JPH01186672A - Schottky junction structure - Google Patents

Schottky junction structure

Info

Publication number
JPH01186672A
JPH01186672A JP717988A JP717988A JPH01186672A JP H01186672 A JPH01186672 A JP H01186672A JP 717988 A JP717988 A JP 717988A JP 717988 A JP717988 A JP 717988A JP H01186672 A JPH01186672 A JP H01186672A
Authority
JP
Japan
Prior art keywords
metal
semiconductor
schottky barrier
height
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP717988A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hirose
和之 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP717988A priority Critical patent/JPH01186672A/en
Publication of JPH01186672A publication Critical patent/JPH01186672A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to control the height of Schottky barrier by shaping a kind of metal having a large chemical combination energy with III-V compound semiconductor in a specified thickness before forming another kind of metal on the surface of III-V compound semiconductor. CONSTITUTION:Between metal 3 and III-V compound semiconductor 1, another kind of metal 2 having a large chemical combination energy with the semiconductor 1 is formed as thick as a 1/10-30atoms thick layer. Consequently, the strong chemical combination between the metal 2 and the semiconductor assures a sharp and stable interface. As a result, development of defects in the semiconductor 1 which is regarded to cause pinning of Fermi level is restrained and, therefore, the Schottky barrier is not a definite value but decided based on work function of the metal 2. The height of the Schottky barrier of the semiconductor 1 can be thereby controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体のショットキー障壁高さが制御可能なシ
ョットキー接合構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a Schottky junction structure in which the Schottky barrier height of a semiconductor can be controlled.

(従来の技術) 単一金属を半導体と接触させた時のショットキー障壁の
高さは、理想的には金属の仕事関数と半導体の電子親和
力との差によって与えられるとされていた[フィジクス
・オブ・セミコンダクター・デバイス(Physics
 of Sem1conductorDevices。
(Prior art) It was thought that the height of the Schottky barrier when a single metal is brought into contact with a semiconductor is ideally given by the difference between the work function of the metal and the electron affinity of the semiconductor [Physics. Of Semiconductor Devices (Physics)
of Sem1conductorDevices.

1969年、John Wiley R5ons、In
c、)] 、従って任意の半導体に対してショットキー
障壁の高さを変化させる為には、仕事関数の異なる金属
と接触させればよいはずであった。しかし、半導体の種
類によっては、仕事関数の異なる金属を接触させても、
フェルミレベルが一定値に固定(ピニング)され、ショ
ットキー障壁の高さを変化させることの不可能なものも
あった。
1969, John Wiley R5ons, In
c, )], therefore, in order to change the height of the Schottky barrier for any semiconductor, it would be sufficient to contact it with metals with different work functions. However, depending on the type of semiconductor, even if metals with different work functions are brought into contact,
In some cases, the Fermi level was fixed (pinned) to a constant value, making it impossible to change the height of the Schottky barrier.

産業上の利用価値の高いI−V族生導体はその顕著な例
であった[フィジカル・レビュー・レターズ(Phy、
Rev、Lett、 )第22巻、 1969年、第1
433ベージ]。
IV group bioconductors with high industrial utility value were a notable example [Physical Review Letters (Phys.
Rev, Lett, ) Volume 22, 1969, No. 1
433 pages].

(発明が解決しようとする問題点) ショットキー障壁の高さは、例えば整流特性を向上させ
る為には高い方が良く、接触抵抗を低減させる為には低
い方が良い。さらにはショットキー障壁の高さは、トラ
ンジスターのしきい値電圧を決定する重要な要素である
。従って前述のように利用価値の高い■−V族化合物半
導体において、ショーツトキー障壁の高さが制御不可能
であることは、デバイス設計の上で大きなハンディとな
っていた。
(Problems to be Solved by the Invention) The height of the Schottky barrier is preferably higher, for example, in order to improve rectification characteristics, and lower, in order to reduce contact resistance. Furthermore, the height of the Schottky barrier is an important factor determining the threshold voltage of a transistor. Therefore, as mentioned above, the inability to control the height of the Shortkey barrier in the ■-V group compound semiconductor, which has high utility value, has been a major handicap in device design.

