JPH0118858B2 - - Google Patents

Info

Publication number
JPH0118858B2
JPH0118858B2 JP56190684A JP19068481A JPH0118858B2 JP H0118858 B2 JPH0118858 B2 JP H0118858B2 JP 56190684 A JP56190684 A JP 56190684A JP 19068481 A JP19068481 A JP 19068481A JP H0118858 B2 JPH0118858 B2 JP H0118858B2
Authority
JP
Japan
Prior art keywords
urethane foam
foam
molded product
heat resistance
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56190684A
Other languages
Japanese (ja)
Other versions
JPS5892542A (en
Inventor
Shuya Tsuji
Kazuhiko Kunishima
Minoru Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP56190684A priority Critical patent/JPS5892542A/en
Publication of JPS5892542A publication Critical patent/JPS5892542A/en
Publication of JPH0118858B2 publication Critical patent/JPH0118858B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • B29C44/5618Impregnating foam articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/06Unsaturated polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0015Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はウレタンフオームの表面を繊維強化熱
硬化性樹脂成形材料((以下、FRPと称す)で被
覆して熱雰囲気下で使用しても剥離やふくれ発生
のない耐熱性に優れる成形物の製造法に関するも
のである。 従来より芯材がウレタンフオームでその表面材
がFRP金属薄板等からなる複合成形物が50℃以
上の高温雰囲気状況下にさらされる機会の多い自
動車等の天井パネル及び側壁パネル、貯湯槽ある
いは温蔵庫等のパネル状成形物、建築用の断面パ
ネル等に使用されているが、かかる成形物は温度
上昇によりウレタンフオーム中に含まれるクロロ
フルオロ炭化水素や炭酸ガス等のガス成分の揮散
又は膨張現象により接着強層の弱い個所、例えば
表面材/芯材の境界面あるいは注入発泡成形品の
場合に於けるスキン層とコア層との境界面等で剥
離やふくれ現象が発生するという重大な欠陥があ
る。これは特に80℃以上の温度雰囲気下になつた
場合に著しく助長される。 この改良法として、接着剤あるいはプライマー
を塗布して表面材と芯材の接着性能を向上させる
方法あるいはスキン層付きポリウレタンフオーム
成形品の場合には表面を粗くして接着性を向上さ
せる方法等が提案されている。しかし、これらの
方法では剥離やふくれ発生を根本的に解決するに
は至つていない。 発明者らは上記の問題点を解決するために鋭意
研究を重ねた結果、ウレタンフオーム単独のもの
を加熱、特に80℃以上で加熱すると含有ガス成分
の揮散量が極めて多くなつて好ましいものの、フ
オームの変形が著しく大きくなるという欠点をも
克服するためにウレタンフオームの被覆層である
FRP層の表面からウレタンフオームに達する貫
通孔を設けて約50〜140℃の範囲で加熱乾燥させ
た後、樹脂もしくはパテ等の耐熱性材料で封鎖し
たところ熱雰囲気下で使用しても剥離やふくれの
ない成形物が得られることを見い出し、本発明に
至つた。 即ち、本発明はウレタンフオームの表面を
FRPを被覆した後FRPを硬化せしめ、次いで該
成形材料層よりウレタンフオームに達する貫通孔
を設けて、加熱乾燥させた後、該孔を耐熱性材料
で封鎖することを特徴とする耐熱性に優れる成形
物の製造法を提供する。 本発明に用いるウレタンフオームは公知で一般
的に用いられる硬質のものであればよく、通常ポ
リオール、ポリイソシアネートと水またはクロロ
フルオロ炭化水素等の発泡剤、他の添加剤成分と
して触媒、架橋剤、気泡調整剤、安定剤等より得
られるものである。ウレタンフオームの成形方法
は通常用いられる成形法であればよい。又、フオ
ームの状態は表皮層付きの注入発泡体でも、表皮
層のない発泡体のいずれでもよい。尚、かかるウ
レタンフオームの形状に用途に応じて種々変える
ことができ、例えば板状、自動車のドア形状及び
天井形状等が挙げられる。 本発明に用いられるFRPは例えば、不飽和ポ
リエステル樹脂、ビニルエステル樹脂、フエノー
ル樹脂等の熱硬化性樹脂を含有しているものであ
る。また、かかる成形材料に使用される繊維強化
剤は、ガラス繊維、炭素繊維が好ましく、他の合
成繊維、金属繊維も場合によつて使用出来る。
尚、該成形材料は必要に応じて、硬化剤、促進
剤、充填剤、顔料、離型剤、その他の添加剤をそ
の種類を問わず公知のものを併用することが出来
る。 本発明に用いられるFRPをウレタンフオーム
に被覆する方法はFRPをウレタンフオームの表
面にハンドレーアツプ法、スプレーアツプ法、レ
ジンインジエクシヨン法、プレス法、連続成形法
等の公知の成形法により行なうことが出来る。
又、本発明ではウレタンフオームの表面が被覆さ
れるがウレタンフオームが板状である場合上、下
面以外の側面を鉄板、鋼板、アルミ板等の金属板
あるいは樹脂板等その種類を問わず公知のもので
被覆しても良い。尚、ウレタンフオームの形状に
もよるが、FRPによるウレタンフオームの被覆
面積は通常77%以上、好ましくは87%以上であ
る。 上記の如くして製造されたサンドイツチ成形物
の開孔加工の方法は一般に行なわれている方法で
あればよく、例えばハンドドリル、リユーダー、
ボール盤等にキリをセツトし開孔する。かかる孔
の径は特に限定しないが、封鎖時の耐熱性材料に
よる開孔加工および成形物の外観等を考慮すると
小径は小さい程良いが、ガスの揮散効率、強度の
低下等を考慮して3〜10mm程度が好ましい。 本発明では開孔加工後にガス成分の揮散のため
の加熱乾燥を行なうが、その際の温度条件は通
常、40〜150℃の範囲である。その温度が低い場
合は揮散効率が悪いため長時間を要し、また高い
場合はウレタンフオームの分解の問題があるため
好ましくは50〜140℃の温度範囲である。 次いで、成形物は加熱乾燥後閉孔加工が行なわ
れるが、それを行う時期は加熱乾燥後出来るだけ
早い方がよく、閉孔加工が遅くなる場合はセロハ
ンテープ等で孔の開口部をシールしておくのがよ
い。閉孔工程で封入される耐熱性材料は、一般に
用いられているものでよく、例えば不飽和ポリエ
ステル樹脂、エポキシ樹脂等の熱硬化性樹脂であ
り、必要に応じて充填剤、硬化剤、顔料、各種添
加剤等を混入して使用することが可能である。か
かる材料としては常温硬化型のものが好ましい。
尚、閉孔加工は一般に行なわれている方法、例え
ばハンド作業、コーキング・ガン、あるいは開孔
部が小さい場合には注射器等で液体樹脂を注入す
ることにより行なわれる。 この様にして得られたサンドイツチ成形物は熱
雰囲気下で使用しても、剥離やふくれ発生のない
ものであり、自動車等の天井パネル及び側壁パネ
