JPH01185431A - Apparatus for measuring bonding strength - Google Patents

Apparatus for measuring bonding strength

Info

Publication number
JPH01185431A
JPH01185431A JP63011131A JP1113188A JPH01185431A JP H01185431 A JPH01185431 A JP H01185431A JP 63011131 A JP63011131 A JP 63011131A JP 1113188 A JP1113188 A JP 1113188A JP H01185431 A JPH01185431 A JP H01185431A
Authority
JP
Japan
Prior art keywords
film
substrate
bonding strength
deflection
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63011131A
Other languages
Japanese (ja)
Other versions
JP2602263B2 (en
Inventor
Shoji Shimizu
清水 正二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63011131A priority Critical patent/JP2602263B2/en
Publication of JPH01185431A publication Critical patent/JPH01185431A/en
Application granted granted Critical
Publication of JP2602263B2 publication Critical patent/JP2602263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To accurately measure bonding strength, by providing a pressure element, an AE sensor and a load cell. CONSTITUTION:When a specimen 1 is set to a support shaft and a motor 9 is driven, a substrate is bent by a pressure element 6. At this time, the signals of all of a displacement converter 10, an AE sensor 2 and a load cell 5 are taken in a personal computer at every certain interval. Then, bending quantity is increased until a film is released and, after the release of the film is sufficiently generated, the rotation of the motor 9 is stopped. From the taken-in data, the correlation of bending quantity, load, the amplitude strength of acoustic emission and a count number is calculated. By this method, no excessive force is applied to the film and bonding strength can be accurately measured even with respect to a flexible substrate or a specimen low in bonding strength.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は基体上に作成した膜の付着強度を測定する装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for measuring the adhesion strength of a film formed on a substrate.

(従来の技術) 基体上に作成した膜の付着力を測定する方法には、膜の
表面にテープ、ロッド、リベット等を接着し、これらに
引っ張り、ねじり、引き倒し等の力を加え膜の剥離の有
無から付着力を決定する接着法、膜の表面を圧子で引っ
かき、剥離が発生し始める圧子の圧力から付着力を決定
する引っかき法等が知られている。
(Prior art) A method of measuring the adhesion force of a film created on a substrate involves bonding tape, rods, rivets, etc. to the surface of the film, and applying forces such as pulling, twisting, and pulling down to the film. Known methods include an adhesion method in which adhesion is determined based on the presence or absence of peeling, and a scratching method in which the surface of the membrane is scratched with an indenter and adhesion is determined from the pressure of the indenter at which peeling begins.

(発明が解決しようとする問題点) しかしながら、接着法においては膜の表面に直接テープ
、ロッド、リベット等を接着するので、接着テープ、接
着剤等により膜に応力、ひずみ等を与えることになり、
例えば付着力が弱い試料ではこの応力やひずみによって
既に剥離が発生してしまう等、付着力を正確に測定する
ことが難しい。引っかき法においては、基体にプラスチ
ック等の柔らかい材料を使用した場合、圧子により基体
そのものが容易に変形し膜に不均一な力が加わるために
、測定値に誤差を生じやすい。
(Problem to be solved by the invention) However, in the adhesive method, tapes, rods, rivets, etc. are directly attached to the surface of the membrane, so stress, strain, etc. are applied to the membrane by the adhesive tape, adhesive, etc. ,
For example, in the case of a sample with weak adhesive strength, peeling may already occur due to this stress or strain, making it difficult to accurately measure the adhesive strength. In the scratching method, when a soft material such as plastic is used for the substrate, the substrate itself is easily deformed by the indenter and uneven force is applied to the membrane, which tends to cause errors in the measured values.

また、剥離という現像は物質の破壊を伴うため、付着力
自身ばらつきの大きな量であり、定量的な測定を精度良
く行うためにはデータを統計処理する必要があるが、上
述の方法においては膨大な数の試料に対し試験を行う必
要がある。
In addition, since development called peeling is accompanied by destruction of the substance, the adhesion force itself varies greatly, and statistical processing of the data is required to perform quantitative measurements with high precision. It is necessary to conduct tests on a large number of samples.

