JPH01187422A - Thermometer for low temperature - Google Patents

Thermometer for low temperature

Info

Publication number
JPH01187422A
JPH01187422A JP1298788A JP1298788A JPH01187422A JP H01187422 A JPH01187422 A JP H01187422A JP 1298788 A JP1298788 A JP 1298788A JP 1298788 A JP1298788 A JP 1298788A JP H01187422 A JPH01187422 A JP H01187422A
Authority
JP
Japan
Prior art keywords
temperature
superconducting
measure
thermometer
superconducting materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1298788A
Other languages
Japanese (ja)
Inventor
Hisashi Nakatsui
久 中津井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1298788A priority Critical patent/JPH01187422A/en
Publication of JPH01187422A publication Critical patent/JPH01187422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To measure temperature over a wide range from low temperature to extremely low temperature by arranging superconducting materials, providing electrodes so that they are connected in parallel or series, and taking a measurement based upon the value of a current flowing among them. CONSTITUTION:The thermometer 1 is mounted on the surface of a body S to be measured to measure its temperature. Then the superconducting materials 3-6 with which a base plate 2 is coated become zero in resistance when reaching their different critical temperature values. Therefore, a superconducting material whose critical temperature corresponds to the measured temperature decreases in area resistance and the current flows between electrodes 7 and 8. Its current value is measured to measure the temperature and a voltage applied at this time may be a fine voltage by various batteries, etc. Further, when superconducting materials are used for lead wires 9a and 9b, current loss is eliminated and the life of an in-use battery is prolonged greatly to obtain an economical merit.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、低温或いは極低温を測定するための低温用温
度計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a low temperature thermometer for measuring low or extremely low temperatures.

[従来の技術] 従来、−膜内に低温或いは極低温の温度を広範囲に正確
に測定し得る温度計は殆ど知られていない。−100℃
程度の低温用温度計には、SiC結晶、5nSe薄膜か
ら成るサーミスタが用いられているが、この低温度用温
度計は時定数が30〜60秒と長く、正確な温度測定が
難しいという欠点がある。
[Prior Art] Hitherto, there are almost no known thermometers that can accurately measure low or extremely low temperatures within a membrane over a wide range. -100℃
Thermistors made of SiC crystals and 5nSe thin films are used in low-temperature thermometers, but these low-temperature thermometers have a long time constant of 30 to 60 seconds, making accurate temperature measurement difficult. be.

また極低温用の温度計としては、Ge半導体素子を使用
した抵抗式温度計がある。この抵抗式温度計はその電気
抵抗を四端子法で測定することにより、温度を間接的に
検出するものである。しかし、このGe半導体素子はカ
プセル内にヘリウムガスを封入しているため、熱伝導率
が小さく正確な温度測定が難しい。更に、カプセル内の
配線には熱の侵入を抑えるために、極めて細いリード線
が使用されているので、過大電流が僅かでも流れると断
線してしまう虞れがある。
Further, as a thermometer for extremely low temperatures, there is a resistance thermometer using a Ge semiconductor element. This resistance thermometer indirectly detects temperature by measuring its electrical resistance using the four-terminal method. However, since this Ge semiconductor element has helium gas sealed in its capsule, its thermal conductivity is low and accurate temperature measurement is difficult. Furthermore, since extremely thin lead wires are used in the wiring inside the capsule in order to suppress the intrusion of heat, there is a risk that the wires will break if even a small amount of excessive current flows.

常温から高温測定が可能な温度計が従来までに種々製造
されているのに対して、このように低温から極低温まで
の広範囲の温度測定を正確になし得る温度計は、現在の
ところ皆無と云ってよい。
While a variety of thermometers that can measure temperatures from room temperature to high temperatures have been manufactured to date, there are currently no thermometers that can accurately measure a wide range of temperatures from low to extremely low temperatures. You can say that.

