JPH0118846B2 - - Google Patents

Info

Publication number
JPH0118846B2
JPH0118846B2 JP1896781A JP1896781A JPH0118846B2 JP H0118846 B2 JPH0118846 B2 JP H0118846B2 JP 1896781 A JP1896781 A JP 1896781A JP 1896781 A JP1896781 A JP 1896781A JP H0118846 B2 JPH0118846 B2 JP H0118846B2
Authority
JP
Japan
Prior art keywords
die
parison
bottle
plastic
die core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1896781A
Other languages
Japanese (ja)
Other versions
JPS57133031A (en
Inventor
Takeo Rotsuhongi
Jinichi Yazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP1896781A priority Critical patent/JPS57133031A/en
Publication of JPS57133031A publication Critical patent/JPS57133031A/en
Publication of JPH0118846B2 publication Critical patent/JPH0118846B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations performed on sheet material
    • B65D1/40Details of walls
    • B65D1/42Reinforcing or strengthening parts or members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/003Tubular articles having irregular or rough surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2501/00Containers having bodies formed in one piece
    • B65D2501/0009Bottles or similar containers with necks or like restricted apertures designed for pouring contents
    • B65D2501/0018Ribs
    • B65D2501/0045Solid ribs

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐熱変形性プラスチツクボトルの製
造法に関し、より詳細には内容物を熱間充填し或
いは内容物を充填後加熱殺菌した場合のボトルの
熱変形、特に内容積の減少を防止したプラスチツ
クボトルの製造法に関する。 近年食品等の嗜好が豊かになり、それに伴なつ
て容器に関しても多様化が進んでいる。プラスチ
ツクボトルの分野においても同様であり、特に食
品の殺菌時長期保存を目的とした耐レトルト用の
プラスチツクボトルの必要性が高まつている。 プラスチツクボトルは、プラスチツクを単層或
いは多層のパリソンの形に溶融押出し、押出され
たパリソンに閉じた状態で流体を吹込んでブロー
成形することにより形成され、ガラスビンに比し
て軽量性、耐衝撃性に優れているが、耐熱性に劣
ることが重大な欠点となつている。 一般に、ビン詰食品の殺菌温度は115乃至135℃
の範囲内であり、この殺菌時の温度或いは更に圧
力の影響でプラスチツクボトルの場合には容易に
変形が生じるのである。例えばポリプロピレン製
のプラスチツクボトルは、上述した温度で溶融乃
至は軟化を生じることはないが、上記温度の殺菌
処理では2乃至6%もの熱変形による内容積の減
少を生ずることがわかつた。 本発明者等は、ブロー成形によるプラスチツク
ボトルの胴部の外面を滑らかにし且つこれに内向
きのリブを、特定の寸法及び特定の間隔で設ける
ときには、殺菌の際の熱変形を顕著に抑制し得る
こと見出した。 即ち、本発明の目的は加熱殺菌における熱変
形、特に内容積の減少を顕著に抑制したプラスチ
ツクボトルの製造法を提供するにある。 本発明の他の目的は、上述した耐殺菌性ボトル
を押出ダイに若干の変更を加えることによつて容
易に製造し得る方法を提供するにある。 本発明によれば、プラスチツクをダイを通して
パリソンの形に溶融押出し、閉じたパリソンの内
部に流体を吹込んでブロー成形することから成る
プラスチツクボトルの製造方法において、テーパ
状先端部を備えたダイコアとダイシエルとを相対
的に軸方向に移動可能に且つダイリツプ巾が基準
位置での巾の1.3乃至4倍迄変化させ得るように
配置し、ダイコアとダイシエルとが基準位置にあ
る配置で胴壁部となるパリソン部分を押出すと共
にダイコアとダイシエルとを相対的に移動させて
内向きリブとなるパリソン部分を押出し、ダイコ
アとダイシエルとが基準位置にある時間を、ダイ
コアとダイシエルとが相対的移動位置にある時間
の1.5乃至5倍とし、かくして形成される内向き
リブを備えたパリソンをブロー成形することを特
徴とする殺菌時の耐熱変形性に優れたプラスチツ
クボトルの製造法が提供される。 本発明を、添付図面に基づき、以下に詳細に説
明する。 本発明によつて成形されるプラスチツクボトル
の1例を示す第1−A,1−B及び1−C図にお
いて、このボトル1は、プラスチツクパリソンの
ブロー成形により一体に形成された首部2、胴部
3及び底部4から成つている。このプラスチツク
の胴部3は外面5が滑らかであり且つ内向きに突
出したリブ6を備えていることが顕著な特徴であ
る。 この内向きへの突出リブ6は、第1−A図に示
すように軸方向に延びていても、第2図に示すよ
うに周方向に延びていても、或いは第3図に示す
ように斜方向に延びていてもよく、更に第4図に
示すように軸方向リブ6aと周方向リブ6bとが
組合された形状のものであつてよい。 本発明によつて成形されるボトルのリブ6は胴
壁7の厚みt2の1.3乃至4倍、最も好適には1.5乃
至3.0倍の厚みt1を有し且つこのリブ6を、リブ
巾w1の1.5乃至5倍、特に好適には2乃至4倍の
間隔w2をおいて設ける。 本発明によつて成形されたボトルは、そのリブ
構成によりプラスチツクボトルの熱変形量を著し
く小さくすることが可能となる。即ち、このプラ
スチツクボトルの胴部3においては、その外面5
がリブ6を設けた部分及び設けない部分を問わ
ず、滑らかな面一となつており、外形、即ち容器
の外観、容器への印刷やラベル貼付性の点で、最
も安定でしかも便利な形態となつている。のみな
らず、本発明によつて成形された胴壁内方に突出
させて設けたリブは、通常の補強リブとは全く異
質な作用効果、即ち加熱殺菌時における熱変形を
防止し、これに伴なつて内容積の減少を防ぐとい
う作用効果を示す。 例えば、後述する例に示す通り、胴壁の厚みが
全体にわたつて均一で、t1=t2=0.8mmの厚みを有
するポリプロピレン製ボトルは、135℃で10分間
のレトルト殺菌に賦した場合には、5.2%の体積
減小を生ずる。同様に胴壁の厚みが全体にわたつ
て均一でしかもその厚みを前者の2倍、即ちt1
t2=1.6mmの範囲としたポリプロピレン製ボトル
も同様の殺菌条件下で4.0%の体積減小を示す。
上述した事実は、プラスチツクボトルの熱変形
は、ボトルの機械的強度とは無関係にプラスチツ
クに固有のものとして生じることを物語つてい
る。 しかるに、本発明に従い通常の胴壁部を前者の
場合のt2=0.8mmとし、これに後者の場合と同じ
に厚みt1=1.6mmの内向きビードを形成したポリ
プロピレン製ボトルでは、同じレトルト殺菌条件
下でわずか0.2%程度の体積減少を示すにすぎな
いのであつて、この事実は本発明で規定した厚み
の分布構成が、熱変形の抑制に有効に作用するこ
とを明示している。この理由は、未だ十分に解明
されるに至つていないが、胴壁内面に形成された
内向きリブがボトル胴部にハリを持たせるように
作用すると共に、リブ間の薄い胴壁がむしろ熱変
形を緩和するように作用するためと思われる。 本発明によつて成形されるボトルのリブの厚み
t1が1.3t2よりも小さい場合には、顕著な熱変形防
止効果が得られず、一方4t2よりも大きい場合に
は、リブ以外の胴壁部において顕著な熱変形(熱
収縮)が生じるようになり、好ましくない。 本発明において、リブ巾w1とは、リブの内厚
みが1/2(t1−t2)以上の部分の巾、即ち半値巾 として定義される。即ち、本発明のプラスチツク
ボトルは、内向きリブを備えたプラスチツクパリ
ソンをブロー成形することにより製造するが、こ
のブロー成形に際して、リブの段肩部で厚みの緩
和が必らず生じるため、上述した定義が理に適つ
ている。 本発明においてリブを、5w1よりも大きい間隔
で設けるときには、やはり顕著な熱変形防止効果
を得ることが困難となり、一方1.5w1よりも狭い
間隔で設ける場合には、本発明で規定した厚みの
変化を設けることが困難となる。 従来、プラスチツクボトルの耐圧変形を防止す
るために、これにビードを形成させることが知ら
れている。しかしながら、このようなビードは他
の胴壁部と厚みが同じである点で、本発明で用い
る内向きビードとは明確に区別される。のみなら
ず、このようなビードは加熱殺菌中に容易に変形
してつぶれる傾向があり、本発明のような耐熱変
