JPH01187724A - Vacuum vessel - Google Patents

Vacuum vessel

Info

Publication number
JPH01187724A
JPH01187724A JP63008302A JP830288A JPH01187724A JP H01187724 A JPH01187724 A JP H01187724A JP 63008302 A JP63008302 A JP 63008302A JP 830288 A JP830288 A JP 830288A JP H01187724 A JPH01187724 A JP H01187724A
Authority
JP
Japan
Prior art keywords
alumina
methane
carrier
vacuum vessel
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63008302A
Other languages
Japanese (ja)
Inventor
Toshiro Yamashina
山科 俊郎
Masao Hashiba
橋場 正男
Akira Misumi
三角 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63008302A priority Critical patent/JPH01187724A/en
Publication of JPH01187724A publication Critical patent/JPH01187724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

PURPOSE:To facilitate reduction of hydrocarbon gas, especially methane in a vacuum vessel by arranging therein a catalytic substance including paradium by the use of alumina as a carrier. CONSTITUTION:A catalyst including paradium by the use of alumina as a carrier is arranged in a vacuum vessel so that hydrocarbon gas, especially methane in the vessel is adhered. It is found that a substance including paradium by the use of alumina as a carrier adheres hydrocarbon gas when vapor exists. It is therefore possible to reduce hydrocarbon gas, especially methane in the vacuum vessel.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アルミナを担体としパラジウムを含有させた
触媒を利用し2通常の排気手段では除去困難で、かつ電
子管等の実用時に害作業を及ぼす炭化水素系ガス特にメ
タンを継続的に除去できるようにした真空容器に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention utilizes a catalyst containing palladium using alumina as a carrier, which is difficult to remove with ordinary exhaust means, and which requires harmful work when put into practical use with electron tubes, etc. The present invention relates to a vacuum container capable of continuously removing hydrocarbon gases, particularly methane, which may cause harmful effects.

[従来の技術] 真空容器たとえば電子管の真空外囲器いわゆるバルブ内
の排気は、通常よく知られているように、機械的な真空
ポンプや油拡散ポンプ等を使用して真空度をかなり高く
してから、ゲッタを用いて一層真空度を高めている。ゲ
ッタは化学的に活性な金属を用いて、気体を化学吸着さ
せるのであるから、ゲッタの種類によって吸着されるガ
スの種類も異なる。そのため、電子管の場合、昔から一
般に、陰極の電子放出能力を低下させる酸素を吸着する
能力の良好なゲッタ例えばバリウムやマグネシウム系の
ものが多く使用されてきた。
[Prior Art] As is well known, the vacuum inside a vacuum container, such as an electron tube vacuum envelope, so-called valve, is usually evacuated by using a mechanical vacuum pump, oil diffusion pump, etc. to a fairly high degree of vacuum. After that, a getter is used to further increase the degree of vacuum. Since getters use chemically active metals to chemically adsorb gases, the types of gases adsorbed differ depending on the type of getter. For this reason, in the case of electron tubes, getters such as barium and magnesium getters, which have a good ability to adsorb oxygen, which reduces the electron emission ability of the cathode, have been used for a long time.

しかし、古くから指摘されて来たように、油を使用する
ポンプ類からの油蒸気の逆流その他の原因で、かなり高
い真空度に達してからも、残留気体中に炭素を含有する
気体が存在している。
However, as has been pointed out for a long time, even after reaching a fairly high degree of vacuum, carbon-containing gas remains in the residual gas due to backflow of oil vapor from pumps that use oil or other causes. are doing.

一方、水分は、特に日本の気候状態では、大気中にかな
り多く含まれ、除去作業や保管状態に良く注意しても、
固体表面が薄い水の膜で被覆されていることが多い。こ
の種の水分が温度の低い物体の表面に付着している場合
、真空容器内の水蒸気の分圧が相当低い所まで排気する
ことは可能であるが、水蒸気発生の原因となる物体表面
に吸着された水の量は少なくないから(吸着物体の表面
積が比較的に極めて大きい)、長時間排気作業を続けて
も1次々に蒸発気化して、なかなか除去し切れるもので
はない。
On the other hand, there is a considerable amount of moisture in the atmosphere, especially in Japan's climate, and even if careful attention is paid to removal work and storage conditions,
Solid surfaces are often coated with a thin film of water. If this type of moisture adheres to the surface of a low-temperature object, it is possible to evacuate it to a point where the partial pressure of water vapor in the vacuum container is considerably low, but it may be adsorbed to the surface of the object, causing the generation of water vapor. Since the amount of water removed is not small (the surface area of the adsorbing object is relatively large), even if the exhaust operation is continued for a long time, it will evaporate one after another and will not be completely removed.