[発明の目的] 本発明の目的は、上述の欠点を解消し、低温度の温度検
知部分に超伝導材を用いて、低温から極低温までの広範
囲の温度が測定できる低温用温度計を提供することにあ
る。
[Object of the Invention] An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a low temperature thermometer that can measure a wide range of temperatures from low temperatures to extremely low temperatures by using a superconducting material in the low temperature temperature detection part. It's about doing.

[発明の概要] 上述の目的を達成するための本発明の要旨は、低温にお
ける超伝導臨界温度が互いに異なる複数個の超伝導材を
配設し、これらの超伝導材を並列的又は直列的に接続す
るように電極を設け、これらの電極間を流れる電流値を
基に低温測定を行うことを特徴とする低温用温度計であ
る。
[Summary of the Invention] The gist of the present invention to achieve the above object is to arrange a plurality of superconducting materials having different superconducting critical temperatures at low temperatures, and to connect these superconducting materials in parallel or in series. This low-temperature thermometer is characterized in that electrodes are provided so as to be connected to the low-temperature thermometer, and the low-temperature measurement is performed based on the value of the current flowing between these electrodes.

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Embodiments of the invention] The present invention will be explained in detail based on illustrated embodiments.

第1図は低温用温度計1の平面図、第2図は断面図であ
る。図面において、例えば金属製の基板2上に薄膜状の
超伝導材3〜6がコーティングされ、これらの超伝導材
3〜6は互いに超伝導臨界温度が異なり、隣接した状態
で配列されている。
FIG. 1 is a plan view of the low temperature thermometer 1, and FIG. 2 is a sectional view. In the drawing, thin film-like superconducting materials 3 to 6 are coated on a substrate 2 made of metal, for example, and these superconducting materials 3 to 6 have different superconducting critical temperatures and are arranged adjacent to each other.

超伝導材3〜6には、例えば23にで臨界温度に達する
Nb3Geから成る超伝導材3.30にで臨界温度に達
するLa−Ba−Cu−0系のセラミ−/ り、或いは
Y:0.4、Ba:0.6、Cub:2.22のような
組成比の超伝導材4、更に98にで臨界温度に達するY
−Ba−Cu−0系の四元合金から成る超伝導材5.1
23にで臨界温度に達するY−Ba−Cu−0系の同様
に四元合金から成る超伝導材6が用いられている。
The superconducting materials 3 to 6 include, for example, a superconducting material 3 made of Nb3Ge that reaches its critical temperature at 23, a La-Ba-Cu-0 based ceramic that reaches its critical temperature at 30, or Y:0. .4, superconducting material 4 with a composition ratio such as Ba: 0.6, Cub: 2.22, and Y reaching a critical temperature at 98.
-Superconducting material made of Ba-Cu-0 based quaternary alloy 5.1
A superconducting material 6 made of a Y-Ba-Cu-0 based quaternary alloy which reaches its critical temperature at 23 is used.

これらの超伝導材3〜6の両端には、超伝導材3〜6が
並列的に接続されるように電極7.8が接続され、更に
電極7.8にはそれぞれリード線9a、9bが接続され
、超伝導材3〜6と電極7.8を保護する目的でエポキ
シ樹脂等に代表される合成樹脂被覆部材10がオーバー
コーテイングされている。この合成樹脂被覆部材10は
電極7.8とリード線9a、9bを固着する目的を併せ
持つ材料が選択されている。また、基板2には熱伝導性
が良いAu、Ag、Cu或いはステンレス等の熱伝導性
の良好な合金を用いることが好適である。
Electrodes 7.8 are connected to both ends of these superconducting materials 3 to 6 so that the superconducting materials 3 to 6 are connected in parallel, and lead wires 9a and 9b are connected to the electrodes 7.8, respectively. A synthetic resin coating member 10 typified by epoxy resin or the like is overcoated to protect the superconducting materials 3 to 6 and the electrodes 7.8. For this synthetic resin covering member 10, a material is selected which also has the purpose of fixing the electrode 7.8 and the lead wires 9a, 9b. Further, it is preferable to use an alloy with good thermal conductivity such as Au, Ag, Cu, or stainless steel, which has good thermal conductivity, for the substrate 2.

