JPH01187987A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH01187987A
JPH01187987A JP1285788A JP1285788A JPH01187987A JP H01187987 A JPH01187987 A JP H01187987A JP 1285788 A JP1285788 A JP 1285788A JP 1285788 A JP1285788 A JP 1285788A JP H01187987 A JPH01187987 A JP H01187987A
Authority
JP
Japan
Prior art keywords
impurity
diffusion region
mask
diffusion
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1285788A
Other languages
Japanese (ja)
Inventor
Etsuji Omura
悦司 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1285788A priority Critical patent/JPH01187987A/en
Publication of JPH01187987A publication Critical patent/JPH01187987A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2203Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure with a transverse junction stripe [TJS] structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3428Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers layer orientation perpendicular to the substrate

Abstract

PURPOSE:To realize a TJS laser using an MQW layer as an active layer by selectively forming a first mask having nontransmission to an impurity and a second mask having transmission to the impurity, diffusing the impurity and forming a first diffusion region in a high impurity concentration and a second diffusion region in a low impurity concentration. CONSTITUTION:A first mask 9 having nontransmission to an impurity conducting doping and a second mask 10 having an opening section 11 and transmission to said impurity are respectively formed selectively onto a semiconductor wafer in which an active layer 3 is held by first conductivity type two clad layers 2, 4. Said impurity is diffused from the upper section of said wafer, and a second conductivity type high impurity concentration first diffusion region 5 reaching at least the active layer 3 and a second conductivity type low impurity- concentration second diffusion region 7 are shaped. Zn is thermally diffused to the double hetero-structure wafer for a fixed time at a temperature of 650-700 deg.C, using the Si3N4 film 9 and the SiO2 film 10 as masks, and the p<+>- diffusion region 5 and the p-diffusion region 7 are formed simultaneously.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、p、n両電極が同一平面内にあり、電子素
子との集積に適し、かつ動作電流の小さい半導体レーザ
の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor laser having both p and n electrodes in the same plane, suitable for integration with electronic devices, and having a small operating current. It is.

〔従来の技術〕[Conventional technology]

p、n両電極が同一平面内にあり、電子素子との集積に
適したレーザとしては、TJ S  (Trans−v
arse Junction 5tripe)レーザが
よく知られている。このレーザは半絶縁性GaAsから
なる基板の上にn形の二重へテロ構造を形成したのち、
二重へテロ構造の一部分を、基板に達するZnの二段階
の拡散によりp形に反転させて活性領域を形成している
。そして、活性領域とクラッド層のビルトインポテンシ
ャルの差によって、電流が効率よく活性層に閉じ込めら
れるため20mA程度の低閾値電流が達成されている。
A laser that has both p and n electrodes in the same plane and is suitable for integration with electronic devices is TJS (Trans-v
5 tripe) lasers are well known. This laser forms an n-type double heterostructure on a semi-insulating GaAs substrate, and then
A portion of the double heterostructure is inverted to p-type by two-step diffusion of Zn into the substrate to form an active region. A low threshold current of about 20 mA is achieved because the current is efficiently confined in the active layer due to the difference in built-in potential between the active region and the cladding layer.

一般に、活性領域を多重量子井戸(Multi Qua
n−tum Well、 M’ Q W’ )構造にす
ると閾値電流密度が下がることが実験的に確かめられて
おり、TJSレーザの活性層をMQWにしようとする試
みがあるが、以下に説明する理由により、満足のいく特
性のM Q Wを活性層に持つTJS(以下MQW−T
JSという)レーザは未だ実現されていない。
In general, the active region is formed using a multi-quantum well (Multi Quad well).
It has been experimentally confirmed that the threshold current density decreases when the N-tum Well (M' Q W') structure is used, and there are attempts to make the active layer of the TJS laser an MQW, but the reason is explained below. As a result, TJS (hereinafter referred to as MQW-T) with satisfactory characteristics of MQW in the active layer
JS) laser has not yet been realized.

