JPH01187753A - Superposed field energy analyzing device utilizing uneven electric field - Google Patents

Superposed field energy analyzing device utilizing uneven electric field

Info

Publication number
JPH01187753A
JPH01187753A JP63012356A JP1235688A JPH01187753A JP H01187753 A JPH01187753 A JP H01187753A JP 63012356 A JP63012356 A JP 63012356A JP 1235688 A JP1235688 A JP 1235688A JP H01187753 A JPH01187753 A JP H01187753A
Authority
JP
Japan
Prior art keywords
electric field
field
magnetic
electrode
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63012356A
Other languages
Japanese (ja)
Other versions
JP2603673B2 (en
Inventor
Katsushige Tsuno
勝重 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP63012356A priority Critical patent/JP2603673B2/en
Publication of JPH01187753A publication Critical patent/JPH01187753A/en
Application granted granted Critical
Publication of JP2603673B2 publication Critical patent/JP2603673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To attain image focusing condition without astigmatism by giving the first and second terms of electric field such factors as in linear relation in a certain slope. CONSTITUTION:A superposed field type analyzer device includes a uniform magnetic field and an electrode and magnetic pole giving an electric field whose third term and higher in the electric field direction x orthogonally intersecting the mentioned magnetic field is ignorable, wherein the factors to the first and second terms of electric field are in linear relation in a certain slope. Magnetic field distribution according to this shape is for ex. such that the electrode is in cylindrical form, and the radius of curvature in its center is Re, and the shape of magnetic pole is not specifically restricted but uniform, and the first and second terms are small enough to ignore. The interelectrode distance Se is related to the distance between magnetic poles Sm as Se=Sm to give the relation Se>he, where he is the width of the electrode. This allows attainment of an image focusing condition without astigmatism even in case the interpolar gap is approx. equal to the gap between magnetic poles with lesser influence of the edge field.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は重畳場エネルギー分析装置に係わり、特に不均
一電場を利用して非点なし結像条件を達成するようにし
た重畳場エネルギー分析装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a superimposed field energy analyzer, and particularly to a superimposed field energy analyzer that utilizes a non-uniform electric field to achieve astigmatism-free imaging conditions. It is related to.

〔従来の技術〕[Conventional technology]

電場と磁場とを直交させ、重畳場に直交する方向に荷電
粒子を直進させることによりエネルギー分析を行う重畳
場エネルギー分析装置(ExB型エネルギーフィルター
)においては、磁場方向にはレンズ作用がないためにビ
ームはその入射の開き角に応じて拡がり、丸いビームを
入射させても出射ビームは細長くなり非点結像してしま
う。
In the superimposed field energy analyzer (ExB type energy filter), which performs energy analysis by making the electric field and magnetic field orthogonal and making charged particles move straight in the direction perpendicular to the superimposed field, there is no lens effect in the direction of the magnetic field. The beam spreads according to the aperture angle of incidence, and even if a round beam is incident, the output beam becomes elongated and forms an astigmatic image.

これに対して非点なし結像をするEXB型エネルギーフ
ィルターには種々のアイデアのものが提案されている。
On the other hand, various ideas have been proposed for EXB type energy filters that form images without astigmatism.

例えば第4図に示すような傾斜磁極を使用して磁場にB
 y =Bw (1+ x/Rm)なる式で表される勾
配を持たせて収束作用を行わせ、電場を一様とすること
により非点なし結像を行わせている。ただし、RmはE
ffi面中心における磁場の曲率半径で、磁極面の延長
が交差する点と磁極中心線との距離にほぼ等しい。
For example, use gradient magnetic poles as shown in Figure 4 to apply B to the magnetic field.
A gradient expressed by the formula y = Bw (1+ x/Rm) is provided to perform a convergence effect, and by making the electric field uniform, astigmatism-free imaging is performed. However, Rm is E
The radius of curvature of the magnetic field at the center of the ffi plane, which is approximately equal to the distance between the point where the extensions of the magnetic pole surfaces intersect and the magnetic pole center line.