形性は到底期待し得ず、また外面への全面印刷が
困難となるという問題もある。 本発明において、ボトルを構成するプラスチツ
クとしては、熱成形可能でレトルト殺菌に耐え得
るプラスチツクであれば任意のものを使用でき、
例えば高密度ポリエチレン、アイソタクテイツク
ポリプロピレン、結晶性プロピレン−エチレン共
重合体、アイオノマー等のオレフイン系樹脂;ポ
リスチレン、スチレン−ブタジエンブロツク共重
合体、ニトリル−ブタジエン−スチレン系樹脂等
のスチレン系樹脂、;ポリメチルメタクリレート
等のアクリル樹脂;ハイニトリル樹脂;飽和ポリ
エステル樹脂;ポリアミド樹脂;ポリカーボネー
ト;エチレン−ビニルアルコール共重合体;塩化
ビニル樹脂或いはこれらのブレンド物を用いるこ
とができる。 これらのプラスチツクボトルは、単層構成であ
つても、2層、3層、5層等の多層構成であつて
もよい。ガスバリヤー性、従つて保存性の点で良
好な多層プラスチツクボトルは、オレフイン系樹
脂/エチレン−ビニルアルコール共重合体/オレ
フイン系樹脂の層構成を有するものであり、これ
ら各層の間には酸乃至は酸無水物変性オレフイン
樹脂のような接着剤層を介在させてもよい。 本発明において、ボトルの胴壁の厚みt2は、ボ
トルの内容積によつても相違するが、一般に0.2
乃至1.5mmの範囲にあるのが望ましく、またリブ
巾w1は5乃至20mmの範囲にあるのが望ましい。 ボトルの形状は、熱変形に対して耐性がありし
かも加熱殺菌を短時間で可能とするためには、第
1−A、2,3及び4図に示す通り偏平形状のも
のが有利であり、横方向の最大断面において、最
大寸法と最小寸法との比が20:1乃至2:1の範
囲にあるものが望ましい。 本発明によつて成形される。周方向或いは斜方
向の内向きリブを備えたボトルは、第5図、第5
−A図及び第5−B図に示すダイを用いて製造す
る。 即ち、本発明においてパリソン押出用に用いる
ダイ10はテーパ状先端部11を備えたダイコア
12とダイシエル13とから成り、この両者の間
にダイ通路14が形成され、その先端にダイリツ
プ15が位置している。ダイ通路14は押出機1
6の吐出口部17に接続されている。 このダイコア12とダイシエル13とは軸方向
に相対的に移動可能に設けられている。より詳細
には、ダイコア12とダイシエル13との間のダ
イリツプ15の巾は、第5−B図の基準位置にお
ける巾a2から、第5−A図に示す相対的位置のダ
イリツプ巾a1迄変化し得るようになつており、こ
こでこのリツプ巾a1は1.5a2から3a2の範囲となつ
ている。 ここでダイコア12とダイシエル13とを、第
5−B図に示す基準位置においてプラスチツクを
押出すと胴壁(通常の厚みの壁)7となるパリソ
ン部分が押出され、次いでダイコア12とダイシ
エル13とを、第5−A図に示す相対的移動位置
においてプラスチツクを押出すとリブ6となるパ
リソン部分が押出されることになる。 しかも、本発明によれば、ダイコア12とダイ
シエル13とが第5−B図の基準位置にある時間
t2をダイコア12とダイシエル13とが第5−A
図の相対的移動位置にある時間t1の1.5乃至5倍
とすることにより、リブ6となるパリソン部分と
胴壁7となるパリソン部分とを本発明で規定した
比率で形成させることが可能となる。 本発明において、ダイコア12とダイシエル1
3との相対的移動は、所定形状及び寸法の内向き
リブが形成されるように、予じめ設定されたプロ
グラムに従つて行わせることができ、その停止時
間、移動距離、及び移動速度は例えばコンピユー
ターにより全て制御させることができる。 かくして形成される内向きリブを備えたパリソ
ンは、それ自体公知の割型内に導入し、割型を閉
じて底部をピンチオフすると共に、内部に流体を
吹込んで、割型キヤビテイで規定される所定形状
のボトルに成形する。 本発明によつて成形される軸方向の内向きリブ
を備えたボトルは、第6図に示すダイを用いても
製造できる。 即ち、このダイ10は第5図と同様の構造を有
するが、ダイコア12の周囲16に溝17を備え
ている。この溝17は、ダイシエル13との間隔
b1が基準間隔b2の1.3乃至4倍となるような深さ
を有しており、且つ溝巾c1の1.5乃至5倍の間隔
c2をおいて配置されている。 かくして、この間隔を通してプラスチツクを押
出すと、溝17の部分からは軸方向の内向きリブ
となるパリソン部分が、また溝17以外の部分か
らは胴壁7となるパリソン部分が押出される。 ダイコア12を回転させながら、プラスチツク
を押出すと、斜め方向の内向きリブを備えたパリ
ソンが押出されることになる。パリソンの成形は
前述したのと同様に行われる。 更に、第6図はダイコア12とダイシエル13
とを、相対的に軸方向に移動可能とし、第5−A
図及び第5−B図の両位置でプラスチツクの押出
を行うと、軸方向及び周方向に内向きリブを備え
たボトルの製造が可能となる。 実施例 1 直径65mm、有効長さが1430mmのフルフライト型
スクリユーを内蔵し、かつ2流路に分岐したメル
トチヤンネルを備えた内外層用押出機、及び直径
が40mm有効長さが880mmのフルフライト型スクリ
ユーを内蔵しかち2流路に分岐したメルトチヤン
ネルを備えた接着層用押出機、及び直径が40mm、
有効長さが880mmのフルフライト型スクリユーを
内蔵した中間層用押出機とを多層5重ダイに連結
した押出装置を用いて、基準位置でのリツプ巾が
3.0mm、厚肉のリブ部に相当するリツプ巾が7.5mm
で、かつ基準位置での押出時間をリブ位置での押
出時間の3倍として、内外層をポリプロピレン
(MI.1.5、密度0.90)、接着層をマレイン酸変性ポ
リプロピレン及び中間層をエチレン−ビニルアル
コール共重合体(エチレン含有量30モル%)とし
た周方向の内側にリブを有する3種5層の溶融パ
リソンを押出し、該パリソンをリブ部がボトルの
胴壁部に位置するようにブロー金型内に配置し通
常のブロー成形法により、目付20g、内容量200
の多層ボトルを成形した。得られたボトルの層構
成比は、内外層:接着層:中間層=10:1:1
で、胴壁部の厚さは0.6mm、リブ部の厚さは1.5mm
であり、かつリブ部の巾が10mm、リブとリブとの
間の間隔が25mmであつた。 実施例 2 65m/m押出機(L/D=22)を用いて、ポリ
プロピレン樹脂(MI=1.5)をダイシエルとダイ
コア間隔(すき間)3m/mに対して、深さ2
m/m、巾1m/mのスリツト状溝を3m/m間
隔に設けたダイコアを通して、更にダイコアを上
下に移動させ溶融パリソンを押出し、目付20g、
200c.c.のブロー成形容器を得た。この容器断面の
厚み分布は、通常部で0.7m/m容器の高さ方向
と横方向の内側リブの最も厚い部分で各1.3と1.2
m/m、リブの巾は各々約10m/mと8m/mで
あつた。 この容器に、水を充填し、口部をシールし、
115〜135℃のレトルト殺菌を10〜30分行つた。容
器の変形量を表1に示す。 なお、この容器の表面は平滑で、レトルト后、
印刷、ラベル貼りが制約なく出来た。 比較例 1 65m/m押出機(L/D=22)を用いて、ポリ
プロピレン樹脂(MI=1.5)をダイシエルとダイ
コア間隔(すき間)3m/mに対して、深さ1
m/m、巾1m/mのスリツト状溝を5m/m間
隔に設けたダイコアを通して、溶融パリソンを押
出し、目付20g、200c.c.のブロー成形容器を得た。 この容器断面の厚み分布は、通常部で0.75m/
m内側リブの最も厚い部分で0.95m/m、リブの
巾は約7m/mであつた。 この容器に、水を充填し、口部をシールし、
115〜135℃のレトルト殺菌を10〜30分行つた。容
器の変形量を表1に示す。 比較例 2 直径65mmの押出機(L/D=22)を用いて、
ポリプロピレン樹脂(MI=1.5密度0.90)を押出
し、溶融パリソンを形成し、該パリソンをブロー
成形して目付40g、内容量200c.c.のボトルを得た。
このボトルの胴壁部の平均肉厚は1.50mmであり、
リブは存在しなかつた。 比較例 3 直径65mmの押出機(L/D=22)を用いて、ポ
リプロピレン樹脂(MI=1.5密度0.90)を押出し、
溶融パリソンを形成し、該パリソンを、等間隔に
縦溝を有するブロー金型内に配置してブロー成形
して、目付20g、内容量200c.c.のボトルを得た。
このボトルの胴壁部の肉厚は通常の部分及びリブ
部とも0.6mmであつた。リブが容器表面に凸にな
つているため印刷面積がほとんどなく又、ラベル
を貼ると、しわが寄り、商品価値がなくなつてし
まつた。 容器の変形を、目視及び内容量の減量にて測定
した結果を示す。
The present invention relates to a method for manufacturing a heat-deformable plastic bottle, and more particularly to a method for manufacturing a plastic bottle that prevents thermal deformation of the bottle, particularly a decrease in internal volume, when the bottle is hot filled with contents or heated and sterilized after filling with contents. Concerning bottle manufacturing methods. In recent years, tastes in foods and the like have become richer, and as a result, containers have become more diverse. The same is true in the field of plastic bottles, and there is an increasing need for retort-resistant plastic bottles, especially for the purpose of long-term storage during sterilization of foods. Plastic bottles are formed by melt-extruding plastic into a single-layer or multi-layer parison, then blow-molding the extruded parison by injecting fluid into it while it is closed, making it lighter and more impact resistant than glass bottles. However, a major drawback is poor heat resistance. Generally, the sterilization temperature for bottled foods is 115 to 135℃.
