JPH01186291A - Method and device for manufacturing composite metal material - Google Patents

Method and device for manufacturing composite metal material

Info

Publication number
JPH01186291A
JPH01186291A JP945688A JP945688A JPH01186291A JP H01186291 A JPH01186291 A JP H01186291A JP 945688 A JP945688 A JP 945688A JP 945688 A JP945688 A JP 945688A JP H01186291 A JPH01186291 A JP H01186291A
Authority
JP
Japan
Prior art keywords
roll
materials
current
crimping
composite metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP945688A
Other languages
Japanese (ja)
Inventor
Akira Furukawa
明 古川
Masaru Fukuyama
勝 福山
Hironori Sato
裕紀 佐藤
Yuugo Yao
八尾 祐吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Nippon Steel Corp
Original Assignee
Neturen Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Nippon Steel Corp filed Critical Neturen Co Ltd
Priority to JP945688A priority Critical patent/JPH01186291A/en
Publication of JPH01186291A publication Critical patent/JPH01186291A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To eliminate the need for placing a whole device in a non-oxidizing atm. and to press-fit without being constrained by the thickness of a joining material by passing continuously the current having the voltage polarity selected so that a short circuit current is passed between materials under press-fitting roll, especially via a contact position. CONSTITUTION:A current I is passed in concentration via the respective abutting side surface layer part of materials A, B at a contact position T, the local contact of a projection part is generated at the alloy initial time on the respective surface of both members A, B having a micro-ruggedness, the contact resistance becomes large with the current I being passed concentrically to the position T and a local discharging phenomenon is also caused some times. Consequently, the pressure fitting by the rolling reduction force of a press-fitting roll 1 can be effectively performed by making the joining surface layer only at the necessary high temp. instantaneously, even if the heating temp. of the respective material in all is restricted to a comparatively low temp. such as to disregard oxidation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は連続送給可能なそれぞれ成分の異なる複数の帯
状、線状、棒状等の全圧材料を圧着して複合金属材とす
る方法および装置に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for forming a composite metal material by compressing a plurality of continuous-feedable full-pressure materials such as strips, wires, and rods having different components, and Regarding equipment.

(従来の技術) この種の複合金属材を製造する従来法として、例えば特
開昭60−177973号公報に開示される装置を第5
図(a)に示す。同装置は材料送り出し装置11.12
それぞれから送給される材料AおよびBを無酸化性雰囲
気室CH内にある押さえロール13と給電ロール14と
からなる対ロール間に送り、次いで圧着ロール15と給
電兼圧着ロール16からなる対ロール間を通過させるよ
うにし、加熱型−a17に接続される上記給電ロール1
4・給電兼圧着ロール16間に位置する材料AおよびB
を通電加熱して融点に近い温度まで昇温させ、圧着ロー
ル15と給電兼圧着ロール16とによって両者を融着圧
延して複合金属材CMとし、雰囲気室CH外に直結する
冷却装置18で冷却した後、巻取り装置19に巻取る構
成である。
(Prior Art) As a conventional method for manufacturing this type of composite metal material, for example, the apparatus disclosed in Japanese Patent Application Laid-open No. 177973/1983 is
Shown in Figure (a). The device is a material feeding device 11.12
Materials A and B fed from each are sent between a pair of rolls consisting of a presser roll 13 and a power supply roll 14 in a non-oxidizing atmosphere chamber CH, and then a pair of rolls consisting of a pressure roll 15 and a power supply/pressure roll 16. The above-mentioned power supply roll 1 is connected to the heating mold -a17 so as to pass between the
4. Materials A and B located between the power supply and pressure bonding rolls 16
Electric heating is applied to raise the temperature to a temperature close to the melting point, and both are fused and rolled by a pressure roll 15 and a power supply/press roll 16 to form a composite metal material CM, which is then cooled by a cooling device 18 directly connected to the outside of the atmosphere chamber CH. After that, it is wound up on a winding device 19.

また、特開昭59−218287号公報に開示される装
置を第5図(b)に示す。同装置は材料送り出し装置2
1から送給される材料Aを対の給電ロール23を介して
、また材料送り出し装置22から送給される材料Bをそ
の表面にフラックスFを塗布したうえ、対の給電ロール
24を介してそれぞれ対の給電兼圧着ロール25a・2
5b間に送り込み、材料Aは上記給電ロール23・給電
兼圧着ロール25aに接続する加熱電源26aからの給
電電流により、また材料Bは上記給電ロール24・給電
兼圧着ロール25bに接続する加熱電源26bからの給
電電流により、それぞれ個別に通電加熱して融点以下の
温度に昇温させるとともに、それぞれ通電加熱中の材料
AおよびBを不活性または還元性ガスが導入されるパイ
プ27内を通過させるようにし、両者を給電兼圧着ロー
ル25a・25b間で重合圧延して塑性変形し圧着接合
する構成である。
Further, an apparatus disclosed in Japanese Patent Application Laid-Open No. 59-218287 is shown in FIG. 5(b). The device is material feeding device 2
Material A fed from 1 is passed through a pair of power feeding rolls 23, and material B fed from a material feeding device 22 is coated with flux F on its surface and then passed through a pair of power feeding rolls 24. Pair of power supply/crimping rolls 25a/2
5b, the material A is fed by the power supply current from the heating power supply 26a connected to the power supply roll 23 and the power supply/crimping roll 25a, and the material B is fed by the heating power supply 26b connected to the power supply roll 24 and the power supply/crimping roll 25b. The materials A and B, which are being electrically heated, are passed through a pipe 27 into which an inert or reducing gas is introduced. The structure is such that the two are overlapped and rolled between the power feeding and pressure bonding rolls 25a and 25b to be plastically deformed and bonded by pressure.

従来法として、特開昭61−147979号公報に開示
される装置もある。第5図(c)に示す同装置は母材A
および合材Bを重ね合わせ状態で対の圧着ロール35・
36間に送り込んで加圧するに際し、母材Aの両側面に
コンタクト371゜372を接触させるとともに、合材
Bと接触する圧着ロール35の表層を形成する非導電物
質38中に円周面に沿って複数の誘導子39を埋設配置
し、当該誘導子39の圧着ロール35端面から突出する
一方端391は同方向側のコンタクト371に接触させ
、他方端392はコンタクト373を介してコンタクト
372ともども高周波電源のり−ドRa、Rbに接続す
る。これにより母材Aを高周波電流により通電加熱する
とともに、誘導子39によって誘導加熱し、母材Aの合
材B接触面を局部的に熔融もしくは半溶融の状態として
圧着する構成である。
As a conventional method, there is also an apparatus disclosed in Japanese Patent Laid-Open No. 147979/1983. The same device shown in Fig. 5(c) is used for base material A.
and a pair of pressure bonding rolls 35 with composite material B stacked on top of each other.
36, the contacts 371 and 372 are brought into contact with both side surfaces of the base material A, and the non-conductive material 38 that forms the surface layer of the pressure roll 35 that contacts the composite material B is placed along the circumferential surface. One end 391 of the inductor 39 protruding from the end surface of the pressure roll 35 is brought into contact with the contact 371 in the same direction, and the other end 392 is connected to the contact 372 via the contact 373 to receive high frequency signals. Connect to power supply ports Ra and Rb. Thereby, the base material A is electrically heated by a high-frequency current, and is also induction heated by the inductor 39, so that the contact surface of the composite material B of the base material A is locally molten or semi-molten and crimped.