また第5図に示すように傾斜磁極に加えて円筒電極を使
用し、E x = E w (1+ x / Re )
なる式で表される不均一電場も加えるようにしたものも
提案されている。ただしReは円筒電極の曲率半径であ
る。この場合はRmとReとの組み合わせにより非点な
し結像条件を見出している。なお、第4図は第5図にお
いてRe=■の特別の場合である。
Furthermore, as shown in Fig. 5, a cylindrical electrode is used in addition to the tilted magnetic pole, and E x = E w (1+ x / Re )
A method has also been proposed in which a nonuniform electric field expressed by the following equation is also added. However, Re is the radius of curvature of the cylindrical electrode. In this case, astigmatism-free imaging conditions are found by combining Rm and Re. Note that FIG. 4 is a special case of Re=■ in FIG. 5.

〔発明が解決すべき課題〕[Problem to be solved by the invention]

ところで、第4図、第5図に示したものは、いづれもS
b>Seという関係にあり、電場を一般的に Ex−Ew (1+a、x+b、x” +c、x2 +
・・・・・・)・・・(1)のように表現した時に、b
a、C,・・・項が存在しないということが非点なし結
像条件の暗黙の前提であった。2次以上の項が無視出来
ない時に、非点無し結像条件がくずれるのか、それとも
これらの高次項は無視し得るのかについては、従来考察
されることがなかった。又、Seがsbよりずっと小さ
く、従って、電極間隙が電極の幅よりずっと小さい電極
においては、通常2次以上の項が著しく小さく、その影
響を考慮する必要がなかった。
By the way, the things shown in Figures 4 and 5 are both S
There is a relationship b>Se, and the electric field is generally expressed as Ex-Ew (1+a, x+b, x" +c, x2 +
・・・・・・)・・・When expressed as in (1), b
The absence of terms a, C, . . . was an implicit premise of the astigmatism-free imaging condition. Conventionally, no consideration has been given as to whether the astigmatism-free imaging condition is violated when the terms of second order or higher cannot be ignored, or whether these higher order terms can be ignored. Furthermore, in electrodes where Se is much smaller than sb and therefore the electrode gap is much smaller than the width of the electrode, the terms of second order or higher are usually extremely small, and there is no need to consider their effects.

しかし、この種のフィルターにおいて、縁端場の影響を
少なくする1つの有効な方法として、例えば第6図に示
すようにSb#Seなるフィルターがあるが、Sb#S
eでは、電場分布をコントロールすることが極めて困難
となる。即ち、1次の係数a、を丁度良い値に合わせこ
むことの困難さに加え2次以上の項を零にすることがほ
とんど不可能である。
However, in this type of filter, one effective method for reducing the influence of the edge field is the Sb#Se filter as shown in FIG.
e, it becomes extremely difficult to control the electric field distribution. That is, in addition to the difficulty of adjusting the first-order coefficient a to an appropriate value, it is almost impossible to reduce the second-order and higher-order terms to zero.

本発明は上記課題を解決するためのもので、Sb#se
のフィルターにおいて、前述の困難を取り除き、非点な
し結像を与えることのできる不均一電場を利用した重畳
場エネルギー分析装置を捷供することを目的とする。
The present invention is intended to solve the above-mentioned problems.
The present invention aims to provide a superimposed field energy analyzer using a non-uniform electric field that can eliminate the above-mentioned difficulties and provide astigmatism-free imaging in a filter.

(課題を解決するための手段〕 そのために本発明の不均一電場を利用した重畳場エネル
ギー分析装置は、−様な磁場と、これと直交する電場方
向Xの3次以上の項が無視し得る電場とを与える磁極と
電極を有する重畳場型分析装=において、電場の!°次
と2次のJJJの係数を所定の傾きの直線関係としたこ
とを特徴とする。
(Means for Solving the Problems) For this purpose, the superimposed field energy analyzer using a non-uniform electric field of the present invention has a --like magnetic field and third-order or higher-order terms in the electric field direction X orthogonal to this can be ignored. A superimposed field analyzer having magnetic poles and electrodes that provide an electric field is characterized in that the JJJ coefficients of the !° order and the second order of the electric field are in a linear relationship with a predetermined slope.