Plastic bottles are easily deformed due to the influence of temperature or pressure during sterilization. For example, it has been found that plastic bottles made of polypropylene do not melt or soften at the above-mentioned temperatures, but when sterilized at the above-mentioned temperatures, the inner volume decreases by 2 to 6% due to thermal deformation. The inventors of the present invention have found that when the outer surface of the body of a plastic bottle is made smooth by blow molding, and inward ribs are provided on it at specific dimensions and at specific intervals, thermal deformation during sterilization can be significantly suppressed. I found something to gain. That is, an object of the present invention is to provide a method for manufacturing plastic bottles that significantly suppresses thermal deformation during heat sterilization, particularly a decrease in internal volume. Another object of the present invention is to provide a method for easily manufacturing the above-mentioned sterilization-resistant bottle by making some changes to the extrusion die. According to the present invention, in a method for manufacturing a plastic bottle, which comprises melt-extruding plastic into a parison shape through a die and blow-molding the plastic bottle by blowing a fluid into the closed parison, a die core with a tapered tip and a die shell are formed. and are arranged so that they can be moved relatively in the axial direction and the die lip width can be changed from 1.3 to 4 times the width at the reference position, and when the die core and the die shell are at the reference position, it becomes a body wall part. While extruding the parison portion, the die core and the die shell are moved relatively to extrude the parison portion that becomes the inward rib, and the time when the die core and the die shell are at the reference position is the time when the die core and the die shell are at the relative movement position. There is provided a method for producing a plastic bottle with excellent resistance to heat deformation during sterilization, which is characterized by blow molding a parison with inward ribs formed in this manner for 1.5 to 5 times as long. The invention will be explained in detail below on the basis of the accompanying drawings. In Figures 1-A, 1-B and 1-C showing an example of a plastic bottle molded according to the present invention, this bottle 1 has a neck part 2, a body body, and a neck part 2 integrally formed by blow molding a plastic parison. It consists of a part 3 and a bottom part 4. The plastic body 3 is distinguished by a smooth outer surface 5 and inwardly projecting ribs 6. This inwardly protruding rib 6 may extend in the axial direction as shown in FIG. 1-A, in the circumferential direction as shown in FIG. 2, or as shown in FIG. It may extend in an oblique direction, or it may have a shape in which an axial rib 6a and a circumferential rib 6b are combined, as shown in FIG. The rib 6 of the bottle molded according to the present invention has a thickness t 1 that is 1.3 to 4 times, most preferably 1.5 to 3.0 times, the thickness t 2 of the body wall 7, and the rib 6 has a rib width w. They are provided at intervals w 2 of 1.5 to 5 times 1 , particularly preferably 2 to 4 times. The rib structure of the bottle molded according to the present invention makes it possible to significantly reduce the amount of thermal deformation of the plastic bottle. That is, in the body 3 of this plastic bottle, its outer surface 5