本発明の目的は、半導体のショットキー障壁の高さが制
御可能なショットキー接合構造を提供することにある。
An object of the present invention is to provide a Schottky junction structure in which the height of the Schottky barrier of a semiconductor can be controlled.

(問題点を解決するための手段) 本発明は、金属と■−V族化合物半導体ショットキー接
合構造において、上記金属と上記半導体との間に、上記
半導体との化学結合エネルギーの大きな別種金属が1/
10〜30原子層の厚さだけ形成されていることを特徴
とする。
(Means for Solving the Problems) The present invention provides a Schottky junction structure of a metal and a -V group compound semiconductor, in which a different metal having a large chemical bond energy with the semiconductor is present between the metal and the semiconductor. 1/
It is characterized by being formed to a thickness of 10 to 30 atomic layers.

(作用) 本発明者は、金属/I[I−V族化合物半導体界面では
フェルミレベルがピニングされるか否かは厚さ1原子層
程度の金属を接触させた時に決定されること(ジャーナ
ル・オブ・バキューム・サイエンス・アンド・テクノロ
ジー(J、 Vac、 Sci、 Te−chnol、
)第17巻、1980年、第1019ページ)、また金
属の仕事関数は層厚が1−程度度ではバルク状態の値に
達せずに層厚が30層程度になって初めてバルク状態の
値に安★すること(ジャーナル・オブ・バキューム・サ
イエンス・アンド・テクノロジー (J、 Vac、 
 Set、 Technol、)第16巻、 1979
年。
(Function) The present inventor has discovered that whether or not the Fermi level is pinned at the metal/I[IV group compound semiconductor interface is determined when a metal with a thickness of about one atomic layer is brought into contact (Journal. of Vacuum Science and Technology (J, Vac, Sci, Te-channel,
), Vol. 17, 1980, p. 1019), and the work function of a metal does not reach its bulk state value when the layer thickness is about 1-degree, but reaches its bulk state value only when the layer thickness becomes about 30 layers. What to do cheaply (Journal of Vacuum Science and Technology (J, Vac,
Set, Technol, ) Volume 16, 1979
Year.

第1137ページ)に注目した。(page 1137).

そして、■−V合物半導体と接触した時にフェルミレベ
ルをピニングしない金属が唯一種でも存在すれば、その
金属を■−V族化合物半導体に1/10〜30原子層だ
け接触させ、ひき続いて任意の金属を30原子層以上接
触させれば、その時形成されるショットキー接合の障壁
高さは前者の金属の仕事関数にはよらず、後者の金属の
仕事関数によって決定されるものと考えられる。
If there is even a single metal that does not pin the Fermi level when it comes into contact with the ■-V compound semiconductor, then bring that metal into contact with the ■-V group compound semiconductor by 1/10 to 30 atomic layers, and then When 30 or more atomic layers of arbitrary metals are brought into contact, the barrier height of the Schottky junction formed at that time is thought to be determined by the work function of the latter metal, not by the work function of the former metal. .

例えばGaAsに対してそのフェルミレベルをピニング
しない金属を探し求めたところ、sbがそのような金属
であることが報告されていた(ジャーナル・オブ・バキ
ューム・サイエンス・アンド・テクノロジー(J、 V
ac、 Sci、 Technol、)第A4巻、 1
986年、第958ページ)。
For example, when searching for a metal that does not pin the Fermi level of GaAs, it was reported that sb was such a metal (Journal of Vacuum Science and Technology (J, V
ac, Sci, Technol,) Volume A4, 1
986, p. 958).

そこで、第1図に示すように清浄なGaAs基板1の上
にSb2を1原子層形成し、それにひき続いて任意の金
属3を30A以上形成したところ、。
Therefore, as shown in FIG. 1, one atomic layer of Sb2 was formed on a clean GaAs substrate 1, and subsequently, an arbitrary metal 3 of 30A or more was formed.

sbとGaAsとの間の強い化学結合が急峻で安定した
界面を保証し、その結果フェルミレベルのピニングを引
き起こす原因と考えられている半導体中の欠陥の発生や
金属/半導体間の相互拡散が抑制され、ショットキー障
壁は固定した値ではなく金属の仕事関数によって決定さ
れることが判明した。この様な効果はGaAsと強く化
学結合する他の金属、例えばDyやScにおいても見い
だされた。
The strong chemical bond between sb and GaAs ensures a steep and stable interface, thereby suppressing the occurrence of defects in the semiconductor and interdiffusion between metal and semiconductor, which are thought to cause Fermi-level pinning. It was found that the Schottky barrier is not determined by a fixed value but by the work function of the metal. Such an effect has also been found in other metals that have strong chemical bonds with GaAs, such as Dy and Sc.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