また、近年の研究の結果、バリウムゲッタを使用した管
内では、バリウム膜により、残留した炭素を含む気体と
、水蒸気とで、炭化水素系ガス、代表的にはメタンガス
が生成されることが判明している。
In addition, recent research has revealed that in tubes using barium getters, hydrocarbon gases, typically methane gas, are generated by the barium film and residual carbon-containing gas and water vapor. ing.

メタンを始めとする炭化水素系ガスは、現在非常に多く
使用されているテレビジョン受像管やデータ表示管等の
陰極線管の電子ビーム放出源である酸化物陰極の特性に
対して悪い影響を与え、また、その他の真空容器を使用
した各種の製造作業(薄膜形成等)、計測作業(表面解
析等)など、真空中で動作するデバイス、装置の動作に
、多くの場合、多大な害作業を及ぼしていることが判っ
ているが、従来は炭化水素系ガスに良く作用する排気手
段は無かった。
Hydrocarbon gases such as methane have a negative effect on the characteristics of the oxide cathode, which is the source of electron beams in cathode ray tubes such as television picture tubes and data display tubes, which are now widely used. In addition, various manufacturing operations (thin film formation, etc.) and measurement operations (surface analysis, etc.) using other vacuum containers often cause great harm to the operation of devices and equipment that operate in a vacuum. However, until now, there has been no exhaust means that effectively works on hydrocarbon gases.

[発明が解決しようとする課題] 本発明は、真空容器内に炭化水素系ガス、代表的にはメ
タンガスが残留して種々の害作用を及ぼしているという
従来の課題を解決し、これらのガスに対して有効な吸着
手段を備えた真空容器を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention solves the conventional problem of hydrocarbon gases, typically methane gas, remaining in a vacuum container and causing various harmful effects, and It is an object of the present invention to provide a vacuum container equipped with an effective adsorption means for.

[課題を解決するための手段] 上記課題を解決するために本発明においては、容器の内
部に、アルミナを担体としパラジウムを含有させた触媒
を設置することにより、水分の存在下に、容器内の炭化
水素系ガス特にメタンを吸着させ、減少させるようにし
た。実際には、通常の真空゛容器内には、上記の如く、
水蒸気源は多量に存在するから特に水蒸気を導入する必
要はない。
[Means for Solving the Problems] In order to solve the above problems, in the present invention, a catalyst containing alumina as a carrier and palladium is installed inside the container, so that the inside of the container can be heated in the presence of moisture. It adsorbs and reduces hydrocarbon gases, especially methane. In fact, as mentioned above, inside a normal vacuum container,
Since there is a large amount of water vapor source, there is no need to particularly introduce water vapor.

なお、アルミナを担体としてパラジウムを含有させた物
体は触媒として商品化されており、容易に入手できる。
Note that objects containing palladium using alumina as a carrier have been commercialized as catalysts and are easily available.

[、作用] アルミナを担体としパラジウムを含有させた物質が、水
蒸気が存在する場合に炭化水素系ガスを吸着することは
1本発明者等が実験的に見出したところであるが、その
詳細な機構は未だ明らかではない。
[, Action] The present inventors have experimentally discovered that a material containing palladium using alumina as a carrier adsorbs hydrocarbon gas in the presence of water vapor, but the detailed mechanism is unclear. is still not clear.

上述のように、何等対策しなければ、特にバリウムゲッ
タを使用しているような場合、炭化水素系ガスの濃度は
、比較的かなり高い値にまで上昇する恐れがあるが、上
記のような手段をとれば、炭化水素系ガスは継続的に吸
着されて行くので。
As mentioned above, if no measures are taken, the concentration of hydrocarbon gases can rise to relatively high values, especially when barium getters are used; If you take , hydrocarbon gases will be continuously adsorbed.

そのガス圧は比較的低く抑制され、従来のような顕著な
害作用1例えば陰極線管の陰極面の第1格子電極の電子
ビーム通過孔に対応する個所に、残留するメタンガスの
イオンtr[によって、電子放出物質の担体であるニッ
ケル基板にまで孔が穿たれてしまうよなことはなくなる
The gas pressure is suppressed to a relatively low level, and there is no significant adverse effect as in the past, for example, due to the residual methane gas ions tr [in the area corresponding to the electron beam passing hole of the first grid electrode on the cathode surface of the cathode ray tube, This eliminates the possibility of holes being drilled into the nickel substrate, which is the carrier for the electron-emitting material.

[実施例] 以下、本発明を実施例(本発明者の実験)によって更に
詳細に説明する。
[Example] Hereinafter, the present invention will be explained in more detail using Examples (experiments conducted by the inventor).