また、98に−123にの間の任意の臨界温度を得る場
合には、Y−Ba−Cu−0系の組成比を種々選択する
ことによって、目的とする温度の検出を可能とする超伝
導材を得ることができる。
In addition, when obtaining an arbitrary critical temperature between 98 and -123, by selecting various composition ratios of the Y-Ba-Cu-0 system, superconducting material can be obtained.

更に、前記以外の超伝導材においても、合金の組成比を
変更することによって所望の臨界温度とすることが可能
である。従って、低温領域での温度を測定するためには
、種々の組成と組成比を持ったセラミック又は結晶から
成る超伝導材を用いればよいことになる。
Furthermore, even in superconducting materials other than those mentioned above, it is possible to achieve a desired critical temperature by changing the composition ratio of the alloy. Therefore, in order to measure temperature in a low temperature region, it is sufficient to use superconducting materials made of ceramics or crystals having various compositions and composition ratios.

第3図は低温用温度計1を被測定物Sの表面に接着して
温度測定を行う場合を示し、各超伝導材3〜6がそれぞ
れ定められた臨界温度に達すると、該当する超伝導材3
〜6の抵抗が零になる。
Figure 3 shows a case where temperature measurement is carried out by gluing the low temperature thermometer 1 to the surface of the object to be measured S. When each of the superconducting materials 3 to 6 reaches a predetermined critical temperature, the corresponding superconductor material 3
~6 resistance becomes zero.

従って、臨界温度に対応した超伝導材の面積抵抗が減少
した分だけ電流が流れるので、この電流値を測定するこ
とによって温度計測が可能となり、この場合の印加電圧
は各種電池等による微小電流で充分である。更に、リー
ド線9a、9bも超伝導材とすると電流損失が無くなる
ので、使用する電池の寿命は著しく延長され、温度計と
しても延命され経済的なメリットがある。
Therefore, a current flows by the amount that the sheet resistance of the superconducting material decreases corresponding to the critical temperature, so temperature can be measured by measuring this current value. That's enough. Furthermore, if the lead wires 9a and 9b are also made of superconducting material, there will be no current loss, so the life of the battery used will be significantly extended, and the life of the thermometer will also be extended, which is economically advantageous.

本実施例によって得られる低温用温度計1の温度測定範
囲は、第1表の通りである。
The temperature measurement range of the low temperature thermometer 1 obtained in this example is shown in Table 1.

第1表 超伝導材         温度K Nb3Ge             23L a :
0.4、B a :0.6、Cu O:2.22 30
Y、Ba2 、Cu207      98Y :0.
4、B a :0.f3、Cuo:2.22 123即
ち、第1表に示すように、この低温用温度計1は23に
という液体水素温度(20K)近くまでの低温から、1
23K(−150℃)までの低温に至るまでの温度を測
定することができる。
Table 1 Superconducting material Temperature K Nb3Ge 23L a:
0.4, Ba: 0.6, CuO: 2.22 30
Y, Ba2, Cu207 98Y: 0.
4, B a :0. f3, Cuo: 2.22 123 That is, as shown in Table 1, this low-temperature thermometer 1 can measure temperatures from as low as 23, which is close to the liquid hydrogen temperature (20K), to 1.
Temperatures down to 23K (-150C) can be measured.

