeation flux and a low salt separation ability. The targets of the concentration operation in the method of the present invention are aqueous solutions of synthetic polymer compounds such as polyethylene glycol and polyacrylamide, and aqueous solutions of natural polymer compounds such as gelatin. In particular, the present invention is suitable for concentrating a gelatin extract obtained by extracting animal bones, skins, etc. with warm water to an 18-22% aqueous solution. The higher the temperature, the lower the viscosity of the gelatin extract, which makes it easier to operate and the higher the permeation flux, so it is passed under pressure through a channel equipped with a porous diaphragm at as high a temperature as possible without deteriorating the gelatin.
It is usually preferable to operate at a temperature of 40 to 90°C, particularly around 60°C. A suitable operating pressure is 5 to 25 kg/cm 2 G. In this range, the higher the pressure, the greater the permeation flux, but even if the pressure is increased to 25 kg/cm 2 G or more, the permeation flux does not change much. The preferred operating pressure is 10-20 Kg/cm 2 G. In addition, the speed at which the gelatin extract flows in the flow channel in a direction parallel to the diaphragm surface is
0.5 to 3 m/sec is suitable. Generally, the higher the speed, the higher the permeation flux, but even if the speed is 3 m/sec or more, the increase in the permeation flux is small. A preferred speed is 1-2 m/sec. The concentration of the gelatin aqueous solution also greatly affects the permeation flux, and the higher the concentration, the smaller the permeation flux. Therefore, it is not very advantageous to concentrate the gelatin extract to the final concentration required for commercialization by the method of the present invention, but rather to concentrate the gelatin extract to an intermediate concentration of 18 to 22% by the method of the present invention. Advantageously, it is then concentrated to a final concentration, such as in a conventional thin film evaporator. When an aqueous gelatin solution is allowed to flow through the flow path constituted by the porous diaphragm described above under the above-mentioned conditions, water is removed through the diaphragm and the gelatin is concentrated. In addition, this water contains almost the same concentration of salt as the gelatin aqueous solution used as the raw material. Therefore, according to the method of the present invention, the salt content of gelatin can be reduced simultaneously with concentration. Furthermore, some of the gelatin passes through the diaphragm along with water, but the molecular weight distribution of gelatin in the permeate is
The molecular weight distribution of gelatin in the stock solution is skewed toward the lower molecular weight side. This indicates that organic impurities in gelatin are selectively removed through the diaphragm. Therefore, according to the method of the present invention, gelatin purification effects can be achieved at the same time as concentration. Although the above explanation has mainly been given by taking the concentration of an aqueous gelatin solution as an example, it is clear from the Examples described later that the present invention can also be applied to the concentration of other polymer compounds. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. Example 1 A porous hollow cylinder made of ceramic with an inner diameter of 2 mm, an outer diameter of 5 mm, and a length of 500 mm with one end closed (the pore diameter in the surface layer is about 0.1 μm and the pore diameter in the inner layer is larger) was prepared as shown in Figure 1. A concentrator was constructed by inserting it into the outer cylinder. Sodium chloride is added to the water from the sample inlet.
A solution containing 0.05 mol and 0.5 g of alumina sol (trade name, Alumina Sol-200, manufactured by Nissan Chemical Co., Ltd.) was supplied at room temperature under a pressure of 20 Kg/cm 2 G, and the solution was fed inside the device at a speed of 3 m/sec for 30 minutes. It was distributed. Next, after washing the inside of the apparatus by flowing demineralized water at room temperature under the same pressure of 20 kg/cm 2 G, 0.05 mol of sodium chloride and polyacrylic acid (trade name, Dulymer AC-10L, molecular weight 20,000 ~
A solution containing 0.1 g of Nippon Pure Chemical Industries, Ltd. 40000 was circulated at room temperature, 20 Kg/cm 2 G, and 3 m/sec for 30 minutes. Note that the pH of the polyacrylic acid aqueous solution was raised sequentially from PH2.5 to PH7.0 using hydrochloric acid and caustic soda. Furthermore, demineralized water was circulated to clean the inside of the apparatus, and a concentrating apparatus was prepared which was equipped with a ceramic porous diaphragm having a precoated layer of alumina sol and polyacrylic acid. A solution of commercially available food grade gelatin dissolved in warm water was passed through this concentrator at a rate of 3 m/sec at 20 kg/cm 2 G and 80° C. to concentrate the aqueous gelatin solution. The relationship between the concentration of the gelatin aqueous solution supplied to the device and the amount of water permeation per unit outer surface area of the diaphragm is expressed as
The figure shows the concentration of the supplied gelatin aqueous solution and the gelatin separation rate [1-{gelatin concentration in permeated water (g/-
water)/gelatin concentration in the feed solution (g/-
Figure 3 shows the relationship with water)}]×100. Note that FIGS. 2 and 3 show cases in which a diaphragm is used that is pre-coated with alumina sol but not pre-coated with polyacrylic acid, and a diaphragm in which neither alumina sol nor polyacrylic acid is pre-coated. The results are also listed. Example 2 Using a concentrating device similar to that shown in Fig. 1, which contained 18 porous hollow cylinders similar to those used in Example 1 and arranged in parallel at intervals, commercially available food grade gelatin was concentrated. Concentration was carried out. The diaphragm was pre-coated with alumina sol in the same manner as in Example 1. Concentration is 20Kg/cm 2 G, 60
The gelatin solution was concentrated from 6.64% to 25.54% by operating at 0.6 m/sec at a speed of 0.6 m/sec and recycling the gelatin solution flowing out of the concentrator. The results are shown in Table 1.