第1図は本発明者が実験に用いた実施例を示し、図中、
1はベアードーアルパート・ゲージ(以下B−Aゲージ
と略称)、 2は流量調節可能なリークバルブ、3はオ
リフィス、4はアルミナを担体としてパラジウムを含有
させた触媒物質、5は此の触媒物質の温度測定可能な熱
電対、6はB−Aゲージ、7はマスフィルタ(四極型質
量分析計:Q、M、S)、 8はリークバルブ、9はタ
ーボ分子ポンプ(T、M、P)、10は回転ポンプであ
る。B−Aゲージ1とリークバルブ2とオリフィス3と
を用いて一定速度でメタンを広い真空容器内に流し続け
ることが出来る。
FIG. 1 shows an example used in experiments by the present inventor, and in the figure,
1 is a Beard-Alpert gauge (hereinafter abbreviated as B-A gauge), 2 is a leak valve that can adjust the flow rate, 3 is an orifice, 4 is a catalyst material containing palladium using alumina as a carrier, and 5 is this catalyst material Thermocouple capable of measuring temperature, 6 is B-A gauge, 7 is mass filter (quadrupole mass spectrometer: Q, M, S), 8 is leak valve, 9 is turbo molecular pump (T, M, P) , 10 are rotary pumps. Using the B-A gauge 1, leak valve 2, and orifice 3, methane can be kept flowing at a constant rate into a wide vacuum container.

また、マスフィルタ7で各種のガスのイオン電流、即ち
、それらのガスの多少を見ることが出来る。
Further, the ion current of various gases, that is, the amounts of those gases can be seen through the mass filter 7.

第2図は、第1図に示した容器内に、アルミナを担体と
してパラジウムを含有させた触媒物質4と水分を(予め
)存在させた状態で、そこへ一定速度でメタンを導入し
続けながら、数分後に触媒物質4を400℃に加熱した
ときの様子を示す図で、左側にはマスフィルタ7で測定
したメタンと水分のイオン電流を、右側には全圧力(実
線)を示しである。この図から、触媒物質の温度上昇と
共に全圧力は上昇し、水分のイオン電流も増加している
にもかかわらず、メタンのイオン電流は減少しているこ
とが判る。
Figure 2 shows a state in which a catalyst material 4 containing palladium using alumina as a carrier and water are (preliminarily) present in the container shown in Figure 1, while methane is continuously introduced at a constant rate. This is a diagram showing what happens when the catalyst material 4 is heated to 400°C after a few minutes.The left side shows the ion current of methane and water measured by the mass filter 7, and the right side shows the total pressure (solid line). . From this figure, it can be seen that as the temperature of the catalyst material increases, the total pressure increases and the ion current of methane decreases even though the ion current of water also increases.

第3図は、第1図に示した容器内に、アルミナを担体と
してパラジウムを含有させた触媒物質4を設置し、そこ
へ一定速度でメタンを導入し続けながら、数分後に触媒
物質4を200℃に加熱し。
FIG. 3 shows a catalyst material 4 containing palladium using alumina as a carrier placed in the container shown in FIG. Heat to 200℃.

約20分後から水分の導入を行い、−旦停止し、更に約
40分会経過してから再度水分を導入した時の模様を示
す図で、この図では全圧力は破線で示しである。この図
から、水分が導入されていない時は、触媒物質は作用せ
ず、水分が導入されるとメタンのイオン電流値が低下し
ているのが判る。
This is a diagram showing the situation when moisture was introduced after about 20 minutes, stopped, and then introduced again after about 40 minutes. In this figure, the total pressure is indicated by a broken line. From this figure, it can be seen that when no moisture is introduced, the catalyst substance does not act, and when moisture is introduced, the methane ion current value decreases.

第4図は容器内に上記触媒物質4を設置し、−定速度で
メタンを導入し続け、且つ触媒物質を加熱していても、
水分を導入しなければメタンは減少しないことを示して
いる。
FIG. 4 shows that the catalyst material 4 is placed in a container, - methane is continued to be introduced at a constant rate, and the catalyst material is heated.
This shows that methane does not decrease unless water is introduced.

上記実施例での実験から、アルミナを担体としてパラジ
ウムを含有させた触媒物質を真空容器内に設置し、メタ
ンと水分を共存させることによるメタン減少効果は明ら
かである。なお、上記実施例では、メタンに対する効果
についてだけ述べたが、他の炭化水素系ガスの減少に関
しても同様な結果が得られることは勿論である。
From the experiments in the above examples, it is clear that the methane reduction effect is achieved by placing a catalyst material containing palladium using alumina as a carrier in a vacuum container and allowing methane and water to coexist. In the above embodiment, only the effect on methane was described, but it goes without saying that similar results can be obtained with respect to the reduction of other hydrocarbon gases.