ル、貯湯槽あるいは温蔵庫等のパネル状成形用、
建築用の断面パネル等に有用である。 以下、実施例及び比較例を挙げて本発明を詳細
に説明する。尚、例中の部及び%は重量基準であ
る。 実施例 1 500×500×200(mm)の木型にてHiproxRQ−
350(ポリオール:大日本インキ化学社製)100部、
HiproxSP−299(粗製MDI:大日本インキ化学社
製)144部、フレオン−11(発泡剤:ダイキン社
製)10部の配合でウレタンフオームパンを製造
し、1週間常温で放置後、カツターにて厚さ50
mm、巾100mm、長さ200mmの1000cm3のスラブ発泡体
試験片を切出した。このフオームの基本的な物性
はフオーム密度0.103、圧縮伏点強度10.7Kg/cm2
(23℃、発泡方向に対して平行)であつた。この
フオーム成形物を不飽和ポリエステル樹脂(ポリ
ライトFH−123:大日本インキ化学社製)100
部、55%メチルエチルケトンパ−オキサイド
(MEKPO)1.2部を添加したものを450g/m2
チヨツプドストランドガラスマツト(日東紡績社
製)にガラス含量30%になるように含浸し、その
3枚をハンドレーアツプにてそれぞれ上、下面及
び側面に積層加工し、常温で48時間放置後、直径
5mmの貫通孔を中央に1個所あけて120℃で2時
間加熱乾燥した。乾燥冷却後ポリライトFH−
123 100部、タルク50部及びMEKPO1.5部を混合
してパテを作り、それで開孔部を密封した。得ら
れた成形物を90℃/15時間の耐熱性試験を実施し
た。その結果は表−1に記載した様に良好であつ
た。 比較例 1 実施例−1に於ける開孔しない成形物(板)に
相当するものを得、その耐熱性試験を行なつた。
その結果は表−1にしめす様に全面にふくれが生
じた。 実施例 2 加熱乾燥条件を温度80℃、乾燥時間5時間に変
える以外は実施例−1と同様にして成形物を得
た。得られた成形物の耐熱性試験の結果を表−1
に示す。 比較例 2 実施例−2に於ける開孔しない成形物に相当す
るものを得、その耐熱性試験を行なつた。その結
果は表−1に示す。 実施例3及び4、比較例3 表−1に示すように、ウレタンフオームの形状
若しくは加熱乾燥条件を変える以外は実施例−1
と同様にして成形物を得た。 又、比較のために上記の成形物を得る際に開孔
しない成形物を得た。これらの耐熱性試験の結果
は表−1に示す。 実施例 5 フレホン−11の添加量を22部に代える以外実施
例−1と同様にしてウレタンフオームを製造し
た。このフオームの基本的な物性はフオーム密度
0.05g/m3、圧縮降伏点強度4.1Kg/cm2であつた。
かかるフオームを用い、以下実施例−1と同様に
して成形物を得た。その試験結果は表−2に示
す。 比較例 4 実施例−5に於ける開孔しない成形物に相当す
るものを得、その耐熱性試験を行なつた。その結
果は表−2に示す。 実施例 6 乾燥時間を5時間に変える以外は実施例−5と
同様にして成形物を得た。その耐熱性試験の結果
は表−2に示す。 実施例 7 ウレタンフオームの形状及び貫通孔の直径を変
える以外は実施例−5と同様にして成形物を得
た。その耐熱性試験の結果は表−2に示す。 実施例 8 実施例−1と同様にして厚さ3cm、巾20cm、長
さ20cmの形状のウレタンフオームを作成し、この
フオームを圧縮成形用金型中に入れ、その上、下
及び側壁面に実施例−1で用いたものと同じ不飽
和ポリエステル樹脂コンパウンドが含浸した450
g/m2のコンテイニアスガラスマツト(旭フアイ
バー社製)を各2枚(ガラス含量30%)づつ配置
し、圧力10Kg/cm2、温度50℃、時間10分で圧縮成
形した。尚、このときの樹脂コンパウンドはポリ
ライトPM−141(不飽和ポリエステル樹脂:大日
本インキ化学社製)100部、重量炭酸カルシウム
50部、55%MEKPO1.0部及び6%ナフテン酸コ
バルト0.6部からなるものを使用した。以下、実
施例−1と同様の方法で成形物を得た。その結果
は表−2に示す。 比較例 3 実施例−3に於ける、開孔しない成形物に相当
するものを得、その耐熱性試験を行なつた。その
結果は表−2に示す。
The present invention involves the production of molded products with excellent heat resistance that do not peel or blister even when used in a hot atmosphere by coating the surface of urethane foam with a fiber-reinforced thermosetting resin molding material (hereinafter referred to as FRP). Conventionally, composite molded products whose core material is urethane foam and whose surface material is FRP thin metal sheets, etc., are often exposed to high-temperature atmospheres of 50°C or higher, such as ceiling panels and side wall panels of automobiles, etc. It is used for panel-shaped molded products such as hot water storage tanks and hot storages, and cross-sectional panels for construction, but such molded products release gases such as chlorofluoro hydrocarbons and carbon dioxide contained in the urethane foam due to temperature rise. Due to volatilization or expansion of components, peeling and blistering phenomena occur at locations where the adhesive strength layer is weak, such as the interface between the surface material/core material or the interface between the skin layer and core layer in the case of injection foam molded products. This is particularly exacerbated in environments with temperatures above 80°C.As an improvement method, adhesives or primers can be applied to improve the adhesion performance between the surface material and the core material. In the case of polyurethane foam molded products with a skin layer, methods have been proposed to improve adhesion by roughening the surface. However, these methods do not fundamentally solve the problems of peeling and blistering. As a result of intensive research to solve the above problems, the inventors found that when urethane foam alone is heated, especially at temperatures above 80°C, the amount of gas components contained in it volatilizes is extremely large. Although it is preferable, a coating layer of urethane foam is used to overcome the drawback that the deformation of the foam becomes significantly large.