【表】 また、原料溶液、濃縮液および透過液中のゼラ
チンの分子量分布を、ゲル過クロマトグラフイ
ーにより測定した結果を第4図〜第6図に示す。 測定条件は下記の通りである。 充填剤:セフアデツクスG−200 充填寸法:直径15mm、長さ200mm 試 料:ゼラチンの1000ppm水溶液、2ml 展開液:脱塩水 流 速:8〜10ml/hr 温 度:室温 検出器:全炭素計 これらの結果から、本発明方法によりゼラチン
を濃縮すれば、ゼラチン中の灰分の除去(脱塩)
も同時に達成されることがわかる。また、ゼラチ
ン中の比較的低分子量の成分が透過液中に流出す
るので、ゼラチンの精製効果も奏せられることが
わかる。 実施例 3 実施例1で用いた濃縮装置に、水1中に塩化
ナトリウム0.05モルとオキシ塩化ジルコニウム
(ZrOCl2)10-4モルを添加した溶液を、室温、80
Kg/cm2Gの圧力下に供給し、装置内を3m/秒の
速度で30分間流通させた。次いで操作圧を80Kg/
cm2Gとした以外は実施例1と同じく脱塩水洗浄−
ポリアクリル酸プレコートー脱塩水洗浄を行なつ
て、多孔質のセラミツク隔膜にオキシ塩化ジルコ
ニウムおよびポリアクリル酸のプレコート層を付
着させた。 この濃縮装置にポリエチレングリコールの稀薄
水溶液を室温、10Kg/cm2G、3m/秒の条件下に
流通させた。結果を第2表に示す。
[Table] The molecular weight distribution of gelatin in the raw material solution, concentrated solution and permeated solution was measured by gel permeation chromatography, and the results are shown in FIGS. 4 to 6. The measurement conditions are as follows. Packing material: Cephadex G-200 Filling dimensions: Diameter 15 mm, length 200 mm Sample: 1000 ppm aqueous solution of gelatin, 2 ml Developing solution: Demineralized water Flow rate: 8 to 10 ml/hr Temperature: Room temperature Detector: Total carbon meter These The results show that if gelatin is concentrated using the method of the present invention, ash content in gelatin can be removed (desalted).
It can be seen that both are achieved at the same time. Furthermore, it can be seen that gelatin purification effects can also be achieved because relatively low molecular weight components in gelatin flow out into the permeate. Example 3 A solution of 0.05 mol of sodium chloride and 10 -4 mol of zirconium oxychloride (ZrOCl 2 ) in 1 mol of water was added to the concentrator used in Example 1 at room temperature at 80° C.
It was supplied under a pressure of Kg/cm 2 G and allowed to flow through the apparatus at a speed of 3 m/sec for 30 minutes. Then increase the operating pressure to 80Kg/
Washing with demineralized water was carried out in the same manner as in Example 1 except that cm 2 G was used.
Polyacrylic Acid Precoat - A demineralized water wash was performed to deposit a precoat layer of zirconium oxychloride and polyacrylic acid onto the porous ceramic membrane. A dilute aqueous solution of polyethylene glycol was passed through this concentrator under conditions of room temperature, 10 kg/cm 2 G, and 3 m/sec. The results are shown in Table 2.