支I燵り 金属sbとGaAs半導体を用いて本発明のショットキ
ー接合構造を形成し、ショットキー障壁高さの金属の仕
事関数に対する依存性を検討したところ、ショットキー
障壁高さを大きな幅で制御することができた。実験はn
型GaAs(110)基板を超高真空内でへき開し、そ
の表面に室温でsbを分子線エピタキシャル成長法によ
って1/10原子厚でけ蒸着しな。ひき続いてその上に
金属として例えばAu、Pd、At、Tiを50OA蒸
着した。そして作製した試料に電極を収り付けた後にC
−■測定法により評価し、ショットキー障壁高さを決定
した。その結果ショットキー障壁高さは、この4種の金
属において各々の仕事関数の差を反映して、1500m
 e Vも変化した。この値は従来の障壁高さの変動幅
の30倍にも達した。
The Schottky junction structure of the present invention was formed using a supporting metal sb and a GaAs semiconductor, and the dependence of the Schottky barrier height on the work function of the metal was investigated. I was able to control it. The experiment is n
A type GaAs (110) substrate is cleaved in an ultra-high vacuum, and sb is deposited on its surface at room temperature to a thickness of 1/10 atomic by molecular beam epitaxial growth. Subsequently, 50OA of metal such as Au, Pd, At, and Ti was vapor-deposited thereon. After placing the electrodes on the prepared sample, C
−■Evaluation was performed using the measuring method, and the Schottky barrier height was determined. As a result, the Schottky barrier height was 1500 m, reflecting the difference in the work functions of these four metals.
eV also changed. This value reached 30 times the conventional barrier height variation range.

支11ム 金属ScとInP半導体を用いて本発明のショットキー
接合構造を形成し、ショットキー障壁高さの金属の仕事
関数に対する依存性を検討したところ、ショットキー障
壁高さを大きな幅で制御することができた。実験ばn型
I n P (110)基板を超高真空内でへき開し、
その表面に室温でScを分子線エピタキシャル成長法に
よって30原子層だけ蒸着した。ひき続いてその上に各
種金属としてAu、Pd、AI、Mnを各々100口A
蒸着した。
The Schottky junction structure of the present invention was formed using a supporting metal Sc and an InP semiconductor, and the dependence of the Schottky barrier height on the work function of the metal was investigated. We were able to. An experimental n-type I n P (110) substrate was cleaved in ultra-high vacuum;
A 30 atomic layer of Sc was deposited on the surface at room temperature by molecular beam epitaxial growth. Subsequently, 100 pieces each of Au, Pd, AI, and Mn were added as various metals on top of it.
Deposited.

そして作製した試料に電極を取り付けた後にC−■測定
法により評価し、ショットキー障壁高さを決定した。そ
の結果ショットキー障壁高さは、この種の金属において
それぞれの仕事関数の差を反映して、1020m e 
Vも変化した。この値は従来の障壁高さの変動幅の12
倍にも達した。
After attaching an electrode to the prepared sample, it was evaluated by the C-■ measurement method to determine the Schottky barrier height. As a result, the Schottky barrier height is 1020 m e
V has also changed. This value is 12% of the conventional barrier height variation range.
It has doubled.