第3図(a)、(b)は従来<7)MQW−TJSレー
ザの製造方法を説明するための断面図であり、この図に
おいて、1は半絶縁性GaAsからなる基板、2,4は
n−AJ2GaAsからなるクラッド層、3はGaAs
−AllGaAsからなる多重量子井戸(以下MQWと
いう)層、5は拡散によって形成された第1の拡散領域
としてのp“−拡散領域、6は不純物拡散によって無秩
序化されたMQW層、7は第2の拡散領域としてのp−
拡散領域、8は熱処理によって無秩序化されたMQW層
である。
FIGS. 3(a) and 3(b) are cross-sectional views for explaining the manufacturing method of a conventional <7) MQW-TJS laser. In this figure, 1 is a substrate made of semi-insulating GaAs, and 2 and 4 are Cladding layer made of n-AJ2GaAs, 3 is GaAs
- a multiple quantum well (hereinafter referred to as MQW) layer made of AllGaAs; 5 is a p"-diffusion region formed by diffusion as a first diffusion region; 6 is an MQW layer disordered by impurity diffusion; 7 is a second p- as the diffusion region of
The diffusion region 8 is an MQW layer disordered by heat treatment.

次に製造工程について説明する。Next, the manufacturing process will be explained.

まず、半絶縁性GaAsからなる基板1上に分子線エピ
タキシャル成長(MB’E)あるいはfi金属気相成長
(MOCVD)によって、順次n −AJ2GaAsか
らなるクラッド層2.MWQ層3およびn−AJ2Ga
Asからなるクラッド層4を成長させる。次にウェハの
一部をp形に変換するために、例えば窒化膜を選択拡散
マスクとして(図示せず)、閉管拡散法により650t
でZnを基板1に達するまで拡散してpo−拡散領域5
を形成する(第3図(a))。このときMQW層3は不
純物の拡散に伴ってGaAsとAfLGaAsが混ざり
込み、組成が平均化されたAl1GaAs層となる(多
重量子井戸層の無秩序化と呼ぶ)。
First, a cladding layer 2 made of n-AJ2GaAs is sequentially formed on a substrate 1 made of semi-insulating GaAs by molecular beam epitaxial growth (MB'E) or fi metal vapor phase epitaxy (MOCVD). MWQ layer 3 and n-AJ2Ga
A cladding layer 4 made of As is grown. Next, in order to convert a part of the wafer into p-type, for example, a 650 t.
to diffuse Zn until it reaches the substrate 1 and form the po-diffusion region 5.
(Figure 3(a)). At this time, the MQW layer 3 is mixed with GaAs and AfLGaAs as impurities diffuse, and becomes an Al1GaAs layer with an averaged composition (referred to as disordering of the multiple quantum well layer).

次にTJSレーザにとって不可欠であるp−拡散領域7
を形成するために950t程度の高温で熱処理を行う。
Next, the p-diffusion region 7 is essential for TJS lasers.
Heat treatment is performed at a high temperature of about 950 t to form.

MQWを活性層としない通常のTJSレーザでは2時間
程度の熱処理を行うが、これと同じ条件でMQW−TJ
Sレーザの熱処理を行うと、高温のため不純物が拡散さ
れていない部分にも無秩序化がおこり、ウェハ内全面に
わたりMQW層3が消滅するという不都合があった(第
3図(b))。熱処理時間を数分と極端に短くすること
も試みられたが、950℃と温度が高いため、部分的に
無秩序化が起こり所望のレーザ特性を得ることができな
かった。
A normal TJS laser that does not use MQW as an active layer requires heat treatment for about 2 hours, but under the same conditions, MQW-TJ
When the S laser heat treatment is performed, disorder occurs even in areas where impurities are not diffused due to the high temperature, causing the disadvantage that the MQW layer 3 disappears over the entire surface of the wafer (FIG. 3(b)). Attempts were made to extremely shorten the heat treatment time to several minutes, but due to the high temperature of 950° C., partial disorder occurred and desired laser characteristics could not be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来の半導体レーザの製造方法では、95
0t程度の熱処理が不可欠であるが、MQW構造を不変
に保つことは非常に困難であり、M Q Wを活性層と
する良好なTJSレーザの実現は不可能であった。
In the conventional semiconductor laser manufacturing method as described above, 95
Although heat treatment at about 0t is essential, it is extremely difficult to maintain the MQW structure unchanged, and it has been impossible to realize a good TJS laser using MQW as an active layer.