【表】 実施例 4 実施例3においてポリアクリル酸のプレコート
操作を省略した濃縮装置を用いた以外は実施例3
と同様にしてポリエチレングリコールの濃縮を行
なつた。結果を第2表に示す。 実施例 5 実施例1で用いた濃縮装置に、水1中に塩化
ナトリウム0.05モルとオキシ塩化ジルコニウム
10-4モルを添加した溶液を、室温、80Kg/cm2Gの
圧力下に供給し、装置内を3m/秒で30分間流通
させた。次いで脱塩水を80Kg/cm2Gで流通させて
洗浄した。 この濃縮装置にポリアクリルアマイド(分子量
2×105〜3×105)の357ppm水溶液を、25℃、
3m/秒で流通させた。操作圧力と分離率および
透過流束との関係を第7図に示す。
[Table] Example 4 Example 3 except that a concentrating device was used in which the polyacrylic acid precoating operation was omitted in Example 3.
Polyethylene glycol was concentrated in the same manner as described above. The results are shown in Table 2. Example 5 Into the concentrator used in Example 1, 0.05 mol of sodium chloride and zirconium oxychloride were added in 1 part of water.
A solution containing 10 -4 mol was supplied at room temperature under a pressure of 80 Kg/cm 2 G, and was allowed to flow through the apparatus at 3 m/sec for 30 minutes. Next, demineralized water was passed through at 80 kg/cm 2 G for washing. A 357 ppm aqueous solution of polyacrylamide (molecular weight 2 x 10 5 - 3 x 10 5 ) was added to this concentrator at 25°C.
The flow was conducted at 3 m/sec. FIG. 7 shows the relationship between operating pressure, separation rate, and permeation flux.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で用いた濃縮装置の縦断面略図
である。図中、1は外筒、2はセラミツク製中空
円筒、3は試料導入口、4は濃縮液抜出口、5は
透過液抜出口を示す。第2図は実施例1における
ゼラチン水溶液の濃度と透過流束との関係を示す
グラフである。図中、(○)はプレコートを施さ
ない隔膜を用いた場合、(●)はアルミナゾルの
プレコートを施した隔膜を用いた場合、(△)は
アルミナゾルおよびポリアクリル酸のプレコート
を施した隔膜を用いた場合をそれぞれ示す。第3
図は実施例1におけるゼラチン水溶液の濃度と分
離率との関係を示すグラフである。図中の記号は
第2図と同一である。第4図は実施例2で用いた
ゼラチヲのゲル過クロマトグラフイーにおける
クロマトグラムである。なお同図には、同じ条件
下で得られるポリエチレングリコール(分子量
1000と20000との等量混合物)のクロマトグラム
も破線で示してある。第5図および第6図は、同
じく実施例2で得られた濃縮液および透過液中の
ゼラチンのクロマトグラムである。第7図は実施
例5におけるポリアクリルアマイド水溶液の操作
圧力と分離率および透過流束との関係を示すグラ
フである。
FIG. 1 is a schematic vertical cross-sectional view of a concentrator used in Examples. In the figure, 1 is an outer cylinder, 2 is a ceramic hollow cylinder, 3 is a sample inlet, 4 is a concentrated liquid outlet, and 5 is a permeated liquid outlet. FIG. 2 is a graph showing the relationship between the concentration of gelatin aqueous solution and permeation flux in Example 1. In the figure, (○) is when a diaphragm without precoating is used, (●) is when a diaphragm is used with alumina sol precoating, and (△) is when a diaphragm is used with alumina sol and polyacrylic acid precoating. Each case is shown below. Third
The figure is a graph showing the relationship between the concentration of gelatin aqueous solution and separation rate in Example 1. The symbols in the figure are the same as in FIG. FIG. 4 is a chromatogram of gelatin gel permeation chromatography used in Example 2. The figure also shows polyethylene glycol (molecular weight) obtained under the same conditions.
The chromatogram of an equal mixture of 1000 and 20000 is also shown with a dashed line. FIGS. 5 and 6 are chromatograms of gelatin in the concentrate and permeate obtained in Example 2. FIG. 7 is a graph showing the relationship between the operating pressure, separation rate, and permeation flux of the polyacrylamide aqueous solution in Example 5.