〔作用〕[Effect]

本発明の不均一電場を利用した重畳場エネルギー分析装
置は、磁場を一様とし、これと直交する電場が3次以上
の項を無視し得るとき、電場の1次の項と2次の項とを
所定の傾きの直線関係とすることにより磁極間隙と電極
間隙とがほぼ等しい場合においても容易に非点なし結像
条件を与えることが可能となる。
The superimposed field energy analyzer using a non-uniform electric field of the present invention makes the magnetic field uniform, and when the electric field perpendicular to the magnetic field can ignore terms of third order or higher order, the first and second order terms of the electric field can be analyzed. By forming a linear relationship with a predetermined slope, it is possible to easily provide an astigmatism-free imaging condition even when the magnetic pole gap and the electrode gap are approximately equal.

〔実施例〕〔Example〕

以下、実施例を図面を参照して説明する。 Examples will be described below with reference to the drawings.

第1図は本発明における不均一電場の1次、2次の係数
の関係を示す図、第2図は本発明で得られた電子軌道を
示す図、第3図は本発明の重畳場エネルギー分析装置の
電極、磁極形状の一実施例を示す図である。
Fig. 1 is a diagram showing the relationship between the first and second order coefficients of the non-uniform electric field in the present invention, Fig. 2 is a diagram showing the electron trajectory obtained in the present invention, and Fig. 3 is a diagram showing the superimposed field energy of the present invention. FIG. 2 is a diagram showing an example of the shape of electrodes and magnetic poles of an analyzer.

第3図において、電極は円筒形で、その中心部の曲率半
径はReであり、また11’Mの形状はここでは特に限
定しないが、はぼ−様で1次、2次等の項が極めて小さ
く無視することが可能なような磁場分布を与える形状を
して1゛机そして電極〒距離Ssと磁極開路#Smとは
、Se=Smであり、従って電極の幅をheとしたとき
、Se>heの関係にある。即ち、第4図、第5図の場
合のような磁場分布にXの一次に比例する項は作らない
磁極形状とし、電極形状は、a、x項を作るように、同
心円形状をなすものとする。ただし、電極の幅heが小
さいため、(1)式におけるb0x2項が必然的に発生
する。即ち、本発明においては電場の1次項aoxと2
次項す、x”とを組合せて非点なし結像の条件を実現す
るものである。
In Fig. 3, the electrode is cylindrical, and the radius of curvature at its center is Re.Although the shape of 11'M is not particularly limited here, it is cylindrical and has linear and quadratic terms. The electrode has a shape that gives an extremely small and negligible magnetic field distribution, and the distance Ss and the magnetic pole opening #Sm are Se=Sm, and therefore, when the width of the electrode is he, The relationship is Se>he. In other words, the magnetic pole shape does not create a term linearly proportional to X in the magnetic field distribution as in the case of Figures 4 and 5, and the electrode shape has a concentric circular shape so as to create terms a and x. do. However, since the width he of the electrode is small, the b0x2 term in equation (1) inevitably occurs. That is, in the present invention, the first-order terms aox and 2
The conditions for astigmatism-free imaging are realized by combining the following items x and x''.

従来、非点なし結像を与える条件は、磁場又は電場の1
次の勾配(即ち、Xの正、負において符号を反転する)
によって与えられると考えられて来た。しかし、種々の
電場、磁場の下で電子の軌道を計算した所、電場、磁場
の2次項(Xの正、負に拘らず同符号)によっても非点
なし結像の条件を作り出すことが出来ることがわかった
Conventionally, the conditions for providing astigmatism-free imaging are as follows: 1 of the magnetic or electric field.
The following gradient (i.e., reverse the sign at the positive and negative points of X)
It has been thought that it is given by However, by calculating the orbits of electrons under various electric and magnetic fields, it is possible to create conditions for astigmatism-free imaging using the quadratic terms of the electric and magnetic fields (same sign regardless of whether X is positive or negative). I understand.

即ち、已x=Ew (1+a、x+b、 x”)とおい
た時、非点なし結像を行うaoとす、の組合せについて
調べた結果、次式で示すように係数a。
That is, when we set x=Ew (1+a, x+b, x''), we investigated the combinations of ao and , which perform astigmatism-free imaging, and found that the coefficient a is as shown in the following equation.