After making a through hole reaching the urethane foam from the surface of the FRP layer and drying it by heating in the range of about 50 to 140 degrees Celsius, I sealed it with a heat resistant material such as resin or putty, and it did not peel off even when used in a hot atmosphere. It was discovered that a molded product without blisters can be obtained, leading to the present invention. That is, the present invention improves the surface of the urethane foam.
After coating the FRP, the FRP is cured, and then a through hole is provided that reaches the urethane foam from the molding material layer, and after drying by heating, the hole is sealed with a heat resistant material. Excellent heat resistance. A method for manufacturing a molded article is provided. The urethane foam used in the present invention may be any known and commonly used hard urethane foam, and usually contains a polyol, a polyisocyanate and a blowing agent such as water or a chlorofluorohydrocarbon, and other additive components such as a catalyst, a crosslinking agent, It is obtained from foam regulators, stabilizers, etc. The urethane foam may be formed by any commonly used forming method. Further, the foam may be either an injection foam with a skin layer or a foam without a skin layer. The shape of the urethane foam can be varied depending on the application, such as a plate shape, an automobile door shape, a ceiling shape, etc. The FRP used in the present invention contains, for example, a thermosetting resin such as an unsaturated polyester resin, a vinyl ester resin, or a phenolic resin. Further, the fiber reinforcing agent used in such a molding material is preferably glass fiber or carbon fiber, and other synthetic fibers or metal fibers may also be used depending on the case.
Incidentally, the molding material may contain any known additives such as curing agents, accelerators, fillers, pigments, mold release agents, and other additives, as required. The method for coating the urethane foam with FRP used in the present invention is to apply FRP onto the surface of the urethane foam by a known molding method such as a hand lay-up method, a spray-up method, a resin injection method, a press method, or a continuous molding method. I can do it.
In addition, in the present invention, the surface of the urethane foam is coated, but when the urethane foam is plate-shaped, the sides other than the top and bottom surfaces are coated with a metal plate such as an iron plate, a steel plate, an aluminum plate, or a resin plate, regardless of its type. It may be covered with something. Although it depends on the shape of the urethane foam, the coverage area of the urethane foam with FRP is usually 77% or more, preferably 87% or more. The method for drilling holes in the sandwich molded product produced as described above may be any commonly used method, such as a hand drill, a repeater,