(問題点を解決するための手段) 本発明の付着力測定装置は、基体にたわみを与える機構
と、このたわみを測定する部分、および基体、膜あるい
は両者の界面から発生するアコースティック・エミッシ
ョンを検知する機構を待つことを特徴とする。
(Means for Solving the Problems) The adhesion force measuring device of the present invention includes a mechanism that gives deflection to a substrate, a part that measures this deflection, and detects acoustic emissions generated from the substrate, the film, or the interface between the two. It is characterized by waiting for a mechanism to do so.

(作用) 本発明の付着力測定装置においては、たわみを与えるた
めの圧子と支軸以外は、膜の剥離が発生する部分に何も
のをも接触させることなく、基体をたわませることによ
り界面に力を加え剥離させるので、膜に余計な力が加わ
らず、柔らかい基体を使用した場合や付着力が弱い試料
に対しても付着力を正確に測定することができる。また
、剥離現象を物質から発生するアコースティック・エミ
ッションにより検知するので、肉眼あるいは、肉眼鏡で
見えないような微細な剥離が発生する過程を観測するこ
ともできる。さらに、1度の試験で数多くのアコーステ
ィック・エミッションが観測されるので、これらを統計
処理することにより、付着力の分散、平均値等、従来の
方法では数多くの試料に対して試験を行わないと得られ
ない知見が、−個の試料を試験することにより得られる
(Function) In the adhesion force measuring device of the present invention, the interface is made by deflecting the substrate without bringing anything into contact with the part where the film peels off, except for the indenter and support shaft for applying deflection. Since the film is peeled off by applying force, no unnecessary force is applied to the film, and the adhesion force can be accurately measured even when using a soft substrate or a sample with weak adhesion force. Furthermore, since the peeling phenomenon is detected by acoustic emissions generated from the substance, it is also possible to observe the process of minute peeling that is invisible to the naked eye or a naked eye. Furthermore, since a large number of acoustic emissions are observed in a single test, by statistically processing them, we can determine the dispersion of adhesion force, the average value, etc., which would not be possible with conventional methods when testing a large number of samples. Unobtainable knowledge is obtained by testing - samples.

(実施例) 以下、第1図〜第3図に例示するところに従って本発明
の付着力測定装置について説明する。
(Example) Hereinafter, the adhesion force measuring device of the present invention will be described according to the examples shown in FIGS. 1 to 3.

第1図で1は付着力を測定しようとする試料である。こ
の場合は、膜が内側になるように基体をたわませている
が、逆に膜を外側にしてたわませてもよい。
In FIG. 1, 1 is a sample whose adhesion force is to be measured. In this case, the substrate is bent so that the membrane is on the inside, but it may be bent with the membrane on the outside.

2は、アコースティック・エミッションを検知するAE
センサーである。第1図の場合は膜の表面にAEセンサ
ーを取り付けているが、例えば金属製あるいはシリコン
製の基体上に樹脂をコートしたときのように、基体のほ
うが膜に比べて硬度が大きく弾性波の伝搬特性が良好で
ある場合は、基体上に取り付けてもよい。また、AEセ
ンサーを複数個設はコインシデンスをとることにより、
ある限られた領域の剥離のみを検出することもできる。
2 is an AE that detects acoustic emissions
It's a sensor. In the case of Figure 1, the AE sensor is attached to the surface of the membrane, but for example, when resin is coated on a metal or silicone substrate, the substrate is harder than the membrane and is sensitive to acoustic waves. If the propagation characteristics are good, it may be mounted on a substrate. In addition, when installing multiple AE sensors, by taking coincidence,
It is also possible to detect peeling only in a certain limited area.

