JPH01184202A - Amorphous alloy powder for magnetic shield - Google Patents

Amorphous alloy powder for magnetic shield

Info

Publication number
JPH01184202A
JPH01184202A JP63008228A JP822888A JPH01184202A JP H01184202 A JPH01184202 A JP H01184202A JP 63008228 A JP63008228 A JP 63008228A JP 822888 A JP822888 A JP 822888A JP H01184202 A JPH01184202 A JP H01184202A
Authority
JP
Japan
Prior art keywords
amorphous alloy
magnetic
powder
thickness
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63008228A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Ishii
石井 博義
Jun Ohata
大畠 純
Toyohito Ito
伊藤 豊人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP63008228A priority Critical patent/JPH01184202A/en
Publication of JPH01184202A publication Critical patent/JPH01184202A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture soft magnetic powder having easy-to-paint, good orientation property and excellent magnetic shield property by pulverizing amorphous alloy and making flasky shape specifying thickness, length and aspect ratio. CONSTITUTION:The amorphous alloy of Co base amorphous alloy (Co75Fe5Si4B16, etc.), Fe base amorphous alloy (Fe75Si10B15, etc.) etc., are pulverized with pulverizing method to manufacture the flasky shape soft magnetic powder having 0.1-10mum thickness, 1-50mum length and 3-100 aspect ratio (length/thickness). By this method, the amorphous alloy soft magnetic powder having excellent magnetic shield property, which can easily cover wall of building, room, box body or various kinds of parts, is obtd.

Description

【発明の詳細な説明】 〔目的〕 本発明は塗料化し易く且つ塗布した際に配向性が良好で
磁気シールド性に優れた薄片状軟磁性粉末に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective] The present invention relates to a flaky soft magnetic powder that is easily formed into a paint, has good orientation when applied, and has excellent magnetic shielding properties.

近年、電子機器は、地磁気、永久磁石、周辺の電子機器
などの外部磁界によって誤動作などの障害を受けやすく
なっている。また、磁気カード、磁気テープなどの磁気
記録製品も、同様の外部磁界によって記録の消滅などの
障害が多発している。
In recent years, electronic devices have become more susceptible to malfunctions and other problems caused by external magnetic fields such as the earth's magnetism, permanent magnets, and peripheral electronic devices. Furthermore, magnetic recording products such as magnetic cards and magnetic tapes often suffer from problems such as erasure of records due to similar external magnetic fields.

これらの製品の保護のため磁気シールドを施すことが必
要不可欠となってきている。
It has become essential to provide magnetic shielding to protect these products.

磁気シールドは、障害のある建築物、部屋、筺体および
部品などを軟磁性材料で覆うことで達成でき、方法とし
ては板材の加工、塗布法、メツキ法などの種々の方法が
用いられている。これらの方法の中で、複雑形状に対応
するには塗布法が最も簡便で経済的であるとされている
。しかし、微細な軟磁性粉末を塗料化し、塗布後に所定
の磁気シールド特性を得るには膜厚を厚くする必要があ
り、数回塗布を繰返すなどの作業工数が増加し経済的に
も不利な状態となっている。これは軟磁性粉末同志がバ
インダーを介して固定されるために、磁気抵抗が大きく
なって透磁率が低下するためで磁気シールドを施すため
には、所定の磁化量になるまで膜厚を増加する必要があ
る。本発明者は鋭意研究の結果、磁性非晶質合金を薄片
状とすることによって磁気抵抗を小さくし、非晶質合金
の優れた特性を生かし、生産性の優れた磁気シールド材
が得られることを見い出した。
Magnetic shielding can be achieved by covering buildings, rooms, housings, parts, etc. with soft magnetic materials, and various methods are used, such as plate processing, coating methods, plating methods, etc. Among these methods, the coating method is said to be the simplest and most economical for complex shapes. However, in order to turn fine soft magnetic powder into a paint and obtain the desired magnetic shielding characteristics after application, it is necessary to increase the thickness of the film, which increases the number of man-hours such as repeating the application several times, which is economically disadvantageous. It becomes. This is because soft magnetic powders are fixed together via a binder, which increases magnetic resistance and decreases magnetic permeability.In order to provide magnetic shielding, the film thickness must be increased until a predetermined amount of magnetization is achieved. There is a need. As a result of intensive research, the present inventor has discovered that by making a magnetic amorphous alloy into flakes, the magnetic resistance can be reduced, and by taking advantage of the excellent properties of the amorphous alloy, a magnetic shielding material with excellent productivity can be obtained. I found out.

本発明は静磁界および交流磁界に対する磁気シールド性
に優れ、かつ生産性の高い、塗布用磁気シールド粉末を
提供することを目的としている。
An object of the present invention is to provide a magnetic shielding powder for coating, which has excellent magnetic shielding properties against static magnetic fields and alternating magnetic fields, and has high productivity.

〔構成〕〔composition〕

本発明は厚さ0.1〜10μm、長さ1〜50μmでア
スペクト比(長さ/厚さ)3〜100の薄片状を有する
塗布用非晶質合金磁気シールド粉末に係る。
The present invention relates to an amorphous alloy magnetic shielding powder for coating, which has a flaky shape with a thickness of 0.1 to 10 μm, a length of 1 to 50 μm, and an aspect ratio (length/thickness) of 3 to 100.