(従来装置に存する問題点) 第5図(a)に示す従来法では、その詳細な説明にある
如く、加熱温度はいずれか一方の材料をその融点より若
干低い温度とするので、消費エネルギが大である。
(Problems with conventional equipment) In the conventional method shown in Figure 5(a), as shown in the detailed explanation, the heating temperature is set to a temperature slightly lower than the melting point of one of the materials, so energy consumption is reduced. It's large.

また、接合せんとする2種の材料間にかなり大きな融点
の差がある場合には、融点の低い一方の材料の融点に近
い温度を加熱温度とするので、−方の材料のヤング率は
他方の材料のそれに比べて極端に小さくなり、圧着ロー
ル15.16による少しの圧下刃で大きな変形を生ずる
こととなる。
Additionally, if there is a fairly large difference in melting point between two materials to be joined, the heating temperature is set to a temperature close to the melting point of the one material with the lower melting point, so the Young's modulus of the one material is lower than the other. It is extremely small compared to that of the material, and a small reduction blade by the pressure rolls 15, 16 will cause a large deformation.

従って、圧着ロールの入側、出側のマスフローを一定と
すると、一方の材料は他方の材料に比べて圧着ロールへ
の挿入スピードを遅くしなければならない。これがため
、通電区間で両者間に滑りが常時生ずることとなり、押
さえロール13.給電ロール14による押付力を大きく
することが出来ず、スパーク発生要因となり、スパーク
疵による製品品質を低下させる虞があった。
Therefore, if the mass flows on the inlet and outlet sides of the crimping roll are constant, one material must be inserted into the crimping roll at a slower speed than the other material. As a result, slipping always occurs between the two in the energized section, and the presser roll 13. It is not possible to increase the pressing force by the power supply roll 14, which causes spark generation, and there is a risk that product quality may be degraded due to spark defects.

その上、加熱温度を融点に近い温度とするので、装置全
体を無酸化雰囲気室CH内に置くことが必須とされ、か
つ製品を室外の大気開放部へ送り出すにあたり、冷却装
置による冷却が必須とされる。
Furthermore, since the heating temperature is close to the melting point, it is essential to place the entire device in a non-oxidizing atmosphere chamber CH, and cooling with a cooling device is essential before sending the product outdoors to the atmosphere. be done.

さらには、この接合法は大きな塑性変形を伴うことを前
提とし成立しているので、接合前の材料寸法に近い形で
の接合は不可能という弱点もある。
Furthermore, since this joining method is established on the premise that large plastic deformation is involved, it also has the disadvantage that it is impossible to join the materials in a form close to the material dimensions before joining.

第5図(b)に示す従来法では、材料A、 Bそれぞれ
を全断面にわたり融点以下の温度まで昇温させるので、
上記従来法同様に消費エネルギが大であり、加熱温度は
無酸化雰囲気設備を必須とする。
In the conventional method shown in Figure 5(b), each of materials A and B is heated to a temperature below the melting point over the entire cross section.
Like the conventional method described above, the energy consumption is large, and the heating temperature requires non-oxidizing atmosphere equipment.

そのうえ、材料A、Bそれぞれを加熱状態下で圧延して
塑性変形させ、圧着接合する構成であるので、材料A、
Bそれぞれを原寸法のまま圧着接合することは不可能で
ある。
Furthermore, since materials A and B are each rolled under heated conditions to be plastically deformed and then crimped and joined, materials A,
It is impossible to press-bond each of B with its original dimensions.

第5図(c)に示す従来法では、高周波電流を用いた直
接通電と誘導加熱との2手段による加熱であるので、少
なくとも合材Bが母材Aに比べて充分薄肉でないと、両
者の相乗的加熱効果を期待し得ない。換言すれば、当該
法は合材Bの厚み寸法が充分薄肉であることを必須条件
とする制約がある。
In the conventional method shown in Fig. 5(c), heating is performed by two means: direct energization using high-frequency current and induction heating, so if composite material B is not sufficiently thinner than base material A, both No synergistic heating effect can be expected. In other words, this method has a restriction that requires the thickness of the composite material B to be sufficiently thin.

また、確かに母材Aは合材B側表層が昇温するだけであ
るが、薄肉の合材Bは全断面が高温に加熱されるので、
合材Bの酸化が進む虞があり、対策設備が必要となる。
Also, it is true that only the surface layer of base material A on the side of composite material B rises in temperature, but the entire cross section of thin composite material B is heated to a high temperature, so
There is a risk that the oxidation of composite material B will progress, and countermeasure equipment will be required.

(発明の目的) 本発明は、連続送給可能なそれぞれ成分の異なる複数の
帯状、線状、棒状等の金属材料を圧着して複合金属材と
する場合の従来法に存する上述の問題点を解消するため
になされたもので、エネルギー消費が少なく、装置全体
を無酸化雰囲気内に置(必要はなく、接合材料の厚さ寸
法に拘束されずに実施可能であり、しかも高品質の製品
を確実に製造し得る複合金属材の製造方法および装置を
提供することを目的とする。
(Objective of the Invention) The present invention solves the above-mentioned problems that exist in the conventional method of press-bonding a plurality of continuous-feedable metal materials, such as strips, wires, rods, etc. each having different components, to form a composite metal material. This technology was developed to solve the problem, consumes less energy, does not require the entire device to be placed in a non-oxidizing atmosphere, can be carried out without being restricted by the thickness of the bonding material, and can produce high-quality products. It is an object of the present invention to provide a method and apparatus for manufacturing a composite metal material that can be manufactured reliably.