とす、を所定の傾きの直線関係で与えればよいことが判
明した。
It has been found that it is sufficient to give , and by a linear relationship with a predetermined slope.

a、=a、。+’Q、224 b、−(2)ここで、定
数項aaaは2次項す、が存在しない場合の条件で、 a、o=−(1/2Ro   1/Rv )”’ (3
)と表わすことが出来る。Roはサイクロトロン半径で
、RO= t−/nπと表わされる値であり有効なフィ
ルター長しによって決まる。フィルター長し=70鶴の
場合、2Ro =31.51であり、a、、−−1/3
4であり、Rrは縁端基の存在による小さい補正項であ
る。第2図はフィルター長L = 70 mmの場合に
ついての(2)式を表示したものである。ここで用いた
フィルタの場合、Rr=428(龍−1)である。
a,=a,. +'Q, 224 b, -(2) Here, the constant term aaa is the condition when there is no quadratic term, a, o=-(1/2Ro 1/Rv)"' (3
) can be expressed as Ro is the cyclotron radius, expressed as RO=t-/nπ, and is determined by the effective filter length. In the case of filter length = 70 Tsuru, 2Ro = 31.51, a,, -1/3
4, and Rr is a small correction term due to the presence of edge groups. FIG. 2 shows equation (2) in the case of filter length L = 70 mm. In the case of the filter used here, Rr=428 (Ryu-1).

なお、L=4o*、/Hの場合について計算してみると
、ago”’−1/27となり、b、=o、。
In addition, when calculating for the case of L=4o*, /H, it becomes ago'''-1/27, and b,=o.

2と仮定すると、a、。−−0,0324となる。Assuming 2, a,. --0,0324.

この値を用いて、電子の軌道を計算してみると、第2図
に示すように、Z=67mにおいて両方向の軌道が共に
フォーカスした。従って、b、の係数0.224は、フ
ィルター長しに無関係の定数であることが分かる。
When the electron trajectory was calculated using this value, as shown in FIG. 2, the trajectory in both directions was focused at Z=67m. Therefore, it can be seen that the coefficient of b, 0.224, is a constant that is independent of the filter length.

したがって、(2)、(3)式を満足するように電場の
1次と2次の係数を与えるように条件を設定すれば、磁
極間隙と電極間隙とがほぼ等しい条件においても非点な
し結像を与えることができる。
Therefore, if conditions are set to give the first and second coefficients of the electric field so as to satisfy equations (2) and (3), astigmatism can be achieved even under conditions where the magnetic pole gap and the electrode gap are almost equal. You can give images.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、磁場分布を一様とし、電
場分布がXの2次の項まで無視し得ない場合、1次と2
次の係数を所定の傾きの直線関係に選ぶことにより非点
なし結像を行なわせることが可能となり、縁端基の影響
を少なくした磁極間隙と電極間隙とがほぼ等しい場合に
おいても非点無しの結像条件を与えることが可能となる
As described above, according to the present invention, when the magnetic field distribution is uniform and the electric field distribution cannot be ignored up to the second order term of
By selecting the following coefficients in a linear relationship with a predetermined slope, it is possible to perform astigmatism-free imaging, and there is no astigmatism even when the magnetic pole gap and the electrode gap are almost equal, reducing the influence of edge groups. It becomes possible to provide the following imaging conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非点なし結像の条件を説明するための図、第2
図は軌道を示す図、第3図は本発明の不均一電場を利用
した重畳場エネルギー分析装置の電極、磁極形状の一実
施例を示す図、第4図は従来の傾斜磁極を用いた重畳場
エネルギー分析装置を示す図、第5図は不均一電場を用
いた従来のエネルギー分析装置を示す図、第6図は電極
間距離と磁極間距離を略等しくした従来のエネルギー分
析装置を示す図である。 Se・・・電極間隙、Sm・・・磁極間隙、he・・・
電極幅。 出  願  人  日本電子株式会社 代理人 弁理士  蛭 川 昌 信(外4名)第1図 第2図 第3図 S 第5図 第4図 第6図
Figure 1 is a diagram for explaining the conditions for astigmatism-free imaging;
The figure shows the trajectory, Figure 3 shows an example of the shape of the electrodes and magnetic poles of the superimposed field energy analyzer using a non-uniform electric field of the present invention, and Figure 4 shows the conventional superposition using gradient magnetic poles. Figure 5 shows a conventional energy analyzer using a non-uniform electric field; Figure 6 shows a conventional energy analyzer in which the distance between electrodes and the distance between magnetic poles are approximately equal. It is. Se...electrode gap, Sm...magnetic pole gap, he...
Electrode width. Applicant JEOL Ltd. Agent Patent Attorney Masanobu Hirukawa (4 others) Figure 1 Figure 2 Figure 3 S Figure 5 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 一様な磁場と、これと直交する電場方向xの3次以上の
項が無視し得る電場とを与える磁極と電極を有する重畳
場型分析装置において、電場の1次と2次の項の係数を
所定の傾きの直線関係としたことを特徴とする不均一電
場を利用した重畳場エネルギー分析装置。
In a superimposed field analyzer that has magnetic poles and electrodes that provide a uniform magnetic field and an electric field in which third-order or higher-order terms in the electric field direction x perpendicular to this can be ignored, the coefficients of the first- and second-order terms of the electric field are A superimposed field energy analysis device using a non-uniform electric field, characterized in that the is a linear relationship with a predetermined slope.
JP63012356A 1988-01-21 1988-01-21 Superposed field energy analyzer using inhomogeneous electric field Expired - Lifetime JP2603673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63012356A JP2603673B2 (en) 1988-01-21 1988-01-21 Superposed field energy analyzer using inhomogeneous electric field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63012356A JP2603673B2 (en) 1988-01-21 1988-01-21 Superposed field energy analyzer using inhomogeneous electric field