Set the drill on a drilling machine, etc. and drill the hole. The diameter of such holes is not particularly limited, but the smaller the diameter is, the better, taking into account the opening process using heat-resistant material during sealing and the appearance of the molded product, but in consideration of gas volatilization efficiency, reduction in strength, etc. ~10 mm is preferable. In the present invention, heating and drying is performed to volatilize gas components after hole-opening processing, and the temperature conditions at that time are usually in the range of 40 to 150°C. If the temperature is low, the volatilization efficiency is poor and a long time is required, and if the temperature is high, there is a problem of decomposition of the urethane foam, so the temperature range is preferably 50 to 140°C. Next, the molded product is heat-dried and hole-closed, but it is best to do this as soon as possible after heat-drying; if the hole-closed process is delayed, seal the hole opening with cellophane tape, etc. It's good to keep it. The heat-resistant material sealed in the pore-closing process may be any commonly used material, such as thermosetting resins such as unsaturated polyester resins and epoxy resins, and fillers, curing agents, pigments, etc. as necessary. It is possible to mix and use various additives and the like. As such a material, a room temperature curing type is preferable.
Incidentally, the hole-closing process is carried out by a commonly used method, for example, by hand work, by using a caulking gun, or, if the opening is small, by injecting liquid resin with a syringe or the like. The sandwich molded product obtained in this way does not peel or blister even when used in a hot atmosphere, and can be used for panel-shaped molding of ceiling panels and side wall panels of automobiles, hot water tanks, hot storage cabinets, etc. for,
Useful for cross-sectional architectural panels, etc. Hereinafter, the present invention will be explained in detail by giving Examples and Comparative Examples. Note that parts and percentages in the examples are based on weight. Example 1 HiproxRQ- with a wooden mold of 500 x 500 x 200 (mm)
350 (polyol: manufactured by Dainippon Ink Chemical Co., Ltd.) 100 parts,
Urethane foam bread was manufactured by mixing 144 parts of HiproxSP-299 (crude MDI: manufactured by Dainippon Ink Chemical Co., Ltd.) and 10 parts of Freon-11 (foaming agent: manufactured by Daikin Company), and after being left at room temperature for one week, it was cut with a cutter. thickness 50
Slab foam specimens of 1000 cm 3 mm, width 100 mm, and length 200 mm were cut. The basic physical properties of this foam are a foam density of 0.103 and a compressive yield strength of 10.7 Kg/cm 2
(23°C, parallel to the foaming direction). This foam molded product is made of unsaturated polyester resin (Polylite FH-123: manufactured by Dainippon Ink Chemical Co., Ltd.)
1.2 parts of 55% methyl ethyl ketone peroxide (MEKPO) was impregnated into 450 g/m 2 chopped strand glass mat (manufactured by Nittobo Co., Ltd.) so that the glass content was 30%. The sheets were laminated on the top, bottom, and side surfaces using a Handley Up, and after being left at room temperature for 48 hours, one through hole with a diameter of 5 mm was made in the center, and the sheets were heated and dried at 120° C. for 2 hours. Polylite FH− after drying and cooling