先の実施例では、超伝導材を4種類選定して、測定温度
を4点とした場合の実施例を示したが、例えばLa−B
a−Cu−0系、Y−Ba−Cu−0系の超伝導材の組
成比を変化させることにより、超伝導材の臨界温度が著
しく変化することを利用して、測定温度範囲内における
測定点を増加し、測定をより連続的とすることができる
。例えば、 Y−Ba−Cu−0系の超伝導材の場合に
は、98に〜123にとの広範囲の温度測定を可能にし
ているので、組成比を変化させることによって例えば5
に毎の臨界温度を有する超伝導材を造れば、先の実施例
の4種類の超伝導材を更に4種類増やし、8ステツプの
温度測定が可能となる。
In the previous example, an example was shown in which four types of superconducting materials were selected and the measurement temperature was set at four points, but for example, La-B
By changing the composition ratio of the a-Cu-0 series and Y-Ba-Cu-0 series superconducting materials, the critical temperature of the superconducting materials changes significantly, which allows measurement within the measurement temperature range. The number of points can be increased to make the measurements more continuous. For example, in the case of Y-Ba-Cu-0-based superconducting material, it is possible to measure a wide range of temperatures from 98 to 123, so by changing the composition ratio,
If a superconducting material having a critical temperature for each is created, the four types of superconducting materials used in the previous example can be added to four more types, making it possible to measure temperature in eight steps.

また、第4図に示すようにNb3Snから成る超伝導材
11を用いて液体水素温度20Kを、La:1.85、
Sr:0.5、CuO2から成る超伝導材12を用いて
液体窒素温度77Kを測定するための超伝導材11.1
2を筒状の二層構造とした二点計測用の低温用温度計が
得られる。
In addition, as shown in FIG. 4, using a superconducting material 11 made of Nb3Sn, the temperature of liquid hydrogen was 20K, La: 1.85,
Superconducting material 11.1 for measuring liquid nitrogen temperature of 77K using superconducting material 12 made of Sr: 0.5 and CuO2
A low-temperature thermometer for two-point measurement with 2 having a cylindrical two-layer structure is obtained.

この場合は回路的には超伝導材11.12を直列的に接
続して、その両側に電極13.14を設けた状態となる
。なお、超伝導材11.12の臨界温度はそれぞれ18
K、56にである。
In this case, in terms of the circuit, superconducting materials 11 and 12 are connected in series, and electrodes 13 and 14 are provided on both sides of the superconducting materials 11 and 12. In addition, the critical temperatures of superconducting materials 11 and 12 are 18
K, at 56.

上述の実施例のように、特定の臨界温度温度を有する多
数点の超伝導材を任意に配設することにより、低温から
極低温の多点温度計測が可能になる。また、他の任意の
形状の低温用温度計を目的に応じて造ることもできる。
As in the embodiments described above, by arbitrarily arranging multiple points of superconducting material having a specific critical temperature, it becomes possible to measure temperatures at multiple points from low to extremely low temperatures. Furthermore, other low-temperature thermometers of any shape can be manufactured depending on the purpose.

なお、寸法的にも超伝導材は数JLmの幅のものが使用
でき、極めて小型の低温用温度計が実現できる。
In addition, in terms of dimensions, a superconducting material with a width of several JLm can be used, making it possible to realize an extremely compact low-temperature thermometer.