(発明の要旨) 本願発明の要旨は、圧着ロールへ送り込まれる複数の材
料それぞれに対して、圧着ロール下、就中接触位置を介
して材料間に短絡電流が流れるような選択された電圧極
性をもつ電流を連続的に流しつつ圧着することを特徴と
するにある。
SUMMARY OF THE INVENTION The present invention provides that each of a plurality of materials being fed to a crimp roll is provided with a selected voltage polarity such that a short circuit current flows between the materials under the crimp roll, particularly through the contact location. The method is characterized in that crimping is performed while continuously passing a current.

これを第1図(a)に従って詳述すれば、圧着ロール1
a・lb間(以下単に圧着ロール1という)へ送り込ま
れる接合用の金属材からなる材料AおよびBを圧着ロー
ル1で接合、圧着するに際し、本願発明は圧着ロール1
へ送り込まれる材料Aを流れる電流Iが9例えば矢印の
如く圧着ロール1方向へ向かうならば、当該電流Iの流
れが圧着ロール1下、就中黒点Tとして示す両材料A。
If this is explained in detail according to FIG. 1(a), the pressure roll 1
When joining and crimping materials A and B made of metal materials for bonding fed into the space between a and lb (hereinafter simply referred to as the crimping roll 1) with the crimping roll 1, the present invention provides the crimping roll 1.
For example, if the current I flowing through the material A flows in the direction of the crimping roll 1 as shown by the arrow, the flow of the current I is shown as a black dot T below the crimping roll 1.

Bの会合・接触位置を介して材料Bへと流れ込み、かつ
材料Bを送り込み方向に向かって流れるように、選択さ
れた電圧極性をそれぞれの材料A、 Bに印加するにあ
る。単相交流もしくは直流を用いれば上記が実現され、
また材料A、BおよびCを接合する場合ならば、三相交
流を用いれば実現される。
A selected voltage polarity is applied to each material A, B such that it flows into material B through the meeting/contact location of B and material B flows in the feed direction. The above can be achieved by using single-phase alternating current or direct current,
Furthermore, if materials A, B, and C are to be joined, this can be achieved by using three-phase alternating current.

(発明の作用) 本願発明では、電流■が第1図(a)の如く接触位置に
おける材料それぞれの当接側表層部経由で集中して流れ
、かつ当該部分の拡大断面を示す第1図(b)に見られ
るように、ミクロな凹凸がある両部材A、Bそれぞれの
表面は会合当初に凸部の局部的接触を生じ、当該位置に
電流■が集中的に流れて接触抵抗が大となり、ときには
局所的な放電現象も生ずる。従って、第1図(c)に示
す如く2両部材AおよびBそれぞれへの通電による昇温
温度特性曲線が実線イとなるように設定しても、相接す
る表層部のみは上記接触抵抗と放電現象により破線口で
示されるように融点TMに近い高温にまで昇温しで軟化
する。
(Function of the Invention) In the present invention, the current ■ flows concentratedly through the contact side surface layer of each material at the contact position as shown in FIG. 1(a), and FIG. As seen in b), the surfaces of both members A and B, which have microscopic irregularities, come into local contact at the convex portions at the beginning of their meeting, and the current ■ flows intensively at that location, increasing the contact resistance. , and sometimes local discharge phenomena also occur. Therefore, even if the heating temperature characteristic curves due to energization of the two members A and B are set to be solid line A as shown in FIG. 1(c), only the contact resistance of the contact resistance Due to the discharge phenomenon, the temperature rises to a high temperature close to the melting point TM, as indicated by the broken line, and the material softens.

それ故、本願発明は、 (a)それぞれの材料全体の加熱温度を酸化を無視でき
る如き比較的低温に押さえても、接合表層のみを瞬間的
に所望高温とし、圧着ロールの圧下刃による圧着を効果
的に行い得る作用、 (b)電流が確実に接合表層に集中するので、材料の厚
み寸法に制約されずに接合対象となし得る作用、(C)
それぞれの材料の接合表層のみ瞬間的に高温に昇温し、
軟化するだけであるので、それぞれの材料の原寸をほぼ
維持しつつ、圧着ロールによる圧下刃を大として確実1
強固な接合をなし得る作用がある。
Therefore, in the present invention, (a) Even if the heating temperature of the entire material is kept at a relatively low temperature where oxidation can be ignored, only the bonding surface layer is instantly brought to the desired high temperature, and the pressure bonding by the reduction blade of the pressure roll is performed. Actions that can be performed effectively (b) Actions that can be performed on the welding target without being restricted by the thickness dimensions of the materials because the current is reliably concentrated on the joining surface layer, (C)
Only the bonded surface layer of each material is instantly heated to a high temperature,
Since it only softens, it is possible to maintain the original size of each material while making sure that the pressure roller has a large reduction blade.
It has the ability to form a strong bond.

(実施例:1) 本発明を実施した装置例を第2図(a)および(b)に
示す。
(Example: 1) An example of an apparatus implementing the present invention is shown in FIGS. 2(a) and 2(b).

第2図(a)において、1はロールa、bで構成された
圧着ロール、2a、2bは上記圧着ロール1の圧下刃を
それぞれ確保する圧着バックアップロール、3aおよび
3bはそれぞれ接合用の金属材料AおよびBが巻回され
ている材料送り出し装置、4は複合金属材CMの巻取り
装置である。
In FIG. 2(a), 1 is a pressure roll composed of rolls a and b, 2a and 2b are pressure backup rolls that respectively secure the rolling blades of the pressure roll 1, and 3a and 3b are metal materials for joining, respectively. A and B are wound material feeding devices, and 4 is a winding device for the composite metal material CM.

材料送り出し装置3aから巻戻されて圧着ロール1へ送
り込まれる材料Aの送り通路Ll沿いには、当該材料A
を挟持する如く対ロールc、dからなる通電ロール5a
が、また材料送り出し装置3bから巻戻されて圧着ロー
ル1へ送り込まれる材料Bの送り通路L2沿いには、当
該材料Bを挟持する如く対ロールe、fからなる通電ロ
ール5bがそれぞれ配置される。
Along the feeding path Ll of the material A that is rewound from the material feeding device 3a and fed into the pressure bonding roll 1, the material A is
An energized roll 5a consisting of paired rolls c and d sandwiching the
However, along the feeding path L2 for the material B that is rewound from the material feeding device 3b and sent to the pressure bonding roll 1, energized rolls 5b consisting of paired rolls e and f are arranged, respectively, so as to sandwich the material B. .

