JPH01188660A - Manufacture of crystalline transparent electrical conductive laminated body - Google Patents
Manufacture of crystalline transparent electrical conductive laminated bodyInfo
- Publication number
- JPH01188660A JPH01188660A JP63010794A JP1079488A JPH01188660A JP H01188660 A JPH01188660 A JP H01188660A JP 63010794 A JP63010794 A JP 63010794A JP 1079488 A JP1079488 A JP 1079488A JP H01188660 A JPH01188660 A JP H01188660A
- Authority
- JP
- Japan
- Prior art keywords
- film
- crystalline
- substrate
- electrical conductive
- sputtering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000000758 substrate Substances 0.000 claims abstract description 45
- 238000004544 sputter deposition Methods 0.000 claims abstract description 37
- 229910003437 indium oxide Inorganic materials 0.000 claims abstract description 8
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims abstract description 8
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910001887 tin oxide Inorganic materials 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 abstract description 20
- 238000010030 laminating Methods 0.000 abstract description 2
- 229920006254 polymer film Polymers 0.000 abstract 1
- 239000010408 film Substances 0.000 description 73
- 229920000620 organic polymer Polymers 0.000 description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 14
- 239000007789 gas Substances 0.000 description 12
- 239000011521 glass Substances 0.000 description 8
- -1 polyethylene terephthalate Polymers 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 229910001882 dioxygen Inorganic materials 0.000 description 6
- 239000010409 thin film Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229920006267 polyester film Polymers 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000005546 reactive sputtering Methods 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- AZWHFTKIBIQKCA-UHFFFAOYSA-N [Sn+2]=O.[O-2].[In+3] Chemical compound [Sn+2]=O.[O-2].[In+3] AZWHFTKIBIQKCA-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- BEQNOZDXPONEMR-UHFFFAOYSA-N cadmium;oxotin Chemical compound [Cd].[Sn]=O BEQNOZDXPONEMR-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Laminated Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は透明入力キーボード及び透明電極として広く利
用される、光学的及び耐久性に優れた結晶質透明導電性
積層体の製造方法に関するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a crystalline transparent conductive laminate with excellent optical performance and durability, which is widely used as a transparent input keyboard and transparent electrode. be.
透明導電性積層体は、その透明性と導電性を利用した用
途、特に電子及び電気表示素子にデータ等を入力する透
明入力キーボード等の可動スイッチとして広く利用され
ている。また、このうち有機高分子を基板とする透明導
電性フィルムは、ガラス基板のものと比べて、素子の軽
量化、薄膜化等が可能であり、更にフレキシブルで加工
性に優れる。Transparent conductive laminates are widely used in applications that take advantage of their transparency and conductivity, particularly as movable switches such as transparent input keyboards for inputting data to electronic and electrical display elements. Moreover, among these, transparent conductive films having an organic polymer as a substrate allow devices to be made lighter and thinner than those having a glass substrate, and are more flexible and have excellent processability.
また、その製造工程においては、連続生産が可能である
等、種々の利点があるために、液晶デイスプレー用電極
、プラズマデイスプレー用電極、電場発光体用電極など
の各種デイスプレー装置の透明電極としても広く用いら
れる。In addition, the manufacturing process has various advantages such as continuous production, so transparent electrodes for various display devices such as electrodes for liquid crystal displays, electrodes for plasma displays, and electrodes for electroluminescent devices are used. It is also widely used as
(従来の技術と問題点)
透明導電性積層体は、一般に、透明な基板上に金属又は
、金属酸化物よりなる導電層を設けて構成されている。(Prior Art and Problems) A transparent conductive laminate is generally constructed by providing a conductive layer made of metal or metal oxide on a transparent substrate.
透明導電膜には、従来から知られているものとして、
■金、銀、パラジウムなどの金属薄膜
■インジウム酸化物、スズ酸化物、インジウム−スズ酸
化物(ITO>、カドミウム−スズ酸化物(CTO)
、酸化亜鉛(ZrlO)などの金属酸化物薄膜
■■又は■の多層薄膜
等があるが■の金属酸化物薄膜が他の薄膜に較べその基
本特性か優れている。とりわけITO膜は透明性、導電
性が特に優れてあり、透明導電膜として広く利用されて
いる。Conventionally known transparent conductive films include: - Metal thin films such as gold, silver, and palladium; - Indium oxide, tin oxide, indium-tin oxide (ITO), and cadmium-tin oxide (CTO). )
, metal oxide thin films such as zinc oxide (ZrlO), and multilayer thin films such as (2) and (2), but the metal oxide thin film (3) has better basic characteristics than other thin films. In particular, ITO films have particularly excellent transparency and conductivity, and are widely used as transparent conductive films.