Regardless of whether the ribs 6 are provided or not, it is smooth and flush, making it the most stable and convenient form in terms of the external shape, that is, the appearance of the container, and the ease of printing and labeling on the container. It is becoming. In addition, the ribs formed by the present invention that protrude inward from the barrel wall have an effect that is completely different from that of ordinary reinforcing ribs, that is, they prevent thermal deformation during heat sterilization. At the same time, it exhibits the effect of preventing a decrease in internal volume. For example, as shown in the example below, when a polypropylene bottle with a uniform body wall thickness and a thickness of t 1 = t 2 = 0.8 mm is subjected to retort sterilization at 135°C for 10 minutes, This results in a volume reduction of 5.2%. Similarly, if the thickness of the trunk wall is uniform throughout, and the thickness is twice that of the former, that is, t 1 =
Polypropylene bottles in the range t 2 =1.6 mm also show a volume reduction of 4.0% under similar sterilization conditions.
The above-mentioned facts demonstrate that thermal deformation of plastic bottles occurs as a characteristic of plastics, regardless of the mechanical strength of the bottle. However, according to the present invention, in the case of a polypropylene bottle in which the normal body wall part is made t 2 = 0.8 mm in the former case, and an inward bead with a thickness t 1 = 1.6 mm is formed as in the latter case, the same retort is used. Under sterilization conditions, the volume decreases by only about 0.2%, and this fact clearly shows that the thickness distribution structure defined by the present invention effectively works to suppress thermal deformation. The reason for this has not yet been fully elucidated, but the inward ribs formed on the inner surface of the body wall act to give firmness to the bottle body, and the thin body wall between the ribs is rather This seems to be because it acts to alleviate thermal deformation. Thickness of ribs of bottle molded according to the present invention
If t 1 is smaller than 1.3t 2 , no significant thermal deformation prevention effect will be obtained, while if it is larger than 4t 2 , significant thermal deformation (heat shrinkage) will occur in the body wall other than the ribs. This is not desirable. In the present invention, the rib width w 1 is defined as the width of the portion where the inner thickness of the rib is 1/2 (t 1 −t 2 ) or more, that is, the half width. That is, the plastic bottle of the present invention is manufactured by blow-molding a plastic parison provided with inward ribs, but during this blow-molding, the thickness is necessarily relaxed at the shoulder portions of the ribs. The definition makes sense. In the present invention, when the ribs are provided at intervals larger than 5w 1 , it is difficult to obtain a remarkable thermal deformation prevention effect.On the other hand, when the ribs are provided at intervals narrower than 1.5w 1 , the thickness specified in the present invention is It becomes difficult to create changes in Conventionally, it has been known to form beads on plastic bottles in order to prevent them from being deformed under pressure. However, such a bead is clearly distinguished from the inward bead used in the present invention in that it has the same thickness as the other body wall portions. In addition, such beads tend to be easily deformed and crushed during heat sterilization, making it impossible to expect heat deformation resistance as in the present invention, and also making it difficult to print the entire surface on the outside. There is also. In the present invention, any plastic can be used for the bottle as long as it is thermoformable and can withstand retort sterilization.
For example, olefin resins such as high-density polyethylene, isotactic polypropylene, crystalline propylene-ethylene copolymers, and ionomers; styrene resins such as polystyrene, styrene-butadiene block copolymers, and nitrile-butadiene-styrene resins; Acrylic resins such as polymethyl methacrylate; high nitrile resins; saturated polyester resins; polyamide resins; polycarbonates; ethylene-vinyl alcohol copolymers; vinyl chloride resins or blends thereof can be used. These plastic bottles may have a single layer construction or a multilayer construction such as two layers, three layers, or five layers. A multilayer plastic bottle with good gas barrier properties and therefore storage stability has a layer structure of olefin resin/ethylene-vinyl alcohol copolymer/olefin resin, and between these layers there is an acid or Alternatively, an adhesive layer such as an acid anhydride-modified olefin resin may be interposed. In the present invention, the thickness t2 of the body wall of the bottle is generally 0.2, although it varies depending on the internal volume of the bottle.