送り通路Llの上記通電ロール5a・圧着ロール1間、
および送り通路L2の上記通電ロール5b・圧着ロール
1間それぞれには6aおよび6bとして示す環状を呈す
る所定長さのトランスが配置される。当該トランス6a
、6bそれぞれは材料が例えば帯状材ならば、第2図(
b)に示す如く、珪素鋼板等磁性材を長方形口字型とし
て所定長さに積層した鉄心61と当該鉄心61の内外周
面にかけて巻回した1次巻線62とから構成され、環内
が材料の送り通路りとされている。
Between the energizing roll 5a and the pressure bonding roll 1 in the feeding path Ll,
Annular transformers 6a and 6b each having a predetermined length are disposed between the energizing roll 5b and the pressure roll 1 in the feed path L2. The transformer 6a
, 6b are shown in Fig. 2 (if the material is, for example, a strip material).
As shown in b), it is composed of an iron core 61 made of magnetic materials such as silicon steel plates in a rectangular shape and laminated to a predetermined length, and a primary winding 62 wound around the inner and outer peripheral surfaces of the iron core 61. It is used as a passage for materials.

而して、トランス6a、6bそれぞれの一次巻線62に
は2図示しない所定加熱電源から給電するに際し、例え
ば加熱電源が単相交流の場合を挙げて説明すれば、瞬時
において、トランス6aへの給電が当該トランス6aの
環内を通過する材料Aに矢印の如く通電ロール5a方向
から圧着ロール1方向へ向かう電流■を誘起させ、また
トランス6bへの給電が当該トランス6bの環内を通過
する材料Bに矢印の如く圧着ロール1方向から給電ロー
ル5b方向へ向かう電流Iを誘起させる如き接続構成と
する。
When power is supplied to the primary windings 62 of each of the transformers 6a and 6b from two predetermined heating power sources (not shown), for example, if the heating power source is a single-phase AC, for example, the power to the transformer 6a will be instantaneously increased. The power supply induces a current {circle around (2)} in the material A passing through the ring of the transformer 6a from the direction of the current-carrying roll 5a toward the pressure roll 1 as shown by the arrow, and the power supply to the transformer 6b passes through the ring of the transformer 6b. The connection structure is such that a current I is induced in the material B from the pressure roll 1 direction to the power supply roll 5b direction as shown by the arrow.

図における7aおよび7bは上記トランス6aの外周に
、また7cおよび7dは上記トランス6bの外周にそれ
ぞれ材料Aの送り通路Llおよび材料Bの送り通路L2
を中心としてほぼ対称を維持する如く平行に近接配置さ
れた例えば銅材等からなる導電部材である。当該導電部
材7aおよび7bの通電ロール5a側にあたる一方端は
慴動子Sを介して当該通電ロール5aと、また導電部材
7cおよび7dの通電ロール5b側にあたる一方端は慴
動子Sを介して当該通電ロール5bと接続される。導電
部材7aの他方端は導電部材7dの他方端と、また導電
部材7bの他方端は導電部材7Cの他方端とそれぞれ接
続される。
In the figure, 7a and 7b are on the outer periphery of the transformer 6a, and 7c and 7d are on the outer periphery of the transformer 6b, respectively.
These are electrically conductive members made of, for example, copper material, which are arranged in parallel and close to each other so as to maintain a substantially symmetrical relationship with respect to the center. One end of the conductive members 7a and 7b on the current-carrying roll 5a side is connected to the current-carrying roll 5a via a transducer S, and one end of the conductive members 7c and 7d on the current-carrying roll 5b side is connected via a transducer S to the current-carrying roll 5a. It is connected to the current supply roll 5b. The other end of the conductive member 7a is connected to the other end of the conductive member 7d, and the other end of the conductive member 7b is connected to the other end of the conductive member 7C.

上記導電部材7a〜7dの接続構成は、前記トランス5
a、5bそれぞれへの上述した給電回路構成と相俟って
、トランス6a、6bそれぞれの1次側のアンペアター
ンを打ち消し可能である。
The connection configuration of the conductive members 7a to 7d is as follows:
Coupled with the above-described power supply circuit configuration to each of transformers 6a and 5b, it is possible to cancel the ampere turns on the primary side of each of transformers 6a and 6b.

さらに、導電部材7a、7bは材料Aとの関係において
、また導電部材7c、7dは材料Bと関係において、そ
れぞれ断面積等の諸元を所定に設定することにより、通
電電流Iに対する材料の抵抗R1と導電部材7の抵抗R
2との関係がR1>>R2 である如く設定される。
Furthermore, by setting the cross-sectional area and other specifications to predetermined values for the conductive members 7a and 7b in relation to the material A, and for the conductive members 7c and 7d in relation to the material B, the resistance of the material to the current I is determined. R1 and the resistance R of the conductive member 7
2 is set so that R1>>R2.

以上の構成を電気回路として見れば、瞬時における電源
からのトランス6aおよび6bへの給電は、材料Aおよ
びBそれぞれに矢印方向の電流Iを誘起するので、材料
Aを流れる電流工は圧着ロール1下、就中接触位置を介
して材料Bへと流れ、次いで通電ロール5bのロールe
、fを経て慴動子Sを介して導電部材7cおよび7dへ
と分流し、導電部材7cへ流れた電流■はこれと接続す
る導電部材7bから慴動子Sを介して通電ロール6aの
ロールdへ、また導電部材7dへ流れた電流Iはこれと
接続する導電部材7aから慴動子Sを介して通電ロール
6aのロールCへと向かい、通電ロール6aから材料A
へと還流し、二次側回路が閉成されることとなる。
If we look at the above configuration as an electric circuit, the instantaneous power supply from the power source to the transformers 6a and 6b induces a current I in the direction of the arrow in each of materials A and B, so the electric current flowing through material A is down, in particular through the contact position to the material B, and then to the roll e of the current-carrying roll 5b.
, f, and then branched to the conductive members 7c and 7d via the conductor S, and the current () flowing to the conductive member 7c flows from the conductive member 7b connected thereto through the conductor S to the roll of the current-carrying roll 6a. The current I flowing to the conductive member 7d flows from the conductive member 7a connected thereto to the roll C of the current-carrying roll 6a via the conductor S, and from the current-carrying roll 6a to the material A.
The secondary circuit is closed.

このように材料A、B間には圧着ロール1下。In this way, there is one pressure roll between materials A and B.

就中接触位置を介して短絡する電流が流れ、前述作用に
従って接合に関与する接合表層のみ所要の高温加熱が得
られて軟化し、材料A、Bは圧着バックアップロール2
を備えた圧着ロール1による大きな圧下刃で接合表層の
み塑性変形して強固に接合され、複合金属材となる。し
かも、軟化部は接合側表層のみに雨足されているので、
たとえ大きな圧下刃を負荷しても、材料A、Bそれぞれ
の原寸をほぼ維持する複合金属材CMが得られる。
In particular, a short-circuiting current flows through the contact position, and according to the above-mentioned action, only the bonding surface layer involved in bonding is heated to the required high temperature and softened, and the materials A and B are bonded to the crimping backup roll 2.
Only the bonding surface layer is plastically deformed by the large rolling blade of the pressure bonding roll 1 equipped with a crimping roll 1, and the bonding is firmly bonded, resulting in a composite metal material. Moreover, since the softened part is added only to the surface layer on the joint side,
Even if a large reduction blade is applied, a composite metal material CM that substantially maintains the original dimensions of each of materials A and B can be obtained.