上記に示した透明導電膜の形成法には、−船釣に真空蒸
着法、スパッタリング法、イオンブレーティング法、化
学スプレー法、スクリーン印刷法等がおる。Methods for forming the above-mentioned transparent conductive film include a vacuum deposition method, a sputtering method, an ion blasting method, a chemical spray method, a screen printing method, and the like.
その中でスパッタリング法は、有機高分子フィルム上へ
連続的に製膜ができ、かつ長時間の稼動においても組成
ずれが少ないなどの利点をもつために、最も広く利用さ
れている製膜法の一つである。Among these, the sputtering method is the most widely used film forming method because it allows continuous film formation on organic polymer films and has the advantage of having little compositional deviation even during long-term operation. There is one.
以上の様な方法において形成したITO膜は、形成条件
により酸に可溶性の非晶質ITO膜と酸に難溶性の結晶
質ITO膜とに大別される。このとき結晶質ITO膜は
非晶質ITO膜よりもエネルギー的に低い状態にある為
に外的要因で導電性が変化する割合が小さい傾向にある
。The ITO films formed by the above methods are roughly classified into acid-soluble amorphous ITO films and acid-refractory crystalline ITO films, depending on the formation conditions. At this time, since the crystalline ITO film is in a lower energy state than the amorphous ITO film, the rate at which the conductivity changes due to external factors tends to be small.
また−船釣に結晶質ITO膜は結晶質ITO膜よりも導
電性に優れており、更に光線透過率、色相などの光学的
特性にも優れている。Also, for boat fishing, crystalline ITO films have better electrical conductivity than crystalline ITO films, and also have better optical properties such as light transmittance and hue.
しかしながら、有機高分子基板にスパッタリング法によ
り形成して成るITO膜は、一般に非晶質になっている
。これは、有機高分子基板の耐熱温度がそれほど高くな
い(200’C程度以下)ために、基板の変形を起こさ
ずにITO層を形成するには、基板温度を低くしなけれ
ばならないからである。However, ITO films formed on organic polymer substrates by sputtering are generally amorphous. This is because the heat resistance temperature of the organic polymer substrate is not very high (approximately 200'C or less), so in order to form an ITO layer without causing deformation of the substrate, the substrate temperature must be lowered. .
従って、従来スパッタリングにより有機高分子上にIT
O膜を積層させた透明導電性フィルムを用いた透明スイ
ッチは、打鍵耐久性、屈曲性などの耐久性、及び可視光
線透過率色相などの光学的特性において大きな問題点を
有していた。Therefore, conventional sputtering is used to deposit IT onto organic polymers.
Transparent switches using a transparent conductive film laminated with an O film have had major problems in durability such as key press durability and flexibility, and optical properties such as visible light transmittance and hue.
一方、これらの特性において非晶質ITO膜より優れて
いる結晶質■TO膜を形成する方法としては、通常ガラ
ス基板を用いた場合、300’C程度以上の基板温度で
ITO膜を形成する方法がとられている。また、耐熱温
度がそれ程高くない有機高分子基板においては、従来ス
パッタリングにより低級酸化物膜を形成し、その後酸素
雰囲気下において熱酸化処理を行なうという二つの工程
による製造プロセスがとられている。On the other hand, a method for forming a crystalline TO film that is superior to an amorphous ITO film in these properties is to form an ITO film at a substrate temperature of about 300'C or higher when using a normal glass substrate. is taken. Furthermore, for organic polymer substrates whose heat resistance is not so high, a two-step manufacturing process has conventionally been used in which a lower oxide film is formed by sputtering, and then a thermal oxidation treatment is performed in an oxygen atmosphere.
従って有機高分子基板上に結晶質ITO膜を形成させる
には、通常の非晶質膜をつくるときよりも製造プロセス
が一つ多くなっている。しかも、熱酸化処理工程では有
機高分子基板を変形させずに非晶質膜を結晶質膜に転化
させなければならないため、長時間の処理時間が必要と
されている。Therefore, forming a crystalline ITO film on an organic polymer substrate requires one more manufacturing process than forming a normal amorphous film. Moreover, in the thermal oxidation treatment process, a long treatment time is required because an amorphous film must be converted into a crystalline film without deforming the organic polymer substrate.
そのためにこの方法では、結晶質膜の生産性がかなり低
くなってしまうという問題点があった。Therefore, this method has a problem in that the productivity of the crystalline film is considerably low.