It is desirable that the rib width w1 is in the range of 5 to 20 mm. As for the shape of the bottle, in order to be resistant to thermal deformation and to enable heat sterilization in a short time, it is advantageous to have a flat shape as shown in Figures 1-A, 2, 3, and 4. The ratio of the maximum dimension to the minimum dimension in the maximum transverse cross section is preferably in the range of 20:1 to 2:1. Molded according to the present invention. Bottles with circumferential or diagonal inward ribs are shown in FIG.
It is manufactured using the die shown in Fig.-A and Fig. 5-B. That is, the die 10 used for parison extrusion in the present invention consists of a die core 12 with a tapered tip 11 and a die shell 13, a die passage 14 is formed between the two, and a die lip 15 is located at the tip. ing. The die passage 14 is the extruder 1
It is connected to the discharge port 17 of No. 6. The die core 12 and the die shell 13 are provided so as to be movable relative to each other in the axial direction. More specifically, the width of the die lip 15 between the die core 12 and the die shell 13 is from the width a 2 at the reference position shown in FIG. 5-B to the die lip width a 1 at the relative position shown in FIG. 5-A. The lip width a 1 is variable, with the lip width a 1 ranging from 1.5a 2 to 3a 2 . When the die core 12 and the die shell 13 are extruded from the plastic at the reference position shown in FIG. When the plastic is extruded in the relative movement position shown in FIG. 5-A, the parison portion that becomes the rib 6 is extruded. Moreover, according to the present invention, the time period during which the die core 12 and the die shell 13 are at the reference position shown in FIG. 5-B.
t 2 , the die core 12 and the die shell 13 are the 5th-A
By setting the time t 1 at the relative movement position shown in the figure to 1.5 to 5 times, it is possible to form the parison portion that will become the rib 6 and the parison portion that will become the body wall 7 at the ratio specified in the present invention. Become. In the present invention, the die core 12 and the die shell 1
The relative movement with 3 can be performed according to a preset program so that an inward rib of a predetermined shape and size is formed, and the stopping time, moving distance, and moving speed are as follows. For example, everything can be controlled by a computer. The parison with inwardly directed ribs thus formed is introduced into a split mold known per se, the split mold is closed and the bottom is pinched off, and a fluid is blown into the interior to form a predetermined area defined by the split mold cavity. Form into a shaped bottle. Bottles with axial inward ribs formed according to the present invention can also be manufactured using the die shown in FIG. That is, this die 10 has a structure similar to that shown in FIG. 5, but is provided with a groove 17 around the periphery 16 of the die core 12. This groove 17 is spaced apart from the die shell 13.
The depth is such that b 1 is 1.3 to 4 times the standard spacing b 2 , and the spacing is 1.5 to 5 times the groove width c 1.
c 2 spaced apart. Thus, when the plastic is extruded through this gap, the parison portion that becomes the axially inward ribs is extruded from the groove 17, and the parison portion that becomes the shell wall 7 is extruded from the area other than the groove 17. When the plastic is extruded while rotating the die core 12, a parison with diagonal inward ribs is extruded. The parison is formed in the same manner as described above. Furthermore, FIG. 6 shows the die core 12 and die shell 13.
are relatively movable in the axial direction, and the fifth-A
Extrusion of the plastic in both the positions shown in FIG. Example 1 An extruder for inner and outer layers with a built-in full-flight screw with a diameter of 65 mm and an effective length of 1430 mm and a melt channel branched into two flow paths, and a full-flight extruder with a diameter of 40 mm and an effective length of 880 mm. Adhesive layer extruder with a built-in mold screw and a melt channel branched into two channels, and a diameter of 40 mm.