支1燵1 金属I)yとGaAs半導体を用いて本発明のショット
キー接合構造を形成し、ショットキー障壁高さを測定し
たところ、ショットキー障壁高さを従来の構造と較べて
大きく変化させることができた。実験はn型GaAs(
100)基板上に、室温で分子線エピタキシャル成長法
によって[)yを3原子層だけ蒸着した。ひき続いてそ
の上にAIを1000A蒸着した。そして作製した試料
に電極を取り付は後にC−■測定法により評価し、ショ
ットキー障壁高さを決定した。その結果ショットキー障
壁高さは、従来のA I I nGaAs横遣の75ロ
meVと較べて150meV減少しフェルミレベルがピ
ンニングされていないことが分った。
When the Schottky junction structure of the present invention was formed using a metal I)y and a GaAs semiconductor and the Schottky barrier height was measured, it was found that the Schottky barrier height changed significantly compared to the conventional structure. I was able to do that. The experiment was conducted using n-type GaAs (
100) Three atomic layers of [)y were deposited on the substrate by molecular beam epitaxial growth at room temperature. Subsequently, AI was deposited thereon at 1000A. Then, an electrode was attached to the prepared sample, and the Schottky barrier height was determined by evaluating the sample using the C-■ measurement method. As a result, it was found that the Schottky barrier height was reduced by 150 meV compared to 75 meV for the conventional A I I nGaAs sidewall, and the Fermi level was not pinned.

本実施例においては分子線エピタキシャル成長により化
学結合の大きな金属としてSb、Sc。
In this example, Sb and Sc are used as metals with large chemical bonds by molecular beam epitaxial growth.

D、yをInP及びGaAs上に成長させた場合を示し
たが、本発明の効果は成長方法や金属の種類によるもの
ではない、。清浄な■−■族基板上に前記基板との化学
結合力が大きいものであれば良い。また■−V族化合物
としてはInPやGaASに限るものではな(InGa
As、InGaPなどにも適用できる。。
Although the case where D and y are grown on InP and GaAs is shown, the effects of the present invention are not dependent on the growth method or the type of metal. Any material that has a strong chemical bonding force with the substrate on a clean ■-■ group substrate may be used. ■-V group compounds are not limited to InP and GaAS (InGaS).
It can also be applied to As, InGaP, etc. .

(発明の効果〉 以上説明したように本発明は■−V族化合物半導体ショ
ットキー接合において、金属を■−V族化合物半導体表
面上に形成する前に、II−V族化合物半導体との化学
結合エネルギーの大きな別種金属を1/10〜30原子
層の厚さだけIII−V族化合物半導体上に形成するこ
とによって、ショットキー障壁高さを固定した値ではな
く、金属の仕事関数によって制御可能なものとする効果
がある。
(Effects of the Invention) As explained above, in the ■-V group compound semiconductor Schottky junction, the present invention provides chemical bonding with the II-V group compound semiconductor before metal is formed on the ■-V group compound semiconductor surface. By forming a different metal with high energy to a thickness of 1/10 to 30 atomic layers on a III-V group compound semiconductor, the Schottky barrier height can be controlled by the work function of the metal rather than a fixed value. It has a positive effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるショットキー接合構造を示す構造
図である。 1・・・GaAs 2・・・sb 3・・・任意の金属
FIG. 1 is a structural diagram showing a Schottky junction structure according to the present invention. 1...GaAs 2...sb 3...Any metal

Claims (1)

【特許請求の範囲】[Claims] (1)金属とIII−V族化合物半導体ショットキー接合
構造において、上記金属と上記半導体との間に、上記半
導体との化学結合エネルギーの大きな別種金属が1/1
0〜30原子層の厚さだけ形成されていることを特徴と
するショットキー接合構造。
(1) In a metal and III-V compound semiconductor Schottky junction structure, between the metal and the semiconductor, a different metal having a large chemical bond energy with the semiconductor is 1/1
A Schottky junction structure characterized by being formed to a thickness of 0 to 30 atomic layers.
JP717988A 1988-01-14 1988-01-14 Schottky junction structure Pending JPH01186672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP717988A JPH01186672A (en) 1988-01-14 1988-01-14 Schottky junction structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP717988A JPH01186672A (en) 1988-01-14 1988-01-14 Schottky junction structure

Publications (1)

Publication Number Publication Date
JPH01186672A true JPH01186672A (en) 1989-07-26

Family

ID=11658848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP717988A Pending JPH01186672A (en) 1988-01-14 1988-01-14 Schottky junction structure

Country Status (1)