Publications (2)

Publication Number Publication Date
JPH01187753A true JPH01187753A (en) 1989-07-27
JP2603673B2 JP2603673B2 (en) 1997-04-23

Family

ID=11802998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63012356A Expired - Lifetime JP2603673B2 (en) 1988-01-21 1988-01-21 Superposed field energy analyzer using inhomogeneous electric field

Country Status (1)

Country Link
JP (1) JP2603673B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59837A (en) * 1982-06-23 1984-01-06 Fujitsu Ltd Wien filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59837A (en) * 1982-06-23 1984-01-06 Fujitsu Ltd Wien filter

Also Published As

Publication number Publication date
JP2603673B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
DE10159454B4 (en) Corrector for correcting first-order, first-degree chromatic aberrations
CA1187543A (en) Multiple sextupole system for the correction of third and higher order aberration
US5142189A (en) In-line type electron gun for a color cathode ray tube
EP3518269B1 (en) Aberration corrector and electron microscope with such corrector
US7095031B2 (en) Method of automatically correcting aberrations in charged-particle beam and apparatus therefor
KR102039920B1 (en) Apparatus for treating ion beam
JPH01187753A (en) Superposed field energy analyzing device utilizing uneven electric field
WO1996002935A1 (en) Electronic energy filter
US5051593A (en) Electrostatic multipole lens for charged-particle beam
JPS5868848A (en) Structure of electron gun
EP0539524B1 (en) A deflection system with a controlled beam spot
JP2003502802A (en) Electrostatic corrector to remove chromatic aberration of particle lens
US6046537A (en) Color picture tube having reduced picture distortion
JP3397347B2 (en) Omega filter
JPS58192252A (en) Cathode-ray tube device
US20120235053A1 (en) Mass analyzer apparatus and systems operative for focusing ribbon ion beams and for separating desired ion species from unwanted ion species in ribbon ion beams
JPH04322099A (en) Charged particle device
JPH01239754A (en) Energy filter utilizing uneven magnetic field
SU1048533A1 (en) Apparatus for aberration correction
JPH076707A (en) Color picture tube device
JPS63231868A (en) Energy analyzer using superimposed field
EP1361596A3 (en) In-line type electron gun and color picture tube apparatus using the same
JP2956706B2 (en) Mass spectrometer
JPS63231864A (en) Energy analyzer with asymmetrical shape electrode plate
JPS63231866A (en) Energy analyzer using inclined magnetic pole

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term