(発明の目的)
本発明の目的は透明性および耐久性に優れた高品質の結
晶質ITO層をガラス基板はもとより有機高分子基板に
おいても、従来の様な熱酸化処理工程を必要とせず、ス
パッタリング時に一段階で結晶質ITO膜を得るという
生産性の良い製造方法を提供することである。(Objective of the Invention) The object of the present invention is to create a high-quality crystalline ITO layer with excellent transparency and durability, not only on glass substrates but also on organic polymer substrates, without requiring the conventional thermal oxidation process. It is an object of the present invention to provide a highly productive manufacturing method in which a crystalline ITO film is obtained in one step during sputtering.
(発明の構成)
本発明は、少なくとも酸化インジウムと酸化スズとの混
合物からなる結晶質透明導電層を基板上に直流(以下D
Cと記す)スパッタリング法により積層させる製造法に
おいて、スパッタリング条件が真空度 5X10−3T
orr以下で印加電圧380V以上
であることを特徴とする結晶質透明導電性積層体の製造
方法に関するものである。(Structure of the Invention) The present invention provides a crystalline transparent conductive layer made of a mixture of at least indium oxide and tin oxide on a substrate with direct current (hereinafter referred to as D
In the manufacturing method of laminating layers by sputtering (denoted as C), the sputtering conditions are vacuum degree 5X10-3T.
The present invention relates to a method for manufacturing a crystalline transparent conductive laminate, characterized in that the applied voltage is 380 V or higher and 380 V or lower.
本発明に用いられるスパッタリング装置としては、特に
限定しないが、以下に示すような使用するターゲットの
違いによって結晶質導電膜を形成する条件は異なる。Although the sputtering apparatus used in the present invention is not particularly limited, the conditions for forming the crystalline conductive film differ depending on the target used as shown below.
本発明において使用するターゲットの形状は、平板型、
円筒型など、いかなる形状のものを用いてもよい。しか
しながら、基板が有機高分子フィルム等においては、巻
き取りながら連続的に製膜を行なうので平板形ターゲッ
トが最も好ましい。The shape of the target used in the present invention is flat type,
Any shape, such as a cylindrical shape, may be used. However, when the substrate is an organic polymer film or the like, a flat target is most preferable because film formation is performed continuously while being wound up.
まず、インジウム酸化物−スズ酸化物ターゲットを用い
た゛DCダイレクトスパッタリングの場合、スパッタリ
ング時の真空度が5X 10−3To r r以下であ
り、ターゲット印加電圧は480V以上である。更に好
ましくは、真空度が1X10−3To r r 〜1
xl 0’To r rであり、ターゲット印加電圧が
480V〜600Vの範囲である。First, in the case of DC direct sputtering using an indium oxide-tin oxide target, the degree of vacuum during sputtering is 5×10 −3 Torr or less, and the target applied voltage is 480 V or more. More preferably, the degree of vacuum is 1X10-3Torr~1
xl 0'Tor r, and the target applied voltage is in the range of 480V to 600V.
このとき、真空度が1X10−3Torr以下ではスパ
ッタリングのプラズマ安定性が悪くなる。At this time, if the degree of vacuum is less than 1.times.10@-3 Torr, the plasma stability of sputtering deteriorates.
また真空度か5X10’丁orr以上ではターゲット印
加電圧を高くすることか難しくなるために好ましくない
。Further, if the degree of vacuum is more than 5×10' orr, it becomes difficult to increase the voltage applied to the target, which is not preferable.
更に、ターゲット印加電圧が480V以下では本発明の
結晶質■丁O膜を得る効果が現われない。Furthermore, if the voltage applied to the target is 480 V or less, the effect of obtaining the crystalline oxide film of the present invention will not appear.
また、600V以上ではスパッタリングのプラズマ安定
性が著しく悪くなるために好ましくない。Further, if the voltage is 600 V or more, the plasma stability of sputtering becomes extremely poor, which is not preferable.