この発明は、MQW層を活性層とするTJSレーザを実
現できる半導体レーザの製造方法を得ることを目的とす
る。
An object of the present invention is to obtain a method for manufacturing a semiconductor laser that can realize a TJS laser using an MQW layer as an active layer.

(課題を解決するための手段) この発明に係る半導体レーザの製造方法は、活性層が第
1の導電形の2つのクラッド層で挟み込まれた半導体ウ
ェハ上に、ドーピングを行う不純物に対して非透過性を
有する第1のマスクと、開口部を有し、不純物に対して
透過性を有する第2のマスクとをそれぞれ選択的に形成
する工程と、ウェハ上から不純物の拡散を行って少なく
とも活性層に達する第2の導電形で高不純物濃度の第1
の拡散領域と、第2の導電形で低不純物濃度の第2の拡
散領域を形成する工程とを含むものである。
(Means for Solving the Problems) A method for manufacturing a semiconductor laser according to the present invention is a semiconductor laser having an active layer sandwiched between two cladding layers of a first conductivity type. A step of selectively forming a first mask having transparency and a second mask having an opening and being transparent to impurities, and diffusing impurities from above the wafer to at least activate the The first layer has a second conductivity type and a high impurity concentration.
and a step of forming a second diffusion region of a second conductivity type and a low impurity concentration.

〔作用〕[Effect]

この発明においては、低温での1回の拡販により、第2
のマスクの開口部下および第1のマスクが形成されてい
ない部分の第2のマスク下にそれぞれ高不純物濃度の第
1の拡散領域および低不純物濃度の第2の拡散領域が同
時に形成される。
In this invention, by one-time sales promotion at low temperature, the second
A first diffusion region with a high impurity concentration and a second diffusion region with a low impurity concentration are simultaneously formed under the opening of the mask and under the second mask in a portion where the first mask is not formed, respectively.

〔実施例〕〔Example〕

以下、この発明の実施例を図面について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)、(b)はこの発明の半導体レーザの製造
方法の一実施例を説明するための断面図である。これら
の図において、第3図(a)〜(c)と同一符号は同一
のものを示し、9は第1のマスクとしての5izN4i
1!、10は第2のマスクとしての5in2膜、11は
前記SiO□膜10の開口部である。
FIGS. 1(a) and 1(b) are cross-sectional views for explaining one embodiment of the method for manufacturing a semiconductor laser of the present invention. In these figures, the same symbols as in FIGS. 3(a) to (c) indicate the same things, and 9 indicates 5izN4i as the first mask.
1! , 10 is a 5in2 film as a second mask, and 11 is an opening in the SiO□ film 10.

次に製造工程について説明する。Next, the manufacturing process will be explained.

まず、′従来と同様にして各層を成長させたのち、熱C
VD法等によっ゛(Si3N<膜9を表面全体にわたっ
て形成する。膜厚は500オングストロ一ム以上あれば
非透過性を有する拡散マスクとして働く。次いで通常の
写真製版技術を用いSi3N4膜9に拡散を行うのに必
要な形状の開口部を設け、Si3N4膜9の開口部端か
ら開口部の一部を覆うように開口部11を有する5to
2膜1oを形成する。膜厚は100オングストロームか
ら数百オングストロームとすることが適当であり、幅は
5ないし10μmに設定することが適当である(第1図
(a))。
First, 'after growing each layer in the same manner as before,
A Si3N film 9 is formed over the entire surface by a VD method or the like. If the film thickness is 500 angstroms or more, it acts as a non-transparent diffusion mask. Next, a Si3N4 film 9 is formed using an ordinary photolithography technique. An opening having the shape necessary for diffusion is provided, and an opening 11 is formed from the opening end of the Si3N4 film 9 to cover a part of the opening.
2 films 1o are formed. It is appropriate that the film thickness is 100 angstroms to several hundred angstroms, and the width is 5 to 10 μm (FIG. 1(a)).

次に、ダブルへテロ構造ウェハに対し、Si3N4膜9
および5in2膜10をマスクとして閉管拡散法などに
より、例えば650’Cないし7゜0℃で所定の時間Z
nの熱拡散を行う。
Next, the Si3N4 film 9 is applied to the double heterostructure wafer.
Then, using the 5in2 film 10 as a mask, the film is heated to Z for a predetermined time at, for example, 650'C to 7°0C by a closed tube diffusion method or the like.
Perform n thermal diffusion.