また、材料A、B自体それぞれの昇温温度は低く、かつ
接合表層は極めて短時間だけ高温に昇温し、直ちに接合
されてしまうので、殆ど酸化する暇がない。従って、装
置全体を無酸化雰囲気内に置く必要はない。
Further, the heating temperatures of the materials A and B themselves are low, and the bonding surface layer is heated to a high temperature only for a very short period of time and is immediately bonded, so there is almost no time for oxidation. Therefore, it is not necessary to place the entire device in a non-oxidizing atmosphere.

もし完全な酸化防止を意図するならば、8として示すノ
ズルにより材料A、Bの接触位置に向かって例えばアル
ゴンガス等の不活性ガスを吹きつける構成とすれば充分
である。
If complete oxidation prevention is intended, it is sufficient to use a nozzle 8 to blow an inert gas such as argon gas toward the contact position of materials A and B.

さらに当該実施例装置では、上記作用、効果のうえに、
電気抵抗の低い導電部材7を電流の帰線とした二次側回
路が構成されるので、電気抵抗の高い材料A、Bを効果
的に加熱可能であり、また給電電圧は負荷電流として材
料それぞれの加熱に殆ど消費され、無負荷電圧が消失し
て外部への漏電を生じさせないので、機器の絶縁対策設
備が不要であり、その上、−次側に対する二次側のイン
ピーダンスが低くなって電圧変動を小とするする作用、
効果等がマされる。
Furthermore, in addition to the above operations and effects, the device of this embodiment also has the following features:
Since a secondary circuit is configured with the conductive member 7 having low electrical resistance as the current return line, it is possible to effectively heat materials A and B with high electrical resistance, and the supply voltage is applied to each material as a load current. Since the no-load voltage disappears and no leakage occurs to the outside, there is no need for insulation measures for the equipment.Furthermore, the impedance of the secondary side with respect to the negative side is low, and the voltage is reduced. The effect of reducing fluctuations,
Effects etc. will be erased.

当該装置を用いて複合金属材CMを製造する具体例を以
下に開示する。
A specific example of manufacturing a composite metal material CM using the apparatus will be disclosed below.

☆製造条件 *接合用の金属材料 材料A:薄鋼板 材料Bニステンレス鋼板 両材料とも0.6 tm厚、1000wm巾*通電ロー
ル・圧着ロール間の間隔(中心間)材料A側、B側とも
に1m *材料送り速度:ともにg1m/min*給電電流:6
0000A *圧着ロール入側での加熱温度 材料A:600”C 材料Bニア00°C 本圧着ロール構成 圧着ロール:100nφ ただしセラミックコーテング(溶射) ロール 圧着バックアップロール:350nφ ただし金属ロール *圧下力:60ton ☆得られた複合金属材 *接合剪断強度:35±5kg/1II2比較例:JI
S規格のSUSクラッドは20眩/鶴2以上と規定 *90°曲げ試験:全く剥離なし *複合材厚さ: 1.12m (m板1ito、56鶴
、ステンレス層0.56m) (実施例:2) 本発明の他の実施例装置を第3図に示す。
☆ Manufacturing conditions * Metal material for joining Material A: Thin steel plate Material B Stainless steel plate Both materials 0.6 tm thick, 1000 wm width * Distance between energizing roll and crimping roll (center distance) Material A side, B side both 1m *Material feed speed: both g1m/min *Power supply current: 6
0000A *Heating temperature on the inlet side of the pressure roll Material A: 600”C Material B near 00°C Main pressure roll configuration pressure roll: 100nφ However, ceramic coating (spraying) Roll pressure bonding backup roll: 350nφ However, metal roll *Reducing force: 60ton ☆Obtained composite metal material *Joining shear strength: 35±5kg/1II2 Comparative example: JI
S standard SUS cladding is stipulated to be 20 dazzles/Tsuru 2 or higher *90° bending test: No peeling at all * Composite material thickness: 1.12m (M plate 1ito, 56 Tsuru, stainless steel layer 0.56m) (Example: 2) Another embodiment of the present invention is shown in FIG.

図において、1はロールa、bからなる圧着ロール、’
la、  2bは圧着バックアップロール、3a、3b
はそれぞれ接合用の金属材料AおよびBが巻回されてい
る材料送り出し装置、4は巻取り装置である。
In the figure, 1 is a pressure roll consisting of rolls a and b;
la, 2b are crimping backup rolls, 3a, 3b
4 is a material feeding device around which metal materials A and B for bonding are wound, and 4 is a winding device.

材料送り出し装置3aから巻戻されて圧着ロール1へ送
り込まれる材料Aの送り通路Ll沿いには当該材料Aを
挟持する如く対ロールc、dからなる通電ロール5aが
、また材料送り出し装置3bから巻戻されて圧着ロール
1へ送り込まれる材料Bの送り通路L2沿いには当該材
料Bを挟持する如く対ロールe、  fからなる通電ロ
ール5bが配置される点は実施例:1と同様である。
Along the feeding path Ll of the material A that is rewound from the material feeding device 3a and fed into the pressure bonding roll 1, there is an energized roll 5a consisting of a pair of rolls c and d that holds the material A therebetween. This embodiment is similar to Embodiment 1 in that along the feeding path L2 of the material B returned and sent to the pressure bonding roll 1, an energized roll 5b consisting of a pair of rolls e and f is arranged so as to sandwich the material B therebetween.

然し乍ら、当該実施例は上記通電ロール5aおよび5b
へは通電加熱用電源Eから慴動子Sを介して直接給電す
る。
However, in this embodiment, the above-mentioned energizing rolls 5a and 5b
is directly supplied with power from the energizing heating power source E via the device S.

従って、瞬時の9例えば電源Eから慴動子Sを介して通
電ロール5aへ流れた電流■は材料Aを矢印方向へと向
かい、圧着ロール1下の材料A・B間、就中接触位置の
材料それぞれの接合表層を短絡して材料Bへと流れ込み
、当該材料Bを矢印方向へ向かって通電ロール5bに達
し、通電ロール5bから慴動子Sを介して電源Eに還る
こととなる。
Therefore, the instantaneous current 9, for example, flowing from the power supply E to the current-carrying roll 5a via the driver S, flows through the material A in the direction of the arrow, between the materials A and B under the crimping roll 1, especially at the contact position. The bonded surface layer of each material is short-circuited, and the material B flows into the material B, and the material B moves in the direction of the arrow to reach the energizing roll 5b, and returns to the power source E via the distributor S from the energizing roll 5b.