3は基体をたわませるための支軸である。基体と接触す
る部分の形状は先の尖ったナイフ・エツジ、あるいは円
弧状のものが考えられる。基体と支軸間の摩擦を低減す
るために、第2図のような回転可能なエツジ、あるいは
第3図のような回転可能なローラーを支軸に設けるのも
よい。支軸は、上下に運動可能なテーブル4の上に取り
付けられている。また、テーブル4の下にはロードセル
5が設けられており、基体に加えられている荷重が測定
できる。基体に加えられたたわみと荷重から基体のヤン
グ率が計算できる。
3 is a support shaft for bending the base body. The shape of the portion that contacts the base body may be a sharp knife edge or an arcuate shape. In order to reduce the friction between the base and the support shaft, the support shaft may be provided with a rotatable edge as shown in FIG. 2 or a rotatable roller as shown in FIG. 3. The spindle is mounted on a table 4 that is movable up and down. Further, a load cell 5 is provided under the table 4, and the load applied to the base body can be measured. The Young's modulus of the substrate can be calculated from the deflection and load applied to the substrate.

6は基体をたわませるための圧子である。圧子の先端の
形状はナイフ・エツジあるいは円弧状のものが考えられ
るが、用いる基体が固い場合はナイフ、エツジ、柔らか
い場合は円弧状が適する。第1図の場合はエツジが1個
、すなわち3点支持の要領で基体をたわませているが、
エツジを2個設けた圧子に交換して、4点支持にてたわ
ませることも可能である。圧子6はガイド7によって、
上下の方向のみ可動となっている。
6 is an indenter for bending the base. The shape of the tip of the indenter may be a knife edge or a circular arc, but if the substrate to be used is hard, a knife or edge is suitable, and if it is soft, a circular arc is suitable. In the case of Fig. 1, there is only one edge, that is, the base body is bent like a three-point support.
It is also possible to replace the indenter with a two-edge indenter and allow it to be bent with four-point support. The indenter 6 is moved by the guide 7.
It is movable only in the up and down direction.

8はマイクロ・メータはモーター9の回転運動を直線運
動に変換し、圧子を上下に動かすためのものである。モ
ーターの回転数を任意の値に選ぶことにより、圧子の移
動速度すなわち基体に加えるひずみ速度を変化させられ
る。
A micrometer 8 converts the rotational motion of the motor 9 into linear motion and moves the indenter up and down. By selecting the rotational speed of the motor to an arbitrary value, it is possible to change the moving speed of the indenter, that is, the rate of strain applied to the base.

10は変位変換器であり、マイクロ・メータの変位すな
わち基体のたわみ量を電気信号に変換するものである。
Reference numeral 10 denotes a displacement converter, which converts the displacement of the micrometer, that is, the amount of deflection of the base body, into an electrical signal.

また、AEセンサー、ロードセル、変位変換器の信号を
パーソナル・コンピューターに取り込み、たわみ量、荷
重、剥離等の相関関係が明瞭に分かるような形にデータ
処理することができる。
In addition, the signals from the AE sensor, load cell, and displacement transducer can be input into a personal computer and data processed in a form that allows the correlation between the amount of deflection, load, peeling, etc. to be clearly understood.

次に、装置の使用方法について説明する。Next, how to use the device will be explained.

第1図のように試料1を支軸2の上にセットする。A sample 1 is set on a support shaft 2 as shown in FIG.

モーター9を駆動すると圧子6に押されて基体がたわむ
。この際、変位変換器、AEセンサーおよびロードセル
の信号を、ある時間毎にパーソナル・コンピューターに
取り込む。膜が剥離するまでたわみ量を増加させ十分剥
離が発生してからモーターの回転を止める。取り込んだ
データから、たわみ量、荷重、アコースティック・エミ
ッションの振幅強度およびカウント数等の相関関係を求
めることができる。
When the motor 9 is driven, the base body is pushed by the indenter 6 and bends. At this time, signals from the displacement transducer, AE sensor, and load cell are imported into a personal computer at certain time intervals. The amount of deflection is increased until the film peels off, and after sufficient peeling occurs, the rotation of the motor is stopped. From the captured data, correlations among the amount of deflection, load, acoustic emission amplitude intensity, count number, etc. can be determined.