Znの拡散は開口部11を通してと、Znに対して非透
過性を有するSi3N4膜9がその下に形成されていな
い部分の5i02膜10を通して同時に進行する。開口
部11からの拡散では、拡散に対して妨害となる膜が存
在しないのでp + −拡散領域5が形成され、Znの
濃度は10+20cm−3程度の高濃度となっている。
The diffusion of Zn proceeds simultaneously through the opening 11 and through the portion of the 5i02 film 10 where the Si3N4 film 9, which is impermeable to Zn, is not formed therebelow. In the diffusion from the opening 11, since there is no film that obstructs the diffusion, a p + -diffusion region 5 is formed, and the Zn concentration is as high as about 10+20 cm-3.

活性領域が多重量子井戸で形成されている場合はこの不
純物拡散に伴なってGaAsとAj2GaAsが混ざり
込み、組成が平均化されたAflGaAs層となる(多
重量子井戸の無秩序化と呼ぶ)。
When the active region is formed of multiple quantum wells, GaAs and Aj2GaAs are mixed with this impurity diffusion, resulting in an AflGaAs layer with an averaged composition (referred to as disordered multiple quantum wells).

一方、5in2膜10を通しての拡散では、SiO□膜
が102nに対していわば妨害膜のように働くため拡散
速度が遅くなり、不純物濃度もp+−拡散領域5に比べ
て1桁ないし2桁程度低いp−拡散領域7が形成される
(第1図(b))。
On the other hand, in the case of diffusion through the 5in2 film 10, the SiO□ film acts like a blocking film for 102n, so the diffusion rate is slow, and the impurity concentration is about one to two orders of magnitude lower than that in the p+- diffusion region 5. A p-diffusion region 7 is formed (FIG. 1(b)).

なお、p−拡散領域7の不純物濃度は5in2膜10の
膜厚で制御することが可能である。
Note that the impurity concentration of the p- diffusion region 7 can be controlled by the thickness of the 5in2 film 10.

この様に非透過性膜および透過性膜を有するマスクを組
み合わせることにより、1回の比較的低温での拡散で、
TJSレーザにとって不可欠であるp” −p−n構造
を活性層に作りつけることができる。そして、低温であ
るため濃度の低いp −拡散領域7の多重量子井戸構造
は壊されることなく残り、多重量子井戸を活性領域とす
るTJSレー゛ザが実現され、数mAという低閾値のレ
ーザを得ることができる。また、製造プロセスが低温で
あるためウェハに与える熱的ダメージが小さく、TJS
レーザ作製後、ウニ八表面にFET等の電子デバイスも
性能を落とすことなく集積できる。
By combining a mask with a non-permeable membrane and a permeable membrane in this way, a single diffusion at a relatively low temperature can
The p''-pn structure, which is essential for TJS lasers, can be created in the active layer.The multiple quantum well structure of the p-diffusion region 7, which has a low concentration due to the low temperature, remains unbroken and the multiple quantum well structure is A TJS laser with a quantum well as an active region has been realized, and it is possible to obtain a laser with a low threshold of several mA.In addition, because the manufacturing process is low temperature, thermal damage to the wafer is small, and the TJS laser
After the laser is fabricated, electronic devices such as FETs can be integrated on the surface of the sea urchin without reducing performance.

第2図(a)、(b)はこの発明の他の実施例を説明す
るための断面図である。これらの図において、第1図(
a)、(b)と同一符号は同一のものを示し、9aは異
常拡散防止用のSi3N4膜、12は前記Si3N4膜
9とSi3N4膜9a間の開口部である。
FIGS. 2(a) and 2(b) are sectional views for explaining another embodiment of the present invention. In these figures, Figure 1 (
The same reference numerals as in a) and (b) indicate the same parts, 9a is a Si3N4 film for preventing abnormal diffusion, and 12 is an opening between the Si3N4 film 9 and the Si3N4 film 9a.