この場合にも、電流Iは接触位置の材料A、  Bそれ
ぞれの接合表層を短絡して流れる際に、それぞれの表層
のみを材料自体の昇温温度に比べて極端に高温として軟
化させるので、圧着ロール1による大きな圧下刃で当該
表層のみが塑性変形して接合を完全とする。
In this case as well, when the current I flows through the joint surface layers of materials A and B at the contact position, it softens only the surface layer of each material by heating it to an extremely high temperature compared to the temperature of the materials themselves. Only the surface layer is plastically deformed by the large rolling blade of the roll 1 to complete the joining.

向、上記実施例:1同様に接合部へ向かって不活性ガス
を吹きつけて、接合部の酸化防止をすることが好ましい
Similarly to Example 1 above, it is preferable to blow an inert gas toward the joint to prevent oxidation of the joint.

本実施例装置の場合には、材料送り出し装置3aおよび
3b、圧着ロール1.@取り装置4それぞれから、これ
らの駆動装置1機械設備を経て大地を通ずる漏洩電流を
流さないため、材料A、 Bと電気的につながる全ての
機器を大地から絶縁することが必須となる。この点で実
施例:1の場合に比べて設備が煩雑となることは避けら
れない。
In the case of the apparatus of this embodiment, the material feeding devices 3a and 3b, the pressure roll 1. In order to prevent leakage current from flowing from each of the @removal devices 4 through the mechanical equipment of the drive device 1 to the ground, it is essential to insulate all equipment electrically connected to materials A and B from the ground. In this respect, it is inevitable that the equipment will be more complicated than in the case of Example 1.

本実施例装置を用いて複合金属材CMを製造する具体例
を以下に示す。
A specific example of manufacturing a composite metal material CM using the apparatus of this embodiment will be shown below.

☆製造条件 *接合用の金属材料 材料A;銅板 0.6 x*厚、500m巾材料B:鋼
板 2.41厚、500n巾*通電ロール・圧着ロール
間の間隔(中心間)材料A側−−−−−−・−・2.9
m 材料B (UIJ−−−−−−−−3,4m*通電電流
:30000A *材料送り速度:ともに30m/min水圧着ロール入
側での加熱温度 材料A;500°C 材料B:650°C 水圧者ロール構成 圧着ロール=100龍φ ただし、セラミックコーテング(′/g射)ロール 圧着バックアップロール:350mmφただし、金属ロ
ール 水圧下刃:20ton ☆得られた複合金属材 *接合剪断強度:18±3 kg / w 2*90°
曲げ試験:全く剥離なし *複合材厚さ:2.911(銅板層0.521m、鋼板
層2.381m) (実施例:3) 本発明の実施例としてさらに3つの材料を接合する装置
例を第4図(a)および(b)に示す。
☆ Manufacturing conditions * Metal material for joining Material A: Copper plate 0.6 x * thickness, 500 m width Material B: Steel plate 2.41 thickness, 500 n width * Distance between energizing roll and pressure roll (center distance) Material A side - --------・-・2.9
m Material B (UIJ---3,4m * Current: 30000A * Material feeding speed: 30m/min for both Heating temperature at the entrance side of the water pressure roll Material A: 500°C Material B: 650° C Hydraulic roll configuration Crimping roll = 100 dragon φ However, ceramic coating ('/g injection) roll crimping backup roll: 350 mm φ However, metal roll hydraulic lower blade: 20 tons ☆ Obtained composite metal material * Bonding shear strength: 18 ± 3 kg/w 2*90°
Bending test: No peeling at all * Composite material thickness: 2.911 (copper plate layer 0.521 m, steel plate layer 2.381 m) (Example: 3) As an example of the present invention, an example of an apparatus for joining three materials was further described. Shown in FIGS. 4(a) and (b).

第4図(a)において、1はロールa、bからなる圧着
ロール、2a、2bは圧着バックアップロール、3a、
3bおよび3cはそれぞれ接合用の金属材料A、Bおよ
びCが巻回されている材料送り出し装置、4は巻取り装
置、5a〜5cそれぞれは材料A−Cそれぞれの送り通
路L1〜L3沿いに配置された対ロールCとd、  e
とfおよびgとhとからなる通電ロール、6a〜6cは
実施例=1と同様にそれぞれの通電ロール5a〜5c・
圧着ロール1間に配置された環状のトランス、また7a
〜7fは同じ〈実施例;1と同様にそれぞれのトランス
6a〜6Cそれぞれの外周に配置された導電部材、Sは
慴動子である。
In FIG. 4(a), 1 is a pressure roll consisting of rolls a and b, 2a and 2b are pressure back-up rolls, 3a,
3b and 3c are material feeding devices around which metal materials A, B, and C for joining are wound, 4 is a winding device, and 5a to 5c are arranged along feeding paths L1 to L3 for materials A to C, respectively. vs. rolls C and d, e
The energizing rolls 6a to 6c consisting of , f, g, and h are the energizing rolls 5a to 5c, respectively, as in Example 1.
An annular transformer disposed between the pressure rolls 1 and 7a
7f are the same conductive members disposed around the outer periphery of each of the transformers 6a to 6C as in Embodiment 1, and S is a diode.

当該実施例では、第4図(b)に示されるように、三相
交流電源E3からトランス6a〜6Cそれぞれへ給電さ
れ、かつ導電部材7a〜7fは図示の如くそれぞれのト
ランス6a〜6Cの1次側のアンペアターンを打ち消す
如く接続する。
In this embodiment, as shown in FIG. 4(b), power is supplied from the three-phase AC power source E3 to each of the transformers 6a to 6C, and the conductive members 7a to 7f are connected to one of each of the transformers 6a to 6C as shown in the figure. Connect so as to cancel the ampere turn on the next side.

それ故、三相交流電源E3からトランス6a〜6Cそれ
ぞれへの給電により材料A−Cそれぞれに誘起する電流
は圧着ロール1下で三相Y結線の中性点を構成すること
となり、相隣る材料の会合。
Therefore, the current induced in each material A-C by power feeding from the three-phase AC power supply E3 to each of the transformers 6a to 6C constitutes the neutral point of the three-phase Y connection under the crimping roll 1, and the Meeting of materials.