Using an extrusion device that connects a multilayer 5-layer extruder with a built-in full-flight screw with an effective length of 880 mm, the lip width at the standard position is
3.0mm, the lip width corresponding to the thick rib part is 7.5mm
The extrusion time at the reference position was three times the extrusion time at the rib position, and the inner and outer layers were made of polypropylene (MI.1.5, density 0.90), the adhesive layer was made of maleic acid-modified polypropylene, and the middle layer was made of ethylene-vinyl alcohol. A molten parison of three types and five layers made of polymer (ethylene content 30 mol%) with ribs on the inside in the circumferential direction is extruded, and the parison is placed in a blow mold so that the rib part is located on the body wall of the bottle. By placing it in the mold and using the normal blow molding method, it has a fabric weight of 20g and a content of 200g.
A multilayer bottle was molded. The layer composition ratio of the obtained bottle was: inner and outer layers: adhesive layer: intermediate layer = 10:1:1
The thickness of the body wall is 0.6mm, and the thickness of the rib is 1.5mm.
In addition, the width of the rib portion was 10 mm, and the distance between the ribs was 25 mm. Example 2 Using a 65 m/m extruder (L/D = 22), polypropylene resin (MI = 1.5) was heated to a depth of 2 with a die shell and die core interval (gap) of 3 m/m.
The molten parison was extruded by passing the die core through which slit-like grooves with a width of 1 m/m and a width of 1 m/m were provided at intervals of 3 m/m, and the die core was further moved up and down to extrude the molten parison.
A blow molded container of 200 c.c. was obtained. The thickness distribution of this container cross section is 0.7 m/m in the normal part, and 1.3 and 1.2 in the thickest part of the inner rib in the height direction and lateral direction of the container, respectively.
m/m and the width of the ribs were approximately 10 m/m and 8 m/m, respectively. Fill this container with water, seal the mouth,
Retort sterilization at 115-135°C was performed for 10-30 minutes. Table 1 shows the amount of deformation of the container. The surface of this container is smooth, so after retorting,
Printing and labeling were possible without any restrictions. Comparative Example 1 Using a 65 m/m extruder (L/D = 22), polypropylene resin (MI = 1.5) was heated to a depth of 1 with a die shell and die core distance (gap) of 3 m/m.
The molten parison was extruded through a die core in which slit-like grooves of 1 m/m and width 1 m/m were provided at 5 m/m intervals to obtain a blow-molded container with a basis weight of 20 g and 200 cc. The thickness distribution of this container cross section is 0.75m/
The thickest part of the inner rib was 0.95 m/m, and the width of the rib was about 7 m/m. Fill this container with water, seal the mouth,
Retort sterilization at 115-135°C was performed for 10-30 minutes. Table 1 shows the amount of deformation of the container. Comparative Example 2 Using an extruder with a diameter of 65 mm (L/D = 22),
A polypropylene resin (MI=1.5 density 0.90) was extruded to form a molten parison, and the parison was blow molded to obtain a bottle with a basis weight of 40 g and a content capacity of 200 c.c.
The average thickness of the body wall of this bottle is 1.50mm.
There were no ribs. Comparative Example 3 Polypropylene resin (MI=1.5 density 0.90) was extruded using an extruder with a diameter of 65 mm (L/D=22),
A molten parison was formed, and the parison was placed in a blow mold having vertical grooves at equal intervals and blow molded to obtain a bottle with a basis weight of 20 g and a content capacity of 200 c.c.
The wall thickness of the body wall of this bottle was 0.6 mm in both the normal part and the rib part. Since the ribs were convex on the surface of the container, there was almost no printing area, and when the label was attached, it wrinkled and lost its commercial value. The results of measuring the deformation of the container visually and by reducing the content are shown.