第1図(a)、(b)に示した製造方法ではZnに対し
て透過性を有する5in2膜10の端が開口部11に達
しているため、温度等の膜の形成条件によっては、拡散
時に5i02膜1oとウェハとの界面に沿って横方向に
異常拡散が詔められることもある。この異常拡散を防止
するため、この実施例では第2図(a)に示すように、
開口部11に達する5i02膜10の端の下に異常拡散
防止用と1ノで非透過性を有するSi3N4膜9aを残
して拡散を行う。これによりp−拡散領域7は第2図(
b)に示すように開口部12からの拡散によってのみ形
成され、横方向に異常拡散が生しることがなくなる。
In the manufacturing method shown in FIGS. 1(a) and 1(b), the end of the 5in2 film 10, which is permeable to Zn, reaches the opening 11, so depending on the film formation conditions such as temperature, diffusion may occur. Sometimes abnormal diffusion occurs in the lateral direction along the interface between the 5i02 film 1o and the wafer. In order to prevent this abnormal diffusion, in this example, as shown in FIG. 2(a),
Diffusion is performed by leaving a non-permeable Si3N4 film 9a for preventing abnormal diffusion under the edge of the 5i02 film 10 that reaches the opening 11. As a result, the p-diffusion region 7 is formed as shown in FIG.
As shown in b), it is formed only by diffusion from the opening 12, and no abnormal diffusion occurs in the lateral direction.

なお、上記実施例ではGaAs系のTJSレーザについ
て説明したが、InP系など他の材料のTJSレーザに
適用できることは明かである。
In the above embodiment, a GaAs-based TJS laser has been described, but it is obvious that the present invention can be applied to a TJS laser made of other materials such as an InP-based TJS laser.

また、p形不純物としてZn以外にMgやBeも使用で
きることも明かであるほか、拡散用のマスクもここにあ
げた誘電体膜に限定されるものではないことも明白であ
る。
It is also clear that Mg and Be can be used in addition to Zn as the p-type impurity, and it is also clear that the diffusion mask is not limited to the dielectric film mentioned above.

また、量子井戸構造は多重量子井戸構造に限定されない
ことはいうまでもない。
Furthermore, it goes without saying that the quantum well structure is not limited to a multiple quantum well structure.

(発明の効果) この発明は以上説明したとおり、活性層が第1の導電形
の2つのクラッド層で挟み込まれた半導体ウェハ上に、
ドーピングを行う不純物に対して非透過性を有する第1
のマスクと、開口部を有し、不純物に対して透過性を有
する第2のマスクとをそれぞれ選択的に形成する工程と
、ウェハ上から不純物の拡散を行って少なくとも活性層
に達する第2の導電形で高不純物濃度の第1の拡散領域
と、第2の導電形で低不純物濃度の第2の拡散領域を形
成する工程とを含むので、低温1回の拡ift 工+”
lでTJSレーザに必要な拡散領域を形成できるという
効果がある。特に量子井戸構造を活性層に持つTJSレ
ーザの実現に有効であり、低閾値電流の半導体レーザが
得られる。また、低温で拡散を行うため拡散後のウニ八
表面のダメージが少なく、この表面に性能の高いFET
などの電子テハイスを容易に作ることが可能になるとい
う効果もある。
(Effects of the Invention) As explained above, the present invention provides a semiconductor wafer in which an active layer is sandwiched between two cladding layers of a first conductivity type.
The first layer is non-permeable to impurities for doping.
selectively forming a second mask having openings and being transparent to impurities, and diffusing impurities from above the wafer to reach at least the active layer. Since it includes a step of forming a first diffusion region of a conductivity type with a high impurity concentration and a second diffusion region of a second conductivity type and a low impurity concentration, it is possible to perform a one-time low-temperature expansion process.
1 has the effect of forming a diffusion region necessary for a TJS laser. It is particularly effective for realizing a TJS laser having a quantum well structure in the active layer, and a semiconductor laser with a low threshold current can be obtained. In addition, since diffusion is performed at low temperatures, there is less damage to the surface of the sea urchin after diffusion, and high-performance FETs can be placed on this surface.
Another effect is that it becomes possible to easily create electronic technology such as the following.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体レーザの製造方法の一実施例
を説明するための断面図、第2図はこの発明の他の実施
例を説明するための断面図、第3図は従来の半導体レー
ザの製造方法を説明するための断面図である。 図において、1は半絶縁性GaAsからなる基板、2.
4はn−AuGaAsからなるクラット層、3はGaA
s−Afl、GaAsからなるMQW層、5はpo−拡
散領域、6は不純物拡散によって無秩序化されたMQW
層、7はp−拡散領域、9.9aはSi3N4膜、10
はSiO2膜、M、12は開口部である。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄    (外2名)第1図 ]コ 開口部 第2図
FIG. 1 is a cross-sectional view for explaining one embodiment of the semiconductor laser manufacturing method of the present invention, FIG. 2 is a cross-sectional view for explaining another embodiment of the present invention, and FIG. FIG. 2 is a cross-sectional view for explaining a method of manufacturing a laser. In the figure, 1 is a substrate made of semi-insulating GaAs; 2.
4 is a crat layer made of n-AuGaAs, 3 is GaA
s-Afl, MQW layer made of GaAs, 5 is po-diffusion region, 6 is MQW disordered by impurity diffusion
layer, 7 is p-diffused region, 9.9a is Si3N4 film, 10
is a SiO2 film, M and 12 are openings. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 1] Opening Figure 2