123, 50 parts of talc, and 1.5 parts of MEKPO were mixed to form a putty and the opening was sealed with it. The obtained molded product was subjected to a heat resistance test at 90°C for 15 hours. The results were good as shown in Table 1. Comparative Example 1 A molded article (plate) without holes in Example 1 was obtained, and a heat resistance test was conducted on the molded article (plate).
As a result, as shown in Table 1, blistering occurred on the entire surface. Example 2 A molded article was obtained in the same manner as in Example 1, except that the heat drying conditions were changed to a temperature of 80° C. and a drying time of 5 hours. Table 1 shows the results of the heat resistance test of the obtained molded product.
Shown below. Comparative Example 2 A molded product corresponding to the non-perforated molded product in Example 2 was obtained, and a heat resistance test was conducted on the molded product. The results are shown in Table-1. Examples 3 and 4, Comparative Example 3 As shown in Table 1, Example 1 except that the shape of the urethane foam or the heat drying conditions were changed.
A molded product was obtained in the same manner as above. Also, for comparison, a molded product without holes was obtained when obtaining the above molded product. The results of these heat resistance tests are shown in Table-1. Example 5 Urethane foam was produced in the same manner as in Example 1 except that the amount of Frephone-11 added was changed to 22 parts. The basic physical property of this foam is the foam density
The yield strength was 0.05 g/m 3 and the compressive yield strength was 4.1 Kg/cm 2 .
Using this foam, a molded product was obtained in the same manner as in Example-1. The test results are shown in Table-2. Comparative Example 4 A molded product corresponding to the non-perforated molded product in Example 5 was obtained, and a heat resistance test was conducted on the molded product. The results are shown in Table-2. Example 6 A molded product was obtained in the same manner as in Example 5 except that the drying time was changed to 5 hours. The results of the heat resistance test are shown in Table-2. Example 7 A molded product was obtained in the same manner as in Example 5 except that the shape of the urethane foam and the diameter of the through hole were changed. The results of the heat resistance test are shown in Table-2. Example 8 A urethane foam with a thickness of 3 cm, a width of 20 cm, and a length of 20 cm was created in the same manner as in Example 1. This foam was placed in a compression mold, and the top, bottom, and side walls were coated. 450 impregnated with the same unsaturated polyester resin compound used in Example-1.
Two continuous glass mats (manufactured by Asahi Fiber Co., Ltd.) each having a weight of 10 kg/m 2 (glass content: 30%) were arranged and compression molded at a pressure of 10 kg/cm 2 , a temperature of 50° C., and a time of 10 minutes. The resin compound at this time was 100 parts of Polylite PM-141 (unsaturated polyester resin: manufactured by Dainippon Ink Chemical Co., Ltd.), weight calcium carbonate.
50 parts, 1.0 part of 55% MEKPO and 0.6 part of 6% cobalt naphthenate was used. Thereafter, molded products were obtained in the same manner as in Example-1. The results are shown in Table-2. Comparative Example 3 A molded article corresponding to the molded article without openings in Example 3 was obtained, and a heat resistance test was conducted on the molded article. The results are shown in Table-2.