【表】【table】

【表】 レトルト前内容量
[Table] Contents before retort

【図面の簡単な説明】[Brief explanation of drawings]

第1−A図は本発明による実施例の斜視図、第
1−B図は第1−A図のB−B断面図、第1−C
図は要部拡大図、第2図、第3図及び第4図はそ
れぞれ他の実施例の斜視図、第5図は押出機ダイ
の断面図、第5−A図、第5−B図はダイコアと
ダイシエルとの相対位置関係図、第6図は第5図
のC−C断面図をそれぞれ示す。 1はボトル、2は首部、3は胴部、4は底部、
6はリブ、10はダイ、12はダイコア、13は
ダイシエルをそれぞれ示す。
Fig. 1-A is a perspective view of an embodiment according to the present invention, Fig. 1-B is a sectional view taken along line B-B of Fig. 1-A, and Fig. 1-C is a sectional view of Fig. 1-A.
The figure is an enlarged view of the main parts, Figures 2, 3 and 4 are perspective views of other embodiments, Figure 5 is a sectional view of the extruder die, Figures 5-A and 5-B. 6 shows the relative positional relationship between the die core and the die shell, and FIG. 6 shows a sectional view taken along the line CC in FIG. 5. 1 is the bottle, 2 is the neck, 3 is the body, 4 is the bottom,
6 is a rib, 10 is a die, 12 is a die core, and 13 is a die shell, respectively.