[発明の効果] 以上説明したように本発明によれば、アルミナを担体と
してパラジウムを含有させた触媒物質を真空容器内に設
置することにより、他の方法では減少させることが困難
な炭化水素系ガス特にメタンを減少させることができる
[Effects of the Invention] As explained above, according to the present invention, by installing a catalyst material containing palladium using alumina as a carrier in a vacuum container, hydrocarbons that are difficult to reduce by other methods can be reduced. Gases, especially methane, can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明者が実験に用いた実施例を示す図、第2
〜4図は実施例による実験結果を示す図である。 1・・・ベアードーアルパ−1〜・ゲージ、2・・・流
に調節可能なリークバルブ、3・・・オリフィス、4・
・・アルミナを担体としてパラジウムを含有させた触媒
物質、5・・・触媒物質の温度測定可能な熱電対、6・
・・[3−Aゲージ、7・・・マスフィルタ(四極型質
欺分析計: Q、M、S) 、 8・・・リークバルブ
、9・・・ターボ分子ポンプ第  1  図 \ 10−己1フ区a・′ツノ” 第 4 図 唾  ぜ (分)
Figure 1 is a diagram showing an example used in experiments by the present inventor;
Figures 4 to 4 are diagrams showing experimental results according to Examples. 1... Beard Alper 1~ Gauge, 2... Leak valve adjustable to flow, 3... Orifice, 4...
... Catalyst material containing palladium using alumina as a carrier, 5... Thermocouple capable of measuring the temperature of the catalyst material, 6.
...[3-A gauge, 7...mass filter (quadrupole quality analyzer: Q, M, S), 8...leak valve, 9...turbo molecular pump Figure 1\10-self 1st section a・'horn' 4th figure saliva ze (minute)

Claims (1)

【特許請求の範囲】[Claims] 1、容器の内部に、アルミナを担体としパラジウウを含
有させた触媒を設置してなることを特徴とする真空容器
1. A vacuum container characterized by having a catalyst containing palladium using alumina as a carrier installed inside the container.
JP63008302A 1988-01-20 1988-01-20 Vacuum vessel Pending JPH01187724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63008302A JPH01187724A (en) 1988-01-20 1988-01-20 Vacuum vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63008302A JPH01187724A (en) 1988-01-20 1988-01-20 Vacuum vessel

Publications (1)

Publication Number Publication Date
JPH01187724A true JPH01187724A (en) 1989-07-27

Family

ID=11689357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63008302A Pending JPH01187724A (en) 1988-01-20 1988-01-20 Vacuum vessel

Country Status (1)

Country Link
JP (1) JPH01187724A (en)

Similar Documents

Publication Publication Date Title
McCarty et al. Decomposition of formic acid on Ni (110): I. Flash decomposition from the clean surface and flash desorption of reaction products
Mulson et al. Corrosion of tungsten and iridium by field desorption of nitrogen and carbon monoxide
Czanderna The effect of cyclic oxygen adsorption and reduction on a silver surface
Lichtman et al. Electron probe surface mass spectrometry study of CO on molybdenum
Alpert Production and measurement of ultrahigh vacuum
JPH01187724A (en) Vacuum vessel
Smith et al. Adsorption kinetics of Cs on GaAs
Huber et al. XPS analysis of (100) GaAs surfaces after applying a variety of technology-etchants
Holland Theory and design of getter-ion pumps
Krishnan et al. Auger electron spectroscopy study of the chemisorption of iodine on zirconium
US2141644A (en) Manufacture of evacuated metal envelopes
JP2681028B2 (en) Evacuation system
Wolsky et al. The investigation of residual gases in vacuum systems
Bennette et al. Low‐Energy Electron Interaction with Coadsorbates on Tungsten
JP2001108184A (en) Vacuum heat insulating body
Shooter et al. Hydrogen-deuterium exchange on clean nickel surfaces
Berman Methods of pumping speed and gas release measurement in ionization gauge heads—A review
Janssen et al. Fem and volumetric studies of silver-nitrous oxide and silver-oxygen interactions
JP2000082416A (en) Phosphor screen and its formation method
Gungle et al. A Selective Getter for Metal Halide Lamps
JPH01209646A (en) Sample chamber evacuation device
Hobson et al. Behavior of hydrogen in ion sources with hot filaments at very low pressures
Feuerstein et al. Stress‐Induced Desorption from Aluminum, Magnesium, and Molybdenum
JP2967608B2 (en) Silicon surface analysis method
JPH1186777A (en) Ion pump