Claims (1)

【特許請求の範囲】[Claims] 1 無機質の多孔質隔膜の壁面に沿つて、アルミ
ナゾル、アルミナゾルとポリアクリル酸、オキシ
塩化ジルコニウム、又は、オキシ塩化ジルコニウ
ムとポリアクリル酸を高圧下に流通させることに
よつて無機質の多孔質隔膜の壁面にダイナミツク
膜を形成させ、得られたダイナミツク膜に沿つ
て、ゼラチン水溶液、ポリエチレングリコール水
溶液又はポリアクリルアミド水溶液を加圧下に流
通させ、該水溶液中の水分の一部を該ダイナミツ
ク膜を通して外部に排除することを特徴とする高
分子水溶液の濃縮方法。
1. The wall surface of the inorganic porous diaphragm is created by flowing alumina sol, alumina sol and polyacrylic acid, zirconium oxychloride, or zirconium oxychloride and polyacrylic acid under high pressure along the wall surface of the inorganic porous diaphragm. A dynamic membrane is formed on the membrane, and a gelatin aqueous solution, a polyethylene glycol aqueous solution, or a polyacrylamide aqueous solution is passed under pressure along the obtained dynamic membrane, and a part of the water in the aqueous solution is expelled to the outside through the dynamic membrane. A method for concentrating an aqueous polymer solution, characterized by:
JP9505481A 1981-06-19 1981-06-19 Method for concentrating aqueous solution of high-molecular material Granted JPS57209975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9505481A JPS57209975A (en) 1981-06-19 1981-06-19 Method for concentrating aqueous solution of high-molecular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9505481A JPS57209975A (en) 1981-06-19 1981-06-19 Method for concentrating aqueous solution of high-molecular material

Publications (2)

Publication Number Publication Date
JPS57209975A JPS57209975A (en) 1982-12-23
JPH0118954B2 true JPH0118954B2 (en) 1989-04-07

Family

ID=14127329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9505481A Granted JPS57209975A (en) 1981-06-19 1981-06-19 Method for concentrating aqueous solution of high-molecular material

Country Status (1)

Country Link
JP (1) JPS57209975A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095936A (en) * 2000-09-26 2002-04-02 Nippon Rensui Co Ltd Cleaning method for reverse osmosis membrane
WO2023191018A1 (en) * 2022-03-30 2023-10-05 東レ株式会社 Method for producing gelatin or concentrated gelatin solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163377A (en) * 1974-11-30 1976-06-01 Gunze Kk GYAKUSHINTOSOCHI
JPS5371686A (en) * 1976-12-09 1978-06-26 Efu Konerii Robaato Tubular molecule filtering apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627926Y2 (en) * 1976-04-07 1981-07-03

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163377A (en) * 1974-11-30 1976-06-01 Gunze Kk GYAKUSHINTOSOCHI
JPS5371686A (en) * 1976-12-09 1978-06-26 Efu Konerii Robaato Tubular molecule filtering apparatus

Also Published As

Publication number Publication date
JPS57209975A (en) 1982-12-23

Similar Documents

Publication Publication Date Title
JP3356444B2 (en) Separation of pyrogens by ceramic ultrafiltration
CA1067416A (en) Ultrafiltration apparatus and process for treatment of liquids
EP0253287B1 (en) Combined membrane and sorption process for selective ion removal
Potts et al. A critical review of fouling of reverse osmosis membranes
US3977967A (en) Ultrafiltration apparatus and process for the treatment of liquids
EP0040827B1 (en) A method for increasing the cross-flow microfiltration fluxes of waste waters containing suspended solids and/or emulsified oil
US3639231A (en) Desalination process
Jiraratananon et al. Self-forming dynamic membrane for ultrafiltration of pineapple juice
US5242595A (en) Bacteria removal by ceramic microfiltration
US20110168629A1 (en) Process for Recovering Heavy Oil Utilizing One or More Membranes
Chang et al. Iron oxide adsorption and UF to remove NOM and control fouling
NZ211755A (en) Ultrafiltration membrane and preparative method
CA2375252A1 (en) Method for the purification of a liquid by membrane distillation, in particular for the production of desalinated water from seawater or brackish water or process water
CN207596652U (en) A kind of highly mineralized mine water near-zero release comprehensive resource PDCES processing systems
IE45254B1 (en) Coating modification process for ultrafiltration systems
WO1997018166A3 (en) Direct osmotic concentration contaminated water
JPH0118954B2 (en)
CA1269622A (en) Process for the treatment of boiler condensate
JPH0349610B2 (en)
CA2594088A1 (en) Membrane card and method for the production and use thereof
Schippers et al. Reverse osmosis for treatment of surface water
Lonsdale Reverse osmosis
Curcio et al. Membranes for desalination
SU1126307A1 (en) Method of demineralization of water
Lynch Jr et al. Membrane and Ion‐Exchange Processes‐A Review