[発明の効果] 以上説明したように本発明に係る低温用温度計は、超伝
導材の種類、組成比、面積抵抗比の変化を任意に選択す
ることによって、−100℃以下の極低温度までを測定
することが可能になる。また、測定温度ステップは超伝
導材の種類と組成比を変えることにより面積抵抗の変化
に基づき、任意に多数ステップの温度測定を可能とし、
殆ど連続して低温度から極低温までの温度を測定するこ
とができる。
[Effects of the Invention] As explained above, the low temperature thermometer according to the present invention can be used at extremely low temperatures below -100°C by arbitrarily selecting the type of superconducting material, the composition ratio, and the changes in the area resistance ratio. It becomes possible to measure up to In addition, by changing the type and composition ratio of the superconducting material, the measurement temperature step is based on the change in sheet resistance, making it possible to arbitrarily measure temperature in multiple steps.
Temperatures from low to extremely low temperatures can be measured almost continuously.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る低温用温度計の実施例を示し、第1
図は平面図、第2図は第1図のI−n線に沿った断面図
、第3図は測温状態の斜視図、第4図は円形温度計の断
面図である。 符号1は温度計、2は基板、3〜6.11.12は超伝
導材、7.8.13.14は電極、9a、9bはリード
線、lOは合成樹脂被覆部材である。 特許出願人  キャノン株式会社
The drawings show an embodiment of the low-temperature thermometer according to the present invention.
The figure is a plan view, FIG. 2 is a sectional view taken along line I--n in FIG. 1, FIG. 3 is a perspective view of the temperature measuring state, and FIG. 4 is a sectional view of the circular thermometer. Reference numeral 1 is a thermometer, 2 is a substrate, 3 to 6.11.12 are superconducting materials, 7.8.13.14 are electrodes, 9a and 9b are lead wires, and IO is a synthetic resin coating member. Patent applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、低温における超伝導臨界温度が互いに異なる複数個
の超伝導材を配設し、これらの超伝導材を並列的又は直
列的に接続するように電極を設け、これらの電極間を流
れる電流値を基に低温測定を行うことを特徴とする低温
用温度計。
1. Arrange multiple superconducting materials with different superconducting critical temperatures at low temperatures, provide electrodes to connect these superconducting materials in parallel or in series, and calculate the value of the current flowing between these electrodes. A low-temperature thermometer that measures low temperatures based on .
JP1298788A 1988-01-22 1988-01-22 Thermometer for low temperature Pending JPH01187422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1298788A JPH01187422A (en) 1988-01-22 1988-01-22 Thermometer for low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1298788A JPH01187422A (en) 1988-01-22 1988-01-22 Thermometer for low temperature

Publications (1)

Publication Number Publication Date
JPH01187422A true JPH01187422A (en) 1989-07-26

Family

ID=11820557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1298788A Pending JPH01187422A (en) 1988-01-22 1988-01-22 Thermometer for low temperature

Country Status (1)

Country Link
JP (1) JPH01187422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012112574A1 (en) * 2012-12-18 2014-06-18 Endress + Hauser Wetzer Gmbh + Co. Kg Sensor element, thermometer and method for determining a temperature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012112574A1 (en) * 2012-12-18 2014-06-18 Endress + Hauser Wetzer Gmbh + Co. Kg Sensor element, thermometer and method for determining a temperature
US9995639B2 (en) 2012-12-18 2018-06-12 Endress + Hauser Wetzer Gmbh + Co. Kg Sensor element, thermometer as well as method for determining a temperature

Similar Documents

Publication Publication Date Title
US4307373A (en) Solid state sensor element
Cohen et al. GaAs p‐n Junction Diodes for Wide Range Thermometry
US4246786A (en) Fast response temperature sensor and method of making
Ikegami et al. Thick-film thermistor and its applications
EP0332251B1 (en) Device comprising a temperature sensor
JPH01187422A (en) Thermometer for low temperature
JPH01187423A (en) Thermometer for low temperature
US3194071A (en) Heat flow meter
FI102695B (en) CB-based tunneling thermometer
US20030177826A1 (en) Liquid nitrogen level sensor-monitor device using high Tc superconductors and method of manufacture thereof
EP0367416B1 (en) Superconductive apparatus comprising a superconductive device airtightly packaged
Ricketts et al. Low frequency excess noise in bulk YBa2Cu3O7 samples
JPH023311B2 (en)
Gee et al. An improved hot-probe apparatus for the measurement of Seebeck coefficient
JPH075050A (en) Temperature sensor
Courts et al. Stability of Cernox™ Resistance Temperature Sensors
JPH04134259A (en) Measuring method for oxygen concentration and oxygen sensor
JPH0194219A (en) Oxide superconductor resistance liquid-level meter
JPH0146010B2 (en)
Plackowski et al. Normal-state Ettingshausen effect in La2-xSrxCuO4
JPH0213939B2 (en)
JPH0256976A (en) Liquid level sensor and manufacture thereof
JP2752674B2 (en) Sensor
JPH02211675A (en) Superconducting device
Anatychuk et al. Multi-element thermoelectric converters