本発明におけるターゲット印加電圧は、通常、有機高分
子基板上に非晶質ITO層を形成させる条件と比べると
、かなり高い印加電圧となっている。第1図はDCダイ
レクトスパッタリング時のターゲット印加電圧を変化さ
せて形成したITO膜の特性について示したものである
。結晶質IT0膜は非晶質ITO膜とは異なり、酸に不
溶性の物性を示す為、酸水溶液(Hc l : H20
= 1 :4.25°C)におけるITO膜の消失時間
(以後、耐酸性と記す)が、非晶質膜と比べて非常に長
い。The voltage applied to the target in the present invention is usually much higher than the conditions for forming an amorphous ITO layer on an organic polymer substrate. FIG. 1 shows the characteristics of ITO films formed by varying the voltage applied to the target during DC direct sputtering. Unlike amorphous ITO films, crystalline IT0 films exhibit physical properties of being insoluble in acids;
= 1:4.25°C), the disappearance time (hereinafter referred to as acid resistance) of the ITO film is much longer than that of the amorphous film.
従って図中に示す各ターゲット印加電圧で形成したIT
O膜における耐酸性の変曲点は、ITO膜の結晶化が生
じたことを示している。Therefore, IT formed with each target applied voltage shown in the figure
The acid resistance inflection point in the O film indicates that crystallization of the ITO film has occurred.
第1図において示すようにスパッタリング時のターゲッ
ト印加電圧が高くなると結晶質ITO膜が形成される基
板温度は低くなる。すなわちDCダイレクトスパッタリ
ング法の場合、ターゲツト印加電圧480V以上では、
有機高分子のように耐熱温度のそれほど高くない基板上
にも結晶質ITO層を形成できる。As shown in FIG. 1, as the voltage applied to the target during sputtering increases, the substrate temperature at which the crystalline ITO film is formed decreases. In other words, in the case of the DC direct sputtering method, when the target applied voltage is 480V or more,
A crystalline ITO layer can also be formed on a substrate that does not have a very high heat resistance temperature, such as an organic polymer.
次にインジウム−スズ合金ターゲットを用いたDCリア
クティブスパッタリング法の場合、スパッタリング時の
真空度が5x10’Torr以下であり、ターゲット印
加電圧が380V以上である。更に好ましくは、真空度
が1 X 10−3To rr〜5×1O−3Torr
であり、ターゲット印710電圧か380V〜500V
の範囲である。Next, in the case of the DC reactive sputtering method using an indium-tin alloy target, the degree of vacuum during sputtering is 5x10'Torr or less, and the target applied voltage is 380V or more. More preferably, the degree of vacuum is 1 x 10-3Torr to 5 x 1O-3Torr.
and the target mark 710 voltage is 380V to 500V
is within the range of
このとき、真空度がlX10−3Torr以下ではスパ
ッタリングのプラズマ安定性が悪くなる。また、真空度
が5X10’Torr以上ではターゲット印加電圧を高
くすることが難しくなるために好ましくない。At this time, if the degree of vacuum is less than 1.times.10@-3 Torr, the plasma stability of sputtering deteriorates. Further, if the degree of vacuum is 5×10' Torr or more, it is not preferable because it becomes difficult to increase the voltage applied to the target.
更に、ターゲット印加電圧が380V以下では本発明の
結晶質ITO膜を得る効果が現れない。Furthermore, if the voltage applied to the target is 380 V or less, the effect of obtaining the crystalline ITO film of the present invention is not exhibited.
また、500V以上ではスパッタリングのプラズマ安定
性が著しく悪くなるため好ましくない。Moreover, if it is 500 V or more, the plasma stability of sputtering will be significantly deteriorated, which is not preferable.
また、以上の方式と製膜速度の速いマグネトロンスパッ
タリング方式と複合させると生産性がざらに向上する。Further, when the above method is combined with a magnetron sputtering method which has a high film forming speed, productivity is greatly improved.
本発明におけるスパッタリング雰囲気ガスとしては、ア
ルゴンガス等の不活性ガスと酸素ガスとの混合気体か望
ましい。これは、製膜するITO膜の透明性および導電
性を最もすぐれた状態にするために、そのパラメーター
であるITO膜の酸化状態をより正確に制御するためで
おる。このとき酸素カスの分圧は50%以下であること
が好ま−9=
しい。更に、水素ガス、窒素ガス、炭素ガス等の不純物
ガスが、製膜するITO膜の透明性、導電性を損わない
程度に混入されてもかまわない。The sputtering atmosphere gas in the present invention is preferably a mixed gas of an inert gas such as argon gas and oxygen gas. This is to more accurately control the oxidation state of the ITO film, which is a parameter, in order to obtain the best transparency and conductivity of the ITO film to be formed. At this time, the partial pressure of the oxygen scum is preferably -9= 50% or less. Furthermore, impurity gases such as hydrogen gas, nitrogen gas, and carbon gas may be mixed in to an extent that does not impair the transparency and conductivity of the ITO film to be formed.