【表】【table】

【表】 (注) 耐熱性試験の評価 ○:異状なし △:一部
剥離 ×:全面ふくれ
[Table] (Note) Evaluation of heat resistance test ○: No abnormality △: Partial peeling ×: Fully blistered

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ウレタンフオームの表面を繊維強化熱硬化性
樹脂成形材料を被覆した後、該成形材料を硬化せ
しめ、次いで該成形材料層よりウレタンフオーム
に達する貫通孔を設けて、加熱乾燥させた後、該
孔を耐熱性材料で封鎖することを特徴とする耐熱
性に優れる成形物の製造法。
1 After coating the surface of the urethane foam with a fiber-reinforced thermosetting resin molding material, the molding material is cured, and then through-holes are provided that reach the urethane foam from the molding material layer, and after drying by heating, the holes are A method for producing a molded article with excellent heat resistance, which is characterized by sealing the molded product with a heat-resistant material.
JP56190684A 1981-11-30 1981-11-30 Manufacture of molding excellent in heat resistance Granted JPS5892542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56190684A JPS5892542A (en) 1981-11-30 1981-11-30 Manufacture of molding excellent in heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56190684A JPS5892542A (en) 1981-11-30 1981-11-30 Manufacture of molding excellent in heat resistance

Publications (2)

Publication Number Publication Date
JPS5892542A JPS5892542A (en) 1983-06-01
JPH0118858B2 true JPH0118858B2 (en) 1989-04-07

Family

ID=16262151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56190684A Granted JPS5892542A (en) 1981-11-30 1981-11-30 Manufacture of molding excellent in heat resistance

Country Status (1)

Country Link
JP (1) JPS5892542A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201405289XA (en) * 2013-08-27 2015-03-30 Agency Science Tech & Res A composite foam laminate and its usage

Also Published As

Publication number Publication date
JPS5892542A (en) 1983-06-01

Similar Documents

Publication Publication Date Title
US5060291A (en) Foam composite and method of forming same
US11904557B2 (en) Composite products
US2855021A (en) Process for producing plates, sheels and shaped elements
EP2714359B1 (en) Composite materials and uses thereof
US20070110979A1 (en) Fiber-reinforced composite fire door
KR20100099302A (en) Molded parts made of carrier materials which contain foaming reactive resin
US10378273B2 (en) Soundproof door for use in reduction of sound transmitted from one side of the door to the other side
GB2464541A (en) Laminate of porous material, curable material and veneer
US3764428A (en) Method of foaming fibrous fleece
JPH0118858B2 (en)
AU2013248209B2 (en) Method of forming composite products by pressure, related products and apparatus
JP2000117870A (en) Fire-resistant member made of fiber-reinforced plastic and manufacture thereof
JPH07148851A (en) Production f foamed phenol frp molded product by microwave heating
RU2731930C1 (en) Method of manufacturing shaped articles with base from foamed polymers
KR20040092939A (en) A sandwitch-type panel applied phenol resin and the method thereof
JPH08197642A (en) Fire-resistant panel production device
JPS5820435A (en) Production of fibrous plate with surface part reinforced
AU2016208360B2 (en) Method of forming composite products by pressure, related products and apparatus
JPH0243033A (en) Building panel
JPH01168411A (en) Method for manufacturing resol-type phenol resin foaming charge building material
JPH035106A (en) Flame retardant heat insulation material and its manufacture
CN111662016A (en) Novel heat-insulating fireproof anticorrosive waterproof composite material
JPS6271636A (en) Heat-insulating composite building material and manufacture thereof
JP2000071409A (en) Decorative composite material and its manufacture
JPH04329122A (en) Manufacture of fiber-reinforced phenolic resin foam