Claims (1)

【特許請求の範囲】 1 プラスチツクをダイを通してパリソンの形に
溶融押出し、閉じたパリソンの内部に流体を吹込
んでブロー成形することから成るプラスチツクボ
トルの製造方法において、 テーパ状先端部を備えたダイコアとダイシエル
とを相対的に軸方向に移動可能に且つダイリツプ
巾が基準位置での巾の1.3乃至4倍迄変化させ得
るように配置し、 ダイコアとダイシエルとが基準位置にある配置
で胴壁部となるパリソン部分を押出すと共にダイ
コアとダイシエルとを相対的に移動させて内向き
リブとなるパリソン部分を押出し、ダイコアとダ
イシエルとが基準位置にある時間を、ダイコアと
ダイシエルとが相対的移動位置にある時間の1.5
乃至5倍とし、 かくして形成される内向きリブを備えたパリソ
ンをブロー成形することを特徴とする殺菌時の耐
熱変形性に優れたプラスチツクボトルの製造法。
[Claims] 1. A method for manufacturing a plastic bottle, which comprises melt-extruding plastic into a parison through a die and blow-molding the plastic by blowing a fluid into the closed parison, comprising: a die core with a tapered tip; The die core and the die shell are arranged so that they can be moved relative to each other in the axial direction and the die lip width can be changed from 1.3 to 4 times the width at the reference position, and the die core and the die shell are arranged at the reference position and the body wall and At the same time, the die core and the die shell are moved relatively to extrude the parison part that becomes the inward rib, and the time when the die core and the die shell are in the reference position is changed to the relative movement position. 1.5 for some time
A method for producing a plastic bottle having excellent resistance to heat deformation during sterilization, characterized by blow molding a parison having inward ribs formed in this way.
JP1896781A 1981-02-13 1981-02-13 Plastic bottle withstanding heat sterilizing treatment and its manufacture Granted JPS57133031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1896781A JPS57133031A (en) 1981-02-13 1981-02-13 Plastic bottle withstanding heat sterilizing treatment and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1896781A JPS57133031A (en) 1981-02-13 1981-02-13 Plastic bottle withstanding heat sterilizing treatment and its manufacture

Publications (2)

Publication Number Publication Date
JPS57133031A JPS57133031A (en) 1982-08-17
JPH0118846B2 true JPH0118846B2 (en) 1989-04-07

Family

ID=11986419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1896781A Granted JPS57133031A (en) 1981-02-13 1981-02-13 Plastic bottle withstanding heat sterilizing treatment and its manufacture

Country Status (1)

Country Link
JP (1) JPS57133031A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258742A (en) * 1987-04-15 1988-10-26 株式会社吉野工業所 Lateral stripe vessel and lateral-stripe vessel molding method and lateral-stripe forming jig
DE112004000634D2 (en) * 2003-02-07 2005-12-22 Alfa Pro Products Gmbh container

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494761A (en) * 1972-04-26 1974-01-16

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625857Y2 (en) * 1976-03-06 1981-06-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494761A (en) * 1972-04-26 1974-01-16

Also Published As

Publication number Publication date
JPS57133031A (en) 1982-08-17

Similar Documents

Publication Publication Date Title
US5645183A (en) Multi-layer containers
US11001404B2 (en) Rectangular container having a stiffening groove
US5927525A (en) Multi-layer containers and preforms
EP1023226B1 (en) Multilayer plastic container and method of making the same
WO2009119549A1 (en) Stretched foam plastic container and process for producing the stretched foam plastic container
WO1991008099A1 (en) Blow moulded containers
WO2000003922A1 (en) Process for making extruded pet containers
US20140231426A1 (en) Foamed and stretched plastic containers and method of producing the same
CA2870998C (en) Foamed and stretched plastic bottle
EP2461969A1 (en) Container having a foamed wall
EP0422436A2 (en) Plastic bottle with reinforced concave bottom
US5788926A (en) Plastic bottle and process for making the same
US6203870B1 (en) Liner and preform
JPH06190993A (en) Blow-molded multi-layer plastic container with excellent surface gloss
JPH0118846B2 (en)
JPS634493B2 (en)
JP4710120B2 (en) Blow molding method and apparatus for internally reinforced hollow container
CN214058196U (en) Blow molded container with high barrier layer
JPH0272925A (en) Manufacture of stretched blow bottle with handle
JP4079131B2 (en) Biaxial stretch blow molded container and manufacturing method thereof
JPH0653127U (en) Blow molding container
JPH0367483B2 (en)