本発明におけるスパッタリング時の基板温度は、有機高
分子基板の場合、基板が変形を起こさない温度(200
’C程度以下)に設定する必要があり、130’C〜1
80’Cの範囲が好ましい。しかしながら、ターゲット
印加電圧および製膜時間により、基板温度上昇が顕著に
生じる場合には、有機高分子基板温度が上記温度を越え
ないように基板設定温度の調節または基板の冷却を行な
う必要がある。In the case of an organic polymer substrate, the substrate temperature during sputtering in the present invention is a temperature at which the substrate does not deform (200°C).
It is necessary to set it to 130'C~1
A range of 80'C is preferred. However, if the substrate temperature rises significantly due to target applied voltage and film forming time, it is necessary to adjust the substrate temperature setting or cool the substrate so that the organic polymer substrate temperature does not exceed the above temperature.
また、ガラス基板の場合には上述の有機高分子基板以上
の基板温度であればよい。Further, in the case of a glass substrate, the substrate temperature may be higher than the above-mentioned organic polymer substrate.
本発明に用いられる導電層は、少なくとも酸化インジウ
ムと酸化スズからなる層であり、特に好ましくは酸化イ
ンジウム/酸化スズの重量比が80/20〜99/1で
あることが好ましい。また、水素、フッ素などその伯の
不純物が導電層の透明性、導電性を損わない程度に含ま
れる層であってもよい。The conductive layer used in the present invention is a layer consisting of at least indium oxide and tin oxide, and particularly preferably the weight ratio of indium oxide/tin oxide is 80/20 to 99/1. Further, the layer may contain impurities such as hydrogen and fluorine to an extent that does not impair the transparency and conductivity of the conductive layer.
本発明に用いられる透明導電層の厚みは30人〜150
0人が好ましく50人〜1000人であれば更に好まし
い。更に最も好ましい厚みは100人〜400人である
。このとき、30Å以下であれば十分な導電性が得られ
ず、がっ、導電層の耐久性が劣るために好ましくない。The thickness of the transparent conductive layer used in the present invention is 30 to 150 mm.
It is preferably 0 people, and more preferably 50 to 1000 people. Furthermore, the most preferable thickness is 100 to 400 people. At this time, if it is less than 30 Å, sufficient conductivity cannot be obtained and the durability of the conductive layer will be poor, which is not preferable.
又、1500Å以上においては導電層の透明性が悪くな
るために好ましくない。Further, if the thickness is 1500 Å or more, the transparency of the conductive layer deteriorates, which is not preferable.
本発明に使用される基板には、ガラス及び有機高分子な
ど透明性を有する材料が用いられる。ガラス基板として
は例えばソーダ石灰ガラス、鉛ガラス、硼珪酸ガラス、
高珪酸ガラス、無アルカリカラス等がめげられる。中で
も硼珪酸ガラス、無アルカリカラスは最も適している。For the substrate used in the present invention, transparent materials such as glass and organic polymers are used. Examples of glass substrates include soda lime glass, lead glass, borosilicate glass,
High silicate glass, alkali-free glass, etc. are rejected. Among them, borosilicate glass and alkali-free glass are most suitable.
また、有機高分子基板としては例えば、ポリエチレンテ
レフタレート、ポリエチレンナフタレート等のポリエス
テル系の樹脂フィルム、AB、ABS等のスチレン系樹
脂フィルム、ポリエチレン、ポリプロピレン等のポリオ
レフィン系の樹脂フィルム、フッ素系樹脂フィルム、そ
の他、ポリエーテルスルホン、ポリフェニレンオキサイ
ド、ポリエーテルエーテルケトン等々の可塑性樹脂フィ
ルム、更にエポキシ樹脂、ジアリールフタレート樹脂、
ジエチレングリコール、ビス−アリルカーボネート樹脂
、ウレタン系樹脂、ケイ素樹脂、不飽和ポリエステル樹
脂、フェノール系樹脂、尿素系樹脂等の熱硬化性樹脂フ
ィルム及びポリビニルアルコール、ポリアクリルニトリ
ル、ポリウレタン、芳香族ポリアミド、ポリイミド樹脂
等の溶剤可溶型樹脂のキャスティングフィルム等があげ
られる。中でもポリエチレンテレフタレートフィルムは
光学性耐久性に優れ最も適している。Examples of organic polymer substrates include polyester resin films such as polyethylene terephthalate and polyethylene naphthalate, styrene resin films such as AB and ABS, polyolefin resin films such as polyethylene and polypropylene, fluorine resin films, In addition, plastic resin films such as polyether sulfone, polyphenylene oxide, polyether ether ketone, etc., as well as epoxy resins, diaryl phthalate resins,
Thermosetting resin films such as diethylene glycol, bis-allyl carbonate resin, urethane resin, silicon resin, unsaturated polyester resin, phenol resin, urea resin, etc., and polyvinyl alcohol, polyacrylonitrile, polyurethane, aromatic polyamide, polyimide resin Examples include casting films of solvent-soluble resins such as. Among them, polyethylene terephthalate film has excellent optical durability and is the most suitable.