Claims (1)

【特許請求の範囲】[Claims]  活性層が第1の導電形の2つのクラッド層で挟み込ま
れた半導体ウェハ上に、ドーピングを行う不純物に対し
て非透過性を有する第1のマスクと、開口部を有し、前
記不純物に対して透過性を有する第2のマスクとをそれ
ぞれ選択的に形成する工程と、前記ウェハ上から前記不
純物の拡散を行って少なくとも前記活性層に達する第2
の導電形で高不純物濃度の第1の拡散領域と、第2の導
電形で低不純物濃度の第2の拡散領域を形成する工程と
を含むことを特徴とする半導体レーザの製造方法。
A semiconductor wafer in which an active layer is sandwiched between two cladding layers of a first conductivity type is provided with a first mask that is non-transparent to impurities to be doped, and an opening that is transparent to the impurities. a step of selectively forming a second mask having transparency through the wafer; and a step of diffusing the impurity from above the wafer to reach at least the active layer.
1. A method of manufacturing a semiconductor laser, comprising the steps of: forming a first diffusion region of a conductivity type and a high impurity concentration; and a second diffusion region of a second conductivity type and a low impurity concentration.
JP1285788A 1988-01-22 1988-01-22 Manufacture of semiconductor laser Pending JPH01187987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1285788A JPH01187987A (en) 1988-01-22 1988-01-22 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1285788A JPH01187987A (en) 1988-01-22 1988-01-22 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01187987A true JPH01187987A (en) 1989-07-27

Family

ID=11817074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1285788A Pending JPH01187987A (en) 1988-01-22 1988-01-22 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01187987A (en)

Similar Documents

Publication Publication Date Title
JPH0381317B2 (en)
JP2553731B2 (en) Semiconductor optical device
JPH01146390A (en) Semiconductor device
KR900003844B1 (en) Semiconductor laser device and manufacturing method thereof
JPH01187987A (en) Manufacture of semiconductor laser
JP3763459B2 (en) Semiconductor laser device and manufacturing method thereof
JPH0834338B2 (en) Semiconductor laser
Bellavance et al. Room‐temperature mesa lasers grown by selective liquid phase epitaxy
JPH0233990A (en) Semiconductor light emitting element
JPS6352479B2 (en)
JPH0964459A (en) Semiconductor device
JP2000244067A (en) Semiconductor laser element and its manufacture
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPH07283482A (en) Semiconductor laser and manufacture thereof
JPH02202085A (en) Manufacture of semiconductor laser device
JPS5911621A (en) Manufacture of optical semiconductor element by liquid phase crystal growth
JPH0851255A (en) Semiconductor laser and its manufacturing method
JPH0632335B2 (en) Method for manufacturing semiconductor laser
JP3755107B2 (en) Semiconductor laser device manufacturing method and semiconductor laser device
JPH02154472A (en) Semiconductor modulation doping structure
JP2538613B2 (en) Semiconductor laser and manufacturing method thereof
JPH01187986A (en) Manufacture of semiconductor laser
KR100290861B1 (en) Manufacturing method of semiconductor laser diode
JP4518233B2 (en) Manufacturing method of semiconductor device
JPH0936475A (en) Fabrication of ridge waveguide semiconductor laser