従来の方法では測定が困難だとされている。付着力の弱
い膜を柔らかな基体上に作成した試料について測定した
例を以下に述べる。
It is said to be difficult to measure using conventional methods. An example in which measurements were taken on a sample in which a film with weak adhesion was formed on a soft substrate will be described below.

プラスチック基体上に金属膜を蒸着した試料の付着力の
測定例を第4図、第5図に示す。第4図のグラフの縦軸
は、アコースティック・エミッションのカウント数で、
横軸はたわみ量である。たわみ量が0.1〜0.3mm
のピークは微視的な剥離に対応している。たわみが0.
5mm以上になるとアコースティック・エミッションの
カウント数が急増しており0.7mmで極大を示すよう
な分布となる。これらのピークは膜の均一な剥離に対応
している。基体がたわむことにより膜に加えられる力は
材料力学的計算から求めることができる。第5図は、第
4図のグラフの横軸を膜に加えられる力に書き換えたも
ので、カウント数が極大となるときの力が膜の平均の付
着力で、分布の幅は付着力自身の分散である。
Examples of measuring the adhesion force of a sample in which a metal film is deposited on a plastic substrate are shown in FIGS. 4 and 5. The vertical axis of the graph in Figure 4 is the count of acoustic emissions,
The horizontal axis is the amount of deflection. Deflection amount is 0.1-0.3mm
The peak corresponds to microscopic peeling. Deflection is 0.
When the distance exceeds 5 mm, the number of acoustic emission counts rapidly increases, and the distribution becomes such that it reaches a maximum at 0.7 mm. These peaks correspond to uniform exfoliation of the film. The force applied to the membrane due to deflection of the substrate can be determined from material mechanics calculations. In Figure 5, the horizontal axis of the graph in Figure 4 has been rewritten as the force applied to the film, and the force when the count reaches its maximum is the average adhesion force of the film, and the width of the distribution is the adhesion force itself. is the variance of

(発明の効果) 本発明の付着力測定装置を使用することにより、プラス
チックのような柔らかな基体上の膜の付着力を測定する
ことができた。視覚的には捕らえられない微視的な剥離
に関する情報や、付着力の平均値、分散等従来の方法で
は得難い知見が一度の試験により簡単に得られた。
(Effects of the Invention) By using the adhesion measuring device of the present invention, it was possible to measure the adhesion of a film on a soft substrate such as plastic. Information on microscopic peeling that cannot be captured visually, as well as information on the average value and dispersion of adhesion force, which is difficult to obtain using conventional methods, was easily obtained through a single test.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明に使用する装置の一例を示す説
明図、第4図〜第5図は本発明の付着力測定器を用いる
ことによって得られた測定結果の一例を示す図。 図において、1・・・試料、2・・・AEセンサー、3
・・・支持軸、4・・・テーブル、5・・・ロードセル
、6・・・圧子、7・・・ガイド、8・・・マイクロ・
メータ、9・・・モーター、10・・・変位変換器、1
1・・・ピンをそれぞれ示す。 代−人ブト理士内原  fす 第1図 第2図 第3図 Aεカウント数
FIGS. 1 to 3 are explanatory diagrams showing an example of the apparatus used in the present invention, and FIGS. 4 to 5 are diagrams showing an example of measurement results obtained by using the adhesion force measuring device of the present invention. . In the figure, 1...sample, 2...AE sensor, 3
...Support shaft, 4...Table, 5...Load cell, 6...Indenter, 7...Guide, 8...Micro・
Meter, 9...Motor, 10...Displacement converter, 1
1... Indicates each pin. Figure 1 Figure 2 Figure 3 Aε count number

Claims (1)