又、使用される有機高分子フィルムは、連続生産に可能
である厚みであればよく、その厚みは12μm〜500
μmが好ましく、50μm〜200μmであればざらに
好ましい。Further, the organic polymer film used may have a thickness that allows continuous production, and the thickness is 12 μm to 500 μm.
The thickness is preferably 50 μm to 200 μm, and more preferably 50 μm to 200 μm.
又、以上に挙げた基板の片面又は両面に導電層との密着
性を向上させるための中間層を設けてもよく、更に、す
べり性改良のための処理層を設けてもよい。Furthermore, an intermediate layer may be provided on one or both surfaces of the above-mentioned substrate to improve adhesion to the conductive layer, and a treated layer may be further provided to improve slipperiness.
(発明の効果)
本発明によりスパッタリング法を用いて従来のアモルフ
ァスITO膜より極めて優れた透明性及び耐久性を有す
る結晶質透明導電性積層体の製造が可能となった。しか
も、本発明はスパッタリング法で直接、結晶質導電層を
形成するので有機高分子フィルム基板を用いた場合、品
質の均一な広巾の結晶質透明導電性フィルムを連続的に
生産することができ、非常に生産性の良いプロセスが得
られた。(Effects of the Invention) The present invention has made it possible to produce a crystalline transparent conductive laminate using a sputtering method that has transparency and durability that are extremely superior to conventional amorphous ITO films. Moreover, since the present invention directly forms a crystalline conductive layer using a sputtering method, when an organic polymer film substrate is used, a wide crystalline transparent conductive film of uniform quality can be continuously produced. A very productive process was obtained.
(実施例)
実施例1
2軸延伸ポリエステルフイルム(厚み125μm〉をマ
グネトロン高速スパッタ装置に装着した後1X10−6
丁orrまで減圧を行なった。その後アルゴンガス(純
度99.9999%以上)と酸素ガス(純度99.99
%以上)とを混合させて、真空圧410−3Torrま
で導入し、In2O3/ S n 02 = 90/
10インジウム−スズ酸化物ターゲットを用いDCマグ
ネトロンダイレクト= 13−
スパッタリングを行なった。スパッタリング条件として
、ターゲット印加電圧を530V、基板温度を170℃
に設定し、更に導電膜特性が最も低抵抗高透明になるよ
うにアルゴンガス/酸素ガス分圧を定め、第1表に示す
ような特性を有するサンプルを得た。(Example) Example 1 After mounting a biaxially stretched polyester film (thickness 125 μm) on a magnetron high speed sputtering device,
The pressure was reduced to 100 ml. After that, argon gas (purity 99.9999% or more) and oxygen gas (purity 99.99%)
% or more) and introduced to a vacuum pressure of 410-3 Torr, In2O3/S n 02 = 90/
DC magnetron direct sputtering was performed using a 10 indium-tin oxide target. The sputtering conditions are: target applied voltage of 530V, substrate temperature of 170°C.
Furthermore, the partial pressure of argon gas/oxygen gas was determined so that the conductive film properties would be the lowest in resistance, highest in transparency, and samples having the characteristics shown in Table 1 were obtained.
得られたサンプルの結晶性をX線回折により調べたとこ
ろ結晶質であり、透明性にも優れ、ポリエステルフィル
ム基板の変形もなく外観的にも良好であった。またその
ITO膜の屈曲性(2mmφ鉄棒による導電面外曲げ1
0秒前後の抵抗上昇)は5倍程度であり、非晶質膜に比
べて非常に優れていた。When the crystallinity of the obtained sample was examined by X-ray diffraction, it was found to be crystalline, excellent in transparency, and good in appearance with no deformation of the polyester film substrate. In addition, the flexibility of the ITO film (bending out of the conductive plane with a 2 mmφ iron rod 1
The resistance increase (resistance increase around 0 seconds) was about 5 times that of the amorphous film, which was extremely superior to that of the amorphous film.