接触面の表層のみが前述の作用に従って他よりも著しく
高温にまで瞬間的に昇温して軟化するので、実施例:1
および2と同様に圧着ロール1の大きな圧下刃で確実か
つ強固な接合をなし得る。
Only the surface layer of the contact surface instantaneously heats up to a significantly higher temperature than the others and softens according to the above-mentioned action, so Example: 1
Similar to 2 and 2, reliable and strong bonding can be achieved with the large rolling blade of the pressure roll 1.

勿論、各接合位置に向かってノズル8による不活性ガス
を噴射すれば酸化防止が完全となることは言うまでもな
い。
Of course, it goes without saying that oxidation can be completely prevented by injecting inert gas from the nozzle 8 toward each joining position.

(他の実施例) 実施例:3において、三相交流電源E3を用いる替わり
に9例えばトランス6aおよび6Cに単相交流電源から
給電するとともに、トランス6bは廃止して他の加熱源
、即ち材料を輻射加熱するヒータや誘導加熱ないし直接
通電加熱等により所定温度(この場合の加熱温度は低く
てよい)まで加熱するか、あるいは全く加熱せずに圧着
ロール1へ送り込む構成としてもよく、本発明の範囲に
含まれる。
(Other Embodiments) In Embodiment 3, instead of using the three-phase AC power source E3, for example, the transformers 6a and 6C are supplied with power from the single-phase AC power source, and the transformer 6b is abolished and another heating source, ie, the material The material may be heated to a predetermined temperature (in this case, the heating temperature may be low) by a radiation heater, induction heating, direct current heating, etc., or it may be configured to be fed to the pressure roll 1 without heating at all, and the present invention included in the range.

また、上記実施例:1〜3は圧着ロール1の周面が長手
方向同一径の場合を挙げて説明したが、周面長手方向に
凹凸をつけ9局部的に接合する場合も本発明の範囲に含
まれること勿論である。
In addition, although the above Examples 1 to 3 have been described with reference to the case where the circumferential surface of the pressure roll 1 has the same diameter in the longitudinal direction, the scope of the present invention also includes a case where the circumferential surface is uneven in the longitudinal direction and locally bonded. Of course, it is included in

さらに、本発明は当然ながら厚さ、巾寸法等のサイズの
異なる材料にも通用され、かつ少なくとも接合側の表面
が相接触可能であれば、長尺の型材にも通用可能である
Furthermore, the present invention is of course applicable to materials having different sizes such as thickness and width, and is also applicable to elongated shapes as long as at least the surfaces on the joining side can come into contact with each other.

(発明の効果) 本発明は、前掲作用f3)から製造時のエネルギー消費
を極めて少なくするとともに、装置全体を無酸化雰囲気
内とする必要がなく、そのうえ冷却設備を不要とするの
で、設備費ならびにランニングコストを低減する効果が
マされる。
(Effects of the Invention) The present invention greatly reduces energy consumption during manufacturing due to the above-mentioned effect f3), does not require the entire device to be in a non-oxidizing atmosphere, and also eliminates the need for cooling equipment, which reduces equipment costs. The effect of reducing running costs is maximized.

また本発明は、前掲作用山)から接合用材料の厚み寸法
如何を問わず実施し得る効果が7される。
Furthermore, the present invention has seven effects that can be implemented regardless of the thickness of the bonding material.

さらに本発明は、前掲作用(C)からそれぞれの材料の
ほぼ原寸に近い製品を製造可能とする効果がマされる。
Furthermore, the present invention has the effect of making it possible to manufacture products of approximately the original size of each material from the above-mentioned effect (C).

以上の如く、本発明の奏する効果は多枝にわり多大、か
つ顕著であり、賞用されるところである。
As described above, the effects of the present invention are numerous and remarkable, and are highly prized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明複合金属材製造方法の原理を説明
する圧着ロール部分の正面図、第1図(b)および(c
)それぞれは本発明の詳細な説明する接合位置の材料の
横断面図および昇温温度特性線図、第2図(a)は本発
明の実施例:1の装置の正面図、第2図(b)は第2図
(a)におけるX−X線断面図、第3図は実施例=2の
装置の正面図、第4図(a)は本発明の実施例:3の装
置の正面図、第4図(b)は第4図(a)の給電回路図
、第5図(a)〜(C)はそれぞれ従来複合金属材製造
装置の正面図である。 1−−一−・−−−−一−・−一−−−−−−−−−−
−−−−−−−一−−−−圧着ロール3a、3b、3c
・−・−材料送り出し装置5 a 、  5 b 、 
 5 c−−−−一通電ロール6 a 、  6 b 
、  6 c−−−−−−)ランス7a〜7f−・−一
−−−〜−−−−−・・−導電部材A、B、C−−−−
−−−−−−−−−−・−材料CM・−一−−−−−−
−−−−−−−−−・−・−−一−−−−−・−複合金
属材T −−−−−−−−−・・・・・−・−・−・・
−・・−・・・−・接触位置Ll、L2.L3−・−送
り通路 s −−−−−−−一・−・−−一−−−・−m−−〜
〜−−−−−・−慴動子E、E3・−−一−−・−−−
一−−−−−−−・・−電源特許出願人 新日本製鉄株
式会社 特許出願人 高周波熱錬株式会社
FIG. 1(a) is a front view of the pressure roll portion for explaining the principle of the composite metal material manufacturing method of the present invention, and FIGS. 1(b) and (c)
2(a) is a front view of the apparatus of Example 1 of the present invention, and FIG. b) is a sectional view taken along the line X-X in FIG. 2(a), FIG. 3 is a front view of the device of Example 2, and FIG. 4(a) is a front view of the device of Example 3 of the present invention. , FIG. 4(b) is a power supply circuit diagram of FIG. 4(a), and FIGS. 5(a) to 5(C) are front views of the conventional composite metal material manufacturing apparatus. 1−−1−・−−−−1−・−1−−−−−−−−−
---------1----Crimping rolls 3a, 3b, 3c
---Material feeding devices 5a, 5b,
5 c----One energizing roll 6 a, 6 b
, 6 c--------) Lances 7a to 7f---1------ Conductive members A, B, C----
−−−−−−−−−−・−Material CM・−1−−−−−−
---
-········Contact position Ll, L2. L3-・-Feed passage s---------1・----1-----・-m--~
~-------・-Eisho E, E3・--1--・----
1. - Power supply patent applicant: Nippon Steel Corporation Patent applicant: Koshuha Netoren Co., Ltd.