【特許請求の範囲】[Claims] 基体にたわみを与える機構、たわみを測定する機構、お
よび基体または基体上に作成された膜または両者の界面
から発生するアコースティック・エミッションを検出す
る機構とを有することを特徴とする付着力測定装置。
An adhesion force measuring device comprising a mechanism for applying deflection to a substrate, a mechanism for measuring the deflection, and a mechanism for detecting acoustic emissions generated from the substrate, a film formed on the substrate, or an interface between the two.
JP63011131A 1988-01-20 1988-01-20 Adhesion measuring device Expired - Lifetime JP2602263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63011131A JP2602263B2 (en) 1988-01-20 1988-01-20 Adhesion measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63011131A JP2602263B2 (en) 1988-01-20 1988-01-20 Adhesion measuring device

Publications (2)

Publication Number Publication Date
JPH01185431A true JPH01185431A (en) 1989-07-25
JP2602263B2 JP2602263B2 (en) 1997-04-23

Family

ID=11769462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63011131A Expired - Lifetime JP2602263B2 (en) 1988-01-20 1988-01-20 Adhesion measuring device

Country Status (1)

Country Link
JP (1) JP2602263B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107422033A (en) * 2017-03-20 2017-12-01 华南理工大学 A kind of method of determination and evaluation of glass curtain wall structure glue sticking intensity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821140A (en) * 1981-07-30 1983-02-07 Agency Of Ind Science & Technol Method and device for measuring breaking strength and adhesive strength of thin film
JPS59187242A (en) * 1983-04-06 1984-10-24 Komatsu Ltd Preestimating method of fracture strength of ceramic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821140A (en) * 1981-07-30 1983-02-07 Agency Of Ind Science & Technol Method and device for measuring breaking strength and adhesive strength of thin film
JPS59187242A (en) * 1983-04-06 1984-10-24 Komatsu Ltd Preestimating method of fracture strength of ceramic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107422033A (en) * 2017-03-20 2017-12-01 华南理工大学 A kind of method of determination and evaluation of glass curtain wall structure glue sticking intensity
CN107422033B (en) * 2017-03-20 2019-12-10 华南理工大学 Detection and evaluation method for bonding strength of glass curtain wall structural adhesive

Also Published As

Publication number Publication date
JP2602263B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
JP5204112B2 (en) Surface energy measuring device and measuring method
EP2291635B1 (en) Surface evaluation employing orthogonal force measurement
EP1025420A2 (en) System and method for performing bulge testing of films, coatings and/or layers
JP3244194B2 (en) Tensile testing machine
WO2015009309A1 (en) Testing a peel force of an adhesive medium
CN101251522A (en) Detecting method and apparatus based on laser impulse wave thin plate stratification
JPH01185431A (en) Apparatus for measuring bonding strength
JPH01316632A (en) Device and method for evaluating mechanical property of thin film
JP2001264373A (en) Apparatus and method for measurement of piezoelectric constant of piezoelectric thin film
JPH07301588A (en) Method and apparatus for measuring thin film strength
JPS61193047A (en) Microhardness measuring instrument
JPH02234047A (en) Measuring instrument for adhering force
JPS61169745A (en) Apparatus for measuring adhering force and shearing force of paint film
JP5070146B2 (en) Test method and test apparatus
JP2745648B2 (en) Adhesion measuring device
JP3248099B2 (en) Apparatus and method for measuring adhesive material holding force
JPS60196644A (en) Adhesion evaluating method
JPH11230875A (en) Micro spring constant measuring device and measuring method therefor
JPH07325029A (en) Physical property of thin film evaluating apparatus
JPH07301587A (en) Thin film strength measuring method
JP7385196B2 (en) Indentation test device
EP0545835A1 (en) Method and apparatus for determination of material residual stress by recording the change in resistance of a sensing coil
JPH0278932A (en) Measuring instrument for filming sticking force
CN115389786A (en) Method and equipment for detecting micro-nano mechanical property of viscoelastic body
JPH01138437A (en) Scratch testing machine