JPH01185428A - Measurement of apparent density - Google Patents

Measurement of apparent density

Info

Publication number
JPH01185428A
JPH01185428A JP971088A JP971088A JPH01185428A JP H01185428 A JPH01185428 A JP H01185428A JP 971088 A JP971088 A JP 971088A JP 971088 A JP971088 A JP 971088A JP H01185428 A JPH01185428 A JP H01185428A
Authority
JP
Japan
Prior art keywords
liquid
apparent density
filled
volume
fluorocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP971088A
Other languages
Japanese (ja)
Inventor
Kenji Tagashira
健二 田頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP971088A priority Critical patent/JPH01185428A/en
Publication of JPH01185428A publication Critical patent/JPH01185428A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the apparent density of an object, by taking out the object from a liquid to solidify the liquid allowed to fill the recessed parts of the object and measuring the volume of the object in such a state that the liquid is solidified on the surface of the object. CONSTITUTION:An object 2 is housed in a pycnometer 1, and the recessed parts 3 opened to the surface of the object 2 and the space other than the object 2 are together filled with water 4 as a displacing liquid. Contrarily, the recessed parts 3 of the object 2 received in the pycnometer 1 is filled with a liquid as a filler and the space other than the object 2 is filled with water 4 as the replacing liquid. Then, the object 2 is taken out from the liquid to solidify the liquid 5 allowed to fill the recessed parts 3 and the volume of the object 2 is measured in such a state that the liquid is solidified on the surface of the object 2 and the separately calculated wt. only of the object 2 is divided by the measured volume to make it possible to calculate the apparent density of the object 2.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、表面に凹部を有する物体のみかけ密度を測定
する方法、殊に石炭火力発電所などの粉粒体プラントに
おける気流搬送装置の設計において、動力計算や圧力損
失計算等に必要な粉粒体のみかけ密度測定法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for measuring the apparent density of an object having concavities on its surface, particularly in the design of an air flow conveying device in a powder plant such as a coal-fired power plant. This paper concerns methods for measuring the apparent density of powder and granular materials, which are necessary for power calculations, pressure loss calculations, etc.

従来の技術 このような粉粒体のみかけ密度測定法としては従来、一
定容積の容器内に粒子状物体を入れ、残りの空間部を液
体、例えば水やアルコールなどによって置換し、みかけ
密度を求める方法(−船釣にピラノメータ法と呼ばれて
いる)や、lieガスなどを用いる定容積圧縮法と呼ば
れるみかけ密度測定法が使用されている。
Conventional technology The conventional method for measuring the apparent density of powder and granular materials is to place the granular material in a container with a fixed volume, replace the remaining space with a liquid such as water or alcohol, and then calculate the apparent density. An apparent density measurement method called the constant volume compression method using lie gas or the like is used.

発明が解決しようとする課題 従来技術によるこのようなみかけ密度測定法では、しか
し、みかけ密度を測定しようとする物体がコークスなど
の多孔質の粒子状物体であるときには、容器内の空間を
液体あるいはガスで置換する際に、粒子状物体の表面に
開口している凹部である空げき部分もおきかえられるの
で、求まったみかけ密度は、この粒子を形成している物
体そのもののみかけ密度に近い値である。
Problems to be Solved by the Invention In this apparent density measuring method according to the prior art, however, when the object whose apparent density is to be measured is a porous particulate object such as coke, the space inside the container is filled with liquid or When replacing the particle with gas, the hollow part, which is a concave opening on the surface of the particle, is also replaced, so the apparent density determined is a value close to the apparent density of the object that forms the particle. be.

しかして、この値は、化学反応や燃焼反応の検討には適
当な値であるが、気流搬送装置の設計などに使用するに
は、不適当であった。すなわち、コークスなどのように
、表面に凹部を有する多孔質の物体の場合、かさ密度が
小さいにもかかわらず、ピクノメータで測定したみかけ
密度が非常に大きく、計算上求まる空げき率が非常に大
きくなり、実際の空げき率と一致しないという問題があ
った。
Although this value is appropriate for studying chemical reactions and combustion reactions, it is inappropriate for use in designing air flow conveying devices. In other words, in the case of a porous object such as coke, which has concavities on its surface, the apparent density measured with a pycnometer is very large, even though the bulk density is small, and the calculated void ratio is very large. Therefore, there was a problem that it did not match the actual vacancy rate.

そのため、従来は気流搬送装置の設計にあたっては、ビ
クノメータで求めたみかけ密度の値をそのまま用いて、
安全側で設計するか、かさ密度を実測し、空げき率を仮
定して求めたみかけ密度を用いる方法を採っている。
Therefore, in the past, when designing airflow conveyance devices, the value of the apparent density determined by a vicinometer was used as is,
Either the design is on the safe side, or the bulk density is actually measured and the apparent density calculated by assuming the void ratio is used.

課題を解決するための手段 従来の方法によるみかけ密度測定法が多孔質物体のみか
け密度測定に不適当なのは、前述したように、物体表面
の凹部である空げき部分までが、空間として取扱かわれ
るためであることに鑑み、本発明は、従来のみかけ密度
測定法を適用する前に、前処理として、物体表面の凹部
にあらかじめある種の物質を充填し、表面に凹部を有す
る物体をみかけ上部多孔質物体として取扱かうようにし
たものである。
Means for Solving the Problem The reason why the conventional apparent density measurement method is unsuitable for measuring the apparent density of porous objects is that, as mentioned above, even the hollow parts, which are concave parts on the surface of the object, are treated as spaces. In view of this, in the present invention, before applying the conventional apparent density measurement method, the recesses on the surface of the object are filled with a certain kind of substance as a pretreatment, and the object having the recesses on the surface is It is designed to be treated as a porous object.

すなわち、本発明は、表面に凹部を有する物体のみかけ
密度を測定する方法において、物体を液中に浸漬して該
物体表面の凹部へ液体を充填し、上記物体を液中から取
り出して凹部へ充填された液体を固化し、物体の表面に
液体が固化した状態で該物体の体積を計測し、別途求め
た物体のみの重量を上記体積で除して物体のみかけ密度
を求めるようにしたものである。
That is, the present invention provides a method for measuring the apparent density of an object having recesses on its surface, in which the object is immersed in a liquid, the recesses on the surface of the object are filled with liquid, and the object is taken out of the liquid and placed in the recesses. A method in which the filled liquid is solidified, the volume of the object is measured with the liquid solidified on the surface of the object, and the weight of the object, which is separately determined, is divided by the volume to determine the apparent density of the object. It is.

作用 このような方法によれば、したがって、物体表面の凹部
(空げき部分)に影響されることなく、物体のみかけ体
積から決まるみかけ密度を求めることができる。
Effect: According to this method, the apparent density determined from the apparent volume of the object can be determined without being affected by the recesses (vacancies) on the surface of the object.

実施例 以下本発明の一実施例について詳述する。Example An embodiment of the present invention will be described in detail below.

みかけ密度を測定したい多孔質の粒子状物体をサンプル
し、その質量mξ1を測定した粒子状物体を、常温近傍
に融点をもつ液体例えばフッ化炭素の液体中に入れ、真
空デシケータと真空ポンプとにより脱気する。この条件
に合ったフッ化炭素としては、好適には、化学式がcc
ltF −ccl、Fであられされるテトラクロロジフ
ルオロエタンがある。
Sample a porous particulate object whose apparent density is to be measured, and place the particulate object whose mass mξ1 has been measured into a liquid having a melting point near room temperature, such as a fluorocarbon liquid, using a vacuum desiccator and a vacuum pump. Degas. The fluorocarbon that meets this condition preferably has the chemical formula cc
There is a tetrachlorodifluoroethane which is prepared by ltF-ccl,F.

このフッ化炭素の融点は26℃であって、容易に固−液
の相変化が可能であり、また液体のときの表面張力が小
さい物質である。
This fluorocarbon has a melting point of 26 DEG C., is a substance that can easily undergo a solid-liquid phase change, and has a low surface tension when in liquid form.

しかして、30〜40℃に加熱され、液体状態にあるフ
ッ化炭素は、脱気操作の結果、液中に入れた粒子状物体
の凹部及び粒子状物体間の空間が、フッ化炭素で満たさ
れたことになる。
Therefore, when the fluorocarbon is heated to 30 to 40°C and is in a liquid state, as a result of the degassing operation, the recesses of the particulate matter placed in the liquid and the spaces between the particulate matter are filled with fluorocarbon. It means that it was done.

次に、粒子状物体の凹部以外にあるフッ化炭素を除去す
るために、粒子状物体とフッ化炭素との混合物を30〜
40℃の温度のもとで、脱液操作を行なう。この操作は
、例えば金網等によるものでよいが、物体の粒子径など
によっては、軽い遠心脱液を用いることもある。
Next, in order to remove the fluorocarbon present in areas other than the concave portions of the particulate matter, a mixture of the particulate matter and fluorocarbon is heated for 30 to 30 minutes.
Deliquoring operation is carried out at a temperature of 40°C. This operation may be performed using, for example, a wire mesh, but depending on the particle size of the object, mild centrifugal deliquification may be used.

脱液した粒子状物体を、それからすばや<30〜40℃
に調整された恒温槽から、フッ化炭素の凝固点以下に例
えば−18℃まで冷却されたフリーザに入れ、粒子状物
体の凹部に残留しているフッ化炭素を凝固させる。ここ
までの操作により、粒子状物体は表面に付着したわずか
のフッ化炭素はあるものの、その凹部には、フッ化炭素
か固体の形で充填されたものとなっている。
The deliquified particulate matter is then quickly heated to <30-40°C.
The particulate matter is placed in a constant temperature bath adjusted to 20° C. and placed in a freezer cooled to below the freezing point of fluorocarbon, for example, −18° C., to solidify the fluorocarbon remaining in the recesses of the particulate matter. Through the operations up to this point, although there is a small amount of fluorocarbon attached to the surface of the particulate matter, the recesses are filled with fluorocarbon in solid form.

次に、残留したフッ化炭素がすべて凝固した粒子状物体
をすべて回収し、その質量mξ、を測定し、みかけ密度
測定用のピクノメータに移す。このビクノメータに移し
たものは、みかけ密度測定の標準温度である20℃に保
ち、その状態で水置換法によりみかけ密度測定に必要な
各質量を測定する。
Next, all the particulate matter in which all the remaining fluorocarbon has solidified is collected, its mass mξ is measured, and it is transferred to a pycnometer for measuring the apparent density. The material transferred to the vicinometer is kept at 20° C., which is the standard temperature for apparent density measurement, and in that state, each mass required for apparent density measurement is measured by the water displacement method.

この場合、水と本実施例で使用したフッ化炭素とは互い
に不溶であるので、水で置換する際にも問題は発生しな
い。
In this case, since water and the fluorocarbon used in this example are mutually insoluble, no problem occurs when replacing with water.

従来の方法と本発明による方法の違いを第1図及び第2
図により説明する。
The differences between the conventional method and the method according to the present invention are shown in Figures 1 and 2.
This will be explained using figures.

第2図が従来の方法を示し、ピクノメータ1の中に入れ
た粒子状物体2は、その表面に開口した凹部3及び粒子
状物体以外の空間とも置換液としての水4により満たさ
れている。
FIG. 2 shows a conventional method, in which a particulate object 2 placed in a pycnometer 1 is filled with water 4 as a replacement liquid both in a recess 3 opened on its surface and in a space other than the particulate object.

これに対して、第1図に示す本発明の方法によれば、ビ
クノメータ1の中に入っている粒子状物体2の表面凹部
3は、充填物としてのフッ化炭素の液体5で充填されて
おり、粒子状物体以外の空間は置換液としての水4で満
たされている。
On the other hand, according to the method of the present invention shown in FIG. The space other than the particulate matter is filled with water 4 as a replacement liquid.

これまでの操作を、−船釣なピクノメータにより測定す
る場合の式として示すと、 ピクノメータの容積Vpは、 V p−(ffIt  at)/ρ で表わされ、また粒子状物体の体積Vξは、Vξ= V
 p  ((is  +14)/ρ)で表わされる。
Expressing the above operations as an equation when measuring with a pycnometer, the volume of the pycnometer is expressed as Vp-(ffIt at)/ρ, and the volume of the particulate object Vξ is: Vξ=V
It is expressed as p ((is +14)/ρ).

そして、本発明の方法にもとづく粒子状物体のみかけ密
度ρpは、 ρp=mξ、/Vξ で表わされる。
The apparent density ρp of the particulate matter based on the method of the present invention is expressed as ρp=mξ,/Vξ.

以上述べた式において、各記号の意味は次の通りである
In the formulas described above, the meanings of each symbol are as follows.

mI:ピクノメータ質量+水の質量 1;ビクノメータ質量 m、: ピクノメータ質量十粒子状物体質量(フッ化炭
素充填後)千木の質量 m4;ピクノメータ質量十粒子状物体質量(フッ化炭素
充填後) ρ :水の質量 lξl:粒子状物体の質量(フッ化炭素充填前)mξ、
二粒子状物体の質量(フッ化炭素充填後)である。以下
に実際の数値の一例を示す。
mI: Pycnometer mass + mass of water 1; Bicnometer mass m,: Pycnometer mass + Particulate object mass (after filling with fluorocarbon) Chigi's mass m4; Pycnometer mass + Particulate object mass (after filling with fluorocarbon) ρ : Mass of water lξl: Mass of particulate matter (before filling with fluorocarbon) mξ,
The mass of the two particulate objects (after filling with fluorocarbon). An example of actual numerical values is shown below.

粒子状物体の種類 コークス 粒子径3xx鳳ξr= 
5.7[9]、  ll1t= 8.0[9]mt=7
8.6[9] 、   i*=28.7[9]m5=8
2.3[9]、  m−=36.7[9]ρ = 0.
998[9/CI’コ V p= (+ −oct)/ρ= (78,6−21
1,7)/(0,998)= 50.OVξ= V p
  ((as  L4)/ρ)= 50.0− ((8
2,3−36,7)/(0,998)) = 4.3 ρp=mξ +/V  ξ = 5.7/4.3= 1
.32[9/cm’コなお、同じ粒子状物体(コークス
)について、従来の方法により求めたみかけ密度ρpは
1.65[9/CI3〕であり、かさ密度ρbは0.5
9[9/CJII3コであった。
Type of particulate matter Coke Particle diameter 3xx ξr=
5.7[9], ll1t=8.0[9]mt=7
8.6[9], i*=28.7[9]m5=8
2.3[9], m-=36.7[9]ρ=0.
998[9/CI'coV p= (+ -oct)/ρ= (78,6-21
1,7)/(0,998)=50. OVξ= V p
((as L4)/ρ)=50.0-((8
2,3-36,7)/(0,998)) = 4.3 ρp=mξ +/V ξ = 5.7/4.3= 1
.. 32[9/cm'] Regarding the same particulate matter (coke), the apparent density ρp determined by the conventional method is 1.65[9/CI3], and the bulk density ρb is 0.5.
It was 9 [9/CJII 3 pieces.

この値を用いて、空間率ε[ε=(ρp−ρb)/(ρ
p)]を求めると、従来の方法によれば(1,65−0
,59)/(1,65)=0.65となる。これに対し
、本発明による方法によれば、空間率εは、(1,32
−0,59)/(1,32)= 0.56となる。
Using this value, the void ratio ε[ε=(ρp−ρb)/(ρ
p)], according to the conventional method, (1,65-0
,59)/(1,65)=0.65. On the other hand, according to the method according to the present invention, the void ratio ε is (1,32
-0,59)/(1,32)=0.56.

また、ポリスチレン球(径3 l11)などの非多孔質
の粒子状物体を用いてみかけ密度とかさ密度とを測定し
て計算した空間率は、0.55が得られた。
Further, the void ratio calculated by measuring the apparent density and bulk density using a non-porous particulate object such as a polystyrene sphere (diameter 3 l11) was 0.55.

発明の効果 以上述べたように、本発明によれば、多孔質物体のみか
け密度を従来の方法で測定しようとするときに生じる困
難さ、すなわちみかけの体積あたりの質量が小さいにも
かかわらず、従来の方法でみかけ密度測定を行なうと、
大きな値となるという問題を解決できる。すなわち、本
発明によれば、気流搬送装置等の設計で必要な粒子状物
体のみかけの体積あたりの質量からきまるみかけ密度を
求めることができ、様々な産業分野における粉粒体装置
の動力計算、圧力損失計算等に広く適用できるものであ
る。
Effects of the Invention As described above, the present invention overcomes the difficulty that occurs when attempting to measure the apparent density of a porous object using conventional methods, that is, the mass per apparent volume is small. When measuring apparent density using the conventional method,
This solves the problem of large values. That is, according to the present invention, the apparent density can be determined from the mass per apparent volume of a particulate object required in the design of air flow conveyance equipment, etc., and the power calculation of powder and granular equipment in various industrial fields can be performed. It can be widely applied to pressure loss calculations, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるみかけ密度測定法を説明するため
の図、第2図は従来例を説明するための図である。 1・・ピクノメータ、2・・物体、3・・凹部、(ほか
1名) 第1図 凹部 第2図
FIG. 1 is a diagram for explaining the apparent density measuring method according to the present invention, and FIG. 2 is a diagram for explaining a conventional example. 1. Pycnometer, 2. Object, 3. Recess, (1 other person) Figure 1 Recess Figure 2

Claims (1)

【特許請求の範囲】[Claims] 表面に凹部を有する物体のみかけ密度を測定する方法で
あって、物体を液中に浸漬して該物体表面の凹部へ液体
を充填し、上記物体を液中から取り出して凹部へ充填さ
れた液体を固化し、物体の表面に液体が固化した状態で
該物体の体積を計測し、別途求めた物体のみの重量を上
記体積で除して物体のみかけ密度を求めるようにしたこ
とを特徴とするみかけ密度測定法。
A method for measuring the apparent density of an object having concavities on its surface, in which the object is immersed in a liquid, the concavities on the surface of the object are filled with liquid, the object is taken out of the liquid, and the concavities are filled with liquid. is solidified, the volume of the object is measured with the liquid solidified on the surface of the object, and the apparent density of the object is determined by dividing the separately determined weight of only the object by the volume. Apparent density measurement method.
JP971088A 1988-01-21 1988-01-21 Measurement of apparent density Pending JPH01185428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP971088A JPH01185428A (en) 1988-01-21 1988-01-21 Measurement of apparent density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP971088A JPH01185428A (en) 1988-01-21 1988-01-21 Measurement of apparent density

Publications (1)

Publication Number Publication Date
JPH01185428A true JPH01185428A (en) 1989-07-25

Family

ID=11727807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP971088A Pending JPH01185428A (en) 1988-01-21 1988-01-21 Measurement of apparent density

Country Status (1)

Country Link
JP (1) JPH01185428A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320348C (en) * 2005-03-04 2007-06-06 中国地质大学(武汉) Method for measuring real density of double-density bottle powder
JP2009002880A (en) * 2007-06-25 2009-01-08 Ihi Inspection & Instrumentation Co Ltd Device and method for measuring apparent density of porous part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320348C (en) * 2005-03-04 2007-06-06 中国地质大学(武汉) Method for measuring real density of double-density bottle powder
JP2009002880A (en) * 2007-06-25 2009-01-08 Ihi Inspection & Instrumentation Co Ltd Device and method for measuring apparent density of porous part

Similar Documents

Publication Publication Date Title
Bockris et al. Self-diffusion in molten alkali halides
Lin et al. Improving the glass-filament method for accurate measurement of drying kinetics of liquid droplets
Airey Gas emission from broken coal. An experimental and theoretical investigation
Warner et al. Two-phase data for the join monticellite (CaMgSiO4)-forsterite (Mg2SiO4): experimental results and numerical analysis
Witzenburg et al. Density measurements of compressed solid and liquid argon
Jambon et al. Helium diffusion and solubility in obsidians and basaltic glass in the range 200–300 C
Shahi et al. Phase transition and the ag+-ion diffusion in AgI: effect of homovalent Br−-ion substitution
Chuang et al. Predicting the water activity of multicomponent systems from water sorption isotherms of individual components
Goates et al. Determination of excess volumes in cyclohexane+ benzene and+ n-hexane with a vibrating-tube densimeter
JPH01185428A (en) Measurement of apparent density
Chhabra Wall effects on terminal velocity of non-spherical particles in non-Newtonian polymer solutions
Chaudhary et al. Solubilities of nitrogen, isobutane and carbon dioxide in polyethylene
MESSING et al. Inhomogeneity‐packing density relations in binary powders—experimental studies
Khraisheh et al. Transport mechanisms of moisture during air drying processes
Dolan Microwave freeze-drying of aqueous solutions
ZHAO et al. METHOD FOR MEASURING CO2 ABSORPTION IN CO2 and N2 PACKAGED FRESH MEAT 1
US3181346A (en) Method and apparatus for measuring the gas permeability of permeable bodies
Harwood et al. The flow of granular solids through circular orifices
Brabants et al. Monitoring early zeolite formation via in situ electrochemical impedance spectroscopy
Heim et al. Changes of feed bulk density during drum granulation of bentonite
Simakin et al. Kinetics of clinopyroxene growth from a hydrous hawaiite melt
Ritter et al. Volume Expansion of Sodium near the Melting Point for Different Impurity Contents
Rukavishnikova et al. The density and surface tension of high-temperature stratifying mixtures of alkali metal bromides and lithium fluoride
RU2162596C2 (en) Method measuring density
Bhatt et al. The use of a flow microcalorimeter to characterise powder surfaces