Country Link
JP (1) JPH01186672A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083823A (en) * 2000-09-08 2002-03-22 Fujitsu Ltd Compound semiconductor device
US10833199B2 (en) 2016-11-18 2020-11-10 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height
US10872964B2 (en) 2016-06-17 2020-12-22 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US10879366B2 (en) 2011-11-23 2020-12-29 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US10937880B2 (en) 2002-08-12 2021-03-02 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11043571B2 (en) 2002-08-12 2021-06-22 Acorn Semi, Llc Insulated gate field effect transistor having passivated schottky barriers to the channel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222457A (en) * 1987-03-12 1988-09-16 Nec Corp Schottky junction structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222457A (en) * 1987-03-12 1988-09-16 Nec Corp Schottky junction structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083823A (en) * 2000-09-08 2002-03-22 Fujitsu Ltd Compound semiconductor device
US11355613B2 (en) 2002-08-12 2022-06-07 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US10937880B2 (en) 2002-08-12 2021-03-02 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US10950707B2 (en) 2002-08-12 2021-03-16 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11018237B2 (en) 2002-08-12 2021-05-25 Acorn Semi, Llc Method for depinning the fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11043571B2 (en) 2002-08-12 2021-06-22 Acorn Semi, Llc Insulated gate field effect transistor having passivated schottky barriers to the channel
US11056569B2 (en) 2002-08-12 2021-07-06 Acorn Semi, Llc Method for depinning the fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US10879366B2 (en) 2011-11-23 2020-12-29 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US11610974B2 (en) 2011-11-23 2023-03-21 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US11804533B2 (en) 2011-11-23 2023-10-31 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US10872964B2 (en) 2016-06-17 2020-12-22 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US11843040B2 (en) 2016-06-17 2023-12-12 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US10833199B2 (en) 2016-11-18 2020-11-10 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height
US11462643B2 (en) 2016-11-18 2022-10-04 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height

Similar Documents

Publication Publication Date Title
Weber et al. Near-band-gap photoluminescence of Si-Ge alloys
Schmitz et al. Metal contacts to n-type GaN
Katnani et al. Commutativity and transitivity of GaAs-AlAs-Ge (100) band offsets
Harris Delta-doping of semiconductors
Chiquito et al. Capacitance-voltage profile in a structure with negative differential capacitance caused by the presence of InAs/GaAs self-assembled quantum dots
US10209323B2 (en) Group III-V ferromagnetic/non-magnetic semiconductor heterojunctions and magnetodiodes
Morgan et al. Physics and technology of heterojunction devices
JPH01186672A (en) Schottky junction structure
De Vries et al. Critical current as a function of temperature in thin YBa2Cu3O7− δ films
Tsuruoka et al. Local electronic structures of GaMnAs observed by cross-sectional scanning tunneling microscopy
Cantile et al. Silicon‐induced local interface dipole in Al/GaAs (001) Schottky diodes
Forrest et al. Organic‐on‐GaAs contact barrier diodes
JPH065737B2 (en) Shoutoki-Joint structure
Hong et al. Interface states in modulation-doped In/sub 0.52/Al/sub 0.48/As/In/sub 0.53/Ga/sub 0.47/As heterostructures
Ito et al. Minority‐electron mobility in p‐type GaAs
Zhang Metal contacts to n-type AlGaAs grown by molecular beam epitaxy
Howarth et al. Barrier determinations on Ge–Al x Ga1− x As and GaAs–Al x Ga1− x As p‐n heterojunctions
Lakhdari et al. Schottky contact diameter effect on the electrical properties and interface states of Ti/Au/p-AlGaAs/GaAs/Au/Ni/Au Be-doped p-type MBE Schottky diodes
Cheriet et al. Energy band diagram and energy band offsets of Ga0. 6Al0. 4As0. 034Sb0. 966 (p)/Ga0. 6Al0. 4As0. 034Sb0. 966 (n)/InAs0. 9Sb0. 1 double interface determined by capacitance-voltage measurements
Gudovskikh et al. III-phosphides heterojunction solar cell interface properties from admittance spectroscopy
Hadi Comparative study of Schottky barrier heights of the different metals based on porous silicon prepared by photo-electrochemical etching (PECE)
Shapiro et al. Comparing the band structure of Ag (1 1 1) monolayers on Ni (1 1 1) and Ni (0 0 1)
Mosser et al. Low-frequency noise in AlGaAs/InGaAs/GaAs Hall micromagnetometers
Shashkin et al. Planar Schottky diodes with low barrier height for microwave detector application
JPH02137369A (en) Schottky junction structure