比較例1
実施例1と同様の手順においてDCマグネトロンダイレ
クトスパッタリングを行なった。Comparative Example 1 DC magnetron direct sputtering was performed in the same procedure as in Example 1.
スパッタリング条件として、ターゲット印加電圧を35
0V基板温度を170’Cに設定し、更に導電膜特性が
最も低抵抗高透明になるようにアルゴンガス/酸素ガス
分圧を定め、第1表に示すような特性を有するサンプル
を得た。As a sputtering condition, the target applied voltage was set to 35
The 0V substrate temperature was set at 170'C, and the argon gas/oxygen gas partial pressure was determined so that the conductive film properties were the lowest in resistance, highest in transparency, and samples having the characteristics shown in Table 1 were obtained.
得られたサンプルの結晶性をX線回折により調べたとこ
ろ非晶質であり、そのITO膜の屈曲性は200倍程度
であり、耐久性の点で問題があった。When the crystallinity of the obtained sample was examined by X-ray diffraction, it was found to be amorphous, and the flexibility of the ITO film was about 200 times higher, which caused problems in terms of durability.
(次頁へ続く)
15 一
実施例2
2軸延伸ポリエステルフイルム(厚み125μm)を連
続巻き取り式の反応DC高速スパッタリング装置に装着
した後、フィルムからの脱ガスを除去するために、真空
槽内で巻き返しを行い、フィルム全ロール範囲内で2.
0X10−5Torrまで減圧を行なった。その後アル
ゴンガス(純度99゜9999%以上)と酸素ガス(純
度99.99%以上〉との混合物を真空圧3x10””
’Torrまで導入し、I n/5n=90/10のイ
ンジウム−スズ合金ターゲツト板を用い、DCマグネト
ロンリアクティブスパッタリングを行なった。(continued on next page) 15 Example 2 After a biaxially stretched polyester film (thickness: 125 μm) was installed in a continuous winding type reactive DC high-speed sputtering device, it was placed in a vacuum chamber to remove outgassing from the film. Rewind the film with 2. within the entire film roll range.
The pressure was reduced to 0x10-5 Torr. After that, a mixture of argon gas (purity of 99°9999% or more) and oxygen gas (purity of 99.99% or more) is pumped under a vacuum pressure of 3 x 10"
DC magnetron reactive sputtering was performed using an indium-tin alloy target plate with In/5n=90/10.
スパッタリング条件として、ターゲット印加電圧を44
0V、基板温度を140’Cに設定し、更に導電膜特性
が最も低抵抗高透明になるようにアルゴンガス/酸素ガ
ス分圧を定め、第2表に示すような特性を有するサンプ
ルを得た。得られたサンプルの結晶性をX線回折により
調べたところ結晶質であり、透明性にも優れ、ポリエス
テルフィルム基板の変形もなく外観的にも良好であった
。またそのITO膜の屈曲性は4倍程度であり、非晶質
膜に比べて非常に優れていた。As sputtering conditions, the target applied voltage was set to 44
By setting the substrate temperature to 0V and 140'C, and determining the partial pressure of argon gas/oxygen gas so that the conductive film had the lowest resistance and highest transparency, samples having the characteristics shown in Table 2 were obtained. . When the crystallinity of the obtained sample was examined by X-ray diffraction, it was found to be crystalline, excellent in transparency, and good in appearance with no deformation of the polyester film substrate. Moreover, the flexibility of the ITO film was about four times that of the amorphous film, and was extremely superior to that of the amorphous film.
比較例2
実施例2と同様の手順においてDCマグネトロンリアク
ティブスパッタリングを行なった。Comparative Example 2 DC magnetron reactive sputtering was performed in the same procedure as in Example 2.
スパッタリング条件として、ターゲット印加電圧を34
0V、基板温度を140’Cに設定し、更に導電膜特性
が最も低抵抗高透明になるようにアルゴンガス/M素ガ
ス分圧を定め、第2表に示すような特性を有するサンプ
ルを得た。As sputtering conditions, the target applied voltage was set to 34
The temperature of the substrate was set to 0V and 140'C, and the partial pressure of argon gas/M elementary gas was determined so that the conductive film had the lowest resistance, highest transparency, and a sample having the characteristics shown in Table 2 was obtained. Ta.
得られたサンプルの結晶性をX線回折により調べたとこ
ろ非晶質であり、そのITO膜の屈曲性は200倍程度
であり、耐久性の点で問題があった。When the crystallinity of the obtained sample was examined by X-ray diffraction, it was found to be amorphous, and the flexibility of the ITO film was about 200 times higher, which caused problems in terms of durability.
(次頁へ続く)(continued on next page)
第1図に実施例1、比較例1で実施したDCマグネトロ
ンダイレクトスパッタリング法におけるターゲット印加
電圧と結晶化が生じる基板温度との関係を示す。
第2図は実施例2のX線回折パターンを示す。
第3図は比較例2のX線回折パターンを示す。FIG. 1 shows the relationship between target applied voltage and substrate temperature at which crystallization occurs in the DC magnetron direct sputtering method carried out in Example 1 and Comparative Example 1. FIG. 2 shows the X-ray diffraction pattern of Example 2. FIG. 3 shows the X-ray diffraction pattern of Comparative Example 2.
Claims (1)
る結晶質透明導電層を基板上に直流スパッタリング法に
より積層させる製造法において、スパッタリング条件が
真空度が5×10^−^3Torr以下で印加電圧38
0V以上 であることを特徴とする結晶質透明導電性積層体の製造
方法。[Claims] In a manufacturing method in which a crystalline transparent conductive layer made of a mixture of at least indium oxide and tin oxide is laminated on a substrate by direct current sputtering, the sputtering conditions are such that the degree of vacuum is 5×10^-^3 Torr or less. The applied voltage is 38
A method for producing a crystalline transparent conductive laminate, characterized in that the voltage is 0V or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63010794A JPH01188660A (en) | 1988-01-22 | 1988-01-22 | Manufacture of crystalline transparent electrical conductive laminated body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63010794A JPH01188660A (en) | 1988-01-22 | 1988-01-22 | Manufacture of crystalline transparent electrical conductive laminated body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01188660A true JPH01188660A (en) | 1989-07-27 |
Family
ID=11760252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63010794A Pending JPH01188660A (en) | 1988-01-22 | 1988-01-22 | Manufacture of crystalline transparent electrical conductive laminated body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01188660A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103311375A (en) * | 2013-06-20 | 2013-09-18 | 哈尔滨工业大学 | Method of producing crystalline indium oxide transparent conductive film at room temperature |
-
1988
- 1988-01-22 JP JP63010794A patent/JPH01188660A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103311375A (en) * | 2013-06-20 | 2013-09-18 | 哈尔滨工业大学 | Method of producing crystalline indium oxide transparent conductive film at room temperature |
CN103311375B (en) * | 2013-06-20 | 2015-09-09 | 哈尔滨工业大学 | The method of crystalline state indium oxide transparent conductive film is prepared under a kind of room temperature |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100669064B1 (en) | Transparent conductive laminate, its manufacturing method, and display comprising transparent conductive laminate | |
EP1944386B1 (en) | Transparent conductive film and method for producing the same | |
EP0781076A2 (en) | Transparent conductive laminate and electroluminescence element | |
WO2014112535A1 (en) | Transparent conductive film and production method therefor | |
KR100723112B1 (en) | Process for producing transparent conductive laminate | |
JPWO2004065656A1 (en) | ITO thin film, film forming method thereof, transparent conductive film, and touch panel | |
JPH01188660A (en) | Manufacture of crystalline transparent electrical conductive laminated body | |
JPH01100260A (en) | Manufacture of laminated body of transparent conductive film | |
JPH01137520A (en) | Manufacture of crystalline transparent conductive laminate | |
JP2000192237A (en) | Production of high transparent gas barrier film | |
EP1825995A1 (en) | Gas barrier transparent resin substrate, method for manufacture thereof, and flexible display element using gas barrier transparent resin substrate | |
JPH11302017A (en) | Transparent electrically conductive film | |
JP2009193674A (en) | Method for manufacturing transparent conductive film, and transparent conductive film manufactured according to it | |
JPS58206008A (en) | Method of forming transparent conductive laminate | |
JP4410846B2 (en) | Laminate having SiO2 film and method for producing transparent conductive laminate | |
JPH0468315A (en) | Transparent conductive film and production thereof | |
JPS63906A (en) | Transparent conducting film | |
JP2001030409A (en) | Production of transparent conductive laminate | |
JPH09234816A (en) | Transparent conductive laminate | |
JP2000045063A (en) | Film with transparent conductive thin film and its production | |
JP2000243160A (en) | Manufacture of transparent conductive layered body | |
JPH10119170A (en) | Flexible laminated film | |
JPS6238432B2 (en) | ||
JP2003338219A (en) | Transparent conductive laminate containing zinc oxide | |
JP2001026867A (en) | Production of transparent conductive laminate |