Claims (1)

【特許請求の範囲】 1)それぞれ連続送給される複数の金属材料を圧着ロー
ルへ送り込んで圧着して複合金属材とする過程において
、圧着ロールへ送り込まるれる上記複数の材料それぞれ
に対して圧着ロール下、就中接触位置を介して材料間に
短絡電流が流れるような選択された電圧極性をもつ電流
を連続的に流しつつ圧着することを特徴とする複合金属
材の製造方法。 2)それぞれ連続送給される複数の金属材料を圧着ロー
ルへ送り込んで圧着して複合金属材とする装置が、上記
複数の材料それぞれの送り出し装置と上記圧着ロールと
の間に材料を挟持可能な通電ロールを配置するとともに
、当該通電ロールと圧着ロールとの間に所定長さの環状
トランスを配置してその環内を材料の送り通路とし、か
つ当該トランスの外周に材料の送り通路を中心としてほ
ぼ対称を維持する1本以上の導電部材を平行に近接配置
し、当該導電部材の通電ロール側にあたる一方端は慴動
子を介して当該通電ロールと接続、他方端は他のトラン
スの外周に配置された導電部材の他方端とトランス相互
間でそれぞれトランスの1次側のアンペアターンを打ち
消す如く接続してなり、それぞれのトランスにおける通
電電流に対する材料の抵抗R1と導電部材の抵抗R2と
の関係が R1>>R2 である如く設定するとともに、圧着ロールへの送り込み
側にある材料それぞれに圧着ロール下の材料間、就中接
触位置の材料間に短絡電流が流れる方向へ電流を流す設
定としたことを特徴とする複合金属材の製造装置。 3)それぞれ連続送給される複数の金属材料を圧着ロー
ルへ送り込んで圧着して複合金属材とする装置が、上記
複数の材料それぞれの送り出し装置と上記圧着ロールと
の間に材料を挟持可能な通電ロールを配置し、当該通電
ロールそれぞれと通電加熱用電源とをそれぞれの材料に
流れる電流の方向が圧着ロール下の材料間、就中接触位
置の材料間を短絡して流れる如く接続したことを特徴と
する複合金属材の製造装置。
[Scope of Claims] 1) In the process of feeding a plurality of continuously fed metal materials to a pressure roll and crimping them to form a composite metal material, crimping is applied to each of the plurality of metal materials fed to the pressure roll. 1. A method for producing composite metal materials, characterized in that crimping is carried out under the rolls, in particular through the contact points, while continuously passing a current with a selected voltage polarity such that a short-circuit current flows between the materials. 2) A device that feeds a plurality of continuously fed metal materials to a crimping roll and crimps them to form a composite metal material is capable of sandwiching the materials between the feeding device for each of the plurality of materials and the crimping roll. In addition to arranging an energizing roll, an annular transformer of a predetermined length is arranged between the energizing roll and the crimping roll, the inside of the ring is used as a material feeding path, and the material feeding path is centered around the outer periphery of the transformer. One or more conductive members that maintain almost symmetry are arranged close to each other in parallel, one end of the conductive member facing the current-carrying roll is connected to the current-carrying roll via a transducer, and the other end is connected to the outer periphery of another transformer. The other end of the arranged conductive member and each transformer are connected so as to cancel out the ampere turns on the primary side of the transformer, and the relationship between the resistance R1 of the material and the resistance R2 of the conductive member with respect to the current flowing in each transformer. was set so that R1 >> R2, and the current was set to flow in the direction in which a short circuit current flows between the materials under the crimping roll, particularly between the materials at the contact position, for each material on the feeding side to the crimping roll. A manufacturing device for composite metal materials characterized by: 3) A device that feeds a plurality of continuously fed metal materials to a pressure roll and presses them to form a composite metal material is capable of sandwiching the materials between the feed devices for each of the plurality of materials and the pressure roll. The energizing rolls are arranged, and each of the energizing rolls and the energizing heating power source are connected so that the direction of the current flowing through each material is short-circuited between the materials under the crimping roll, especially between the materials at the contact position. Features: Composite metal material manufacturing equipment.
JP945688A 1988-01-21 1988-01-21 Method and device for manufacturing composite metal material Pending JPH01186291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP945688A JPH01186291A (en) 1988-01-21 1988-01-21 Method and device for manufacturing composite metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP945688A JPH01186291A (en) 1988-01-21 1988-01-21 Method and device for manufacturing composite metal material

Publications (1)

Publication Number Publication Date
JPH01186291A true JPH01186291A (en) 1989-07-25

Family

ID=11720791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP945688A Pending JPH01186291A (en) 1988-01-21 1988-01-21 Method and device for manufacturing composite metal material

Country Status (1)

Country Link
JP (1) JPH01186291A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02307687A (en) * 1989-05-22 1990-12-20 Nippon Steel Corp Production of composite metallic plate
JPH04200876A (en) * 1990-11-30 1992-07-21 Kawasaki Steel Corp Seam welding method for stainless steel strips

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02307687A (en) * 1989-05-22 1990-12-20 Nippon Steel Corp Production of composite metallic plate
JPH04200876A (en) * 1990-11-30 1992-07-21 Kawasaki Steel Corp Seam welding method for stainless steel strips

Similar Documents

Publication Publication Date Title
JPH01186291A (en) Method and device for manufacturing composite metal material
JPS60170907A (en) Wound magnetic core and manufacture of the same
JPH04288983A (en) Pressure welding method for aluminum material and copper material
JP2905400B2 (en) Method and apparatus for joining billets in hot rolling
JP3283388B2 (en) How to join billets
JPH0445273B2 (en)
JPH05161985A (en) Manufacture of clad electric steel sheet
JPS6397373A (en) Method and device for welding high frequency electric welded pipe
JP2905393B2 (en) Method of joining billets in hot rolling
JPH0622759B2 (en) High-speed joining method for steel sheets
JP3020635B2 (en) Method of joining billets in hot rolling
RU2033910C1 (en) Method and equipment used for the manufacture of multilayer strip
JPH04143085A (en) Hot press welding method of aluminum material and copper material
JPH05192775A (en) Method for press-contacting metal sheet
JP2002194447A (en) Method for heating cylindrical metal coil
JPH0360876A (en) Spot welding method for materials to be welded having insulating coating
JPH06218561A (en) Manufacture and device for composite metallic plate
JP2924675B2 (en) Manufacturing method of welded section steel
JP2910335B2 (en) High frequency ERW pipe welding equipment
JPH0350627B2 (en)
JP2905399B2 (en) Method of joining billets in hot rolling
JP3221836B2 (en) Connection method of tapping tap of foil-wound coil
JPS62142082A (en) Junction method for hot steel material and its device
JPS59125283A (en) Method and device for spot welding
JPS5933083A (en) Welding method of electric welded steel pipe