非晶質合金は、化学的、機械的特性において通常の結晶
質合金に見られない特異な性質を示すために、各種機能
材料として注目されている。中でも鉄基、コバルト基等
の非晶質合金は結晶異方性がないため、保磁力が非常に
小さく透磁率が高いという極めて良好な軟磁気特性を示
すことが知られている。
Amorphous alloys have attracted attention as various functional materials because they exhibit unique chemical and mechanical properties that are not found in ordinary crystalline alloys. Among them, amorphous alloys such as iron-based and cobalt-based alloys have no crystal anisotropy, and are therefore known to exhibit extremely good soft magnetic properties such as very small coercive force and high magnetic permeability.

この非晶質合金を粉末とすることで、他の軟磁性粉末、
例えば、この目的のために良く用いられるセンダスト、
パーマロイ、ステンレス等の粉末と比べて低保磁力で高
透磁率の磁性粉末とすることができる。
By making this amorphous alloy into powder, other soft magnetic powders,
For example, Sendust, which is often used for this purpose,
It can be made into a magnetic powder with lower coercive force and higher magnetic permeability than powders of permalloy, stainless steel, etc.

非晶質合金粉末の組成は軟磁性を示す組成であれば磁気
シールド性を示す。
If the composition of the amorphous alloy powder exhibits soft magnetism, it exhibits magnetic shielding properties.

本発明において好ましい非晶質合金粉末の組成例として
は、 C075Fe5Si4B+6+ Co6e、aFe4.
zSi++B+o rCO7o、+Fe4.+Si+s
B+o  +  Co65FesSi+J+3 +Co
66Fe5CrqSisB+s I Co7eSi+o
B+z + CoqoZr+。
Preferred composition examples of amorphous alloy powder in the present invention include C075Fe5Si4B+6+ Co6e, aFe4.
zSi++B+or CO7o, +Fe4. +Si+s
B+o+Co65FesSi+J+3+Co
66Fe5CrqSisB+s I Co7eSi+o
B+z+CoqoZr+.

(添数字は原子%を示す。以下同様)などに代表される
Co基非晶質合金組成、あるいは、Fe7sslloI
3+s  +   pe?8stJ+3.   Fe 
りeSi+oB+z  +Fe7qSisB+ 6 +
    F e+zCOaSi 5B+s  +  F
et6Cr 6SiJz+Few6MO6SitB+a
 + Fe7bCr6Nb+5L4B+a+Fea+5
itB+:+Cz +  FebJi+bSieB+4
+Fe2:1NisssilOB12  +   Fe
[1OP13G?  +   Fe7oCr+oP+:
+C7+FezoNi6oP+oB+o + Feqo
Zr+o +等で代表されるFe基非晶質磁性合金を採
用することができる。この非晶質合金粉末の厚さは0.
1μm未満となると粉末の保磁力が大きくなり10μm
を過えると塗布用粉末のアスペクト比が小さくなるため
に、この厚さは0.1〜10μmとする。特に好ましい
厚さは0.5〜3μmである。
Co-based amorphous alloy composition typified by (the suffix indicates atomic %; the same applies hereinafter), or Fe7sslloI
3+s+pe? 8stJ+3. Fe
ri eSi+oB+z +Fe7qSisB+ 6 +
F e+zCOaSi 5B+s + F
et6Cr 6SiJz+Few6MO6SitB+a
+ Fe7bCr6Nb+5L4B+a+Fea+5
itB+:+Cz+FebJi+bSieB+4
+Fe2:1NisssilOB12 +Fe
[1OP13G? +Fe7oCr+oP+:
+C7+FezoNi6oP+oB+o + Feqo
Fe-based amorphous magnetic alloys such as Zr+o+ can be used. The thickness of this amorphous alloy powder is 0.
When it is less than 1 μm, the coercive force of the powder increases and it becomes 10 μm.
Since the aspect ratio of the coating powder becomes small if the thickness exceeds 0.1 to 10 μm. A particularly preferred thickness is 0.5 to 3 μm.

次に、粉末の最大長さは1μm未満となると、保磁力が
大きくなり50μmを過えると塗料化が難しくなるため
に、この長さは1〜50μmとする。特に好ましいのは
、5〜20μmである。
Next, if the maximum length of the powder is less than 1 μm, the coercive force will increase, and if it exceeds 50 μm, it will be difficult to form it into a paint, so this length is set to 1 to 50 μm. Particularly preferred is 5 to 20 μm.

非晶質合金粉末は結晶異方性がなく低保磁力、高透磁率
であるが、上記粉末を塊状でなく薄片状にすることによ
って形状異方性を付与し、塗布後の磁気抵抗を小さくす
ることが本発明の目的であるためアスペクト比(長さ/
厚さ)が重要となる。
Amorphous alloy powder has no crystalline anisotropy and has low coercive force and high magnetic permeability, but by forming the powder into flakes instead of lumps, shape anisotropy is imparted and the magnetic resistance after application is reduced. Since the purpose of the present invention is to
thickness) is important.

このアスペクト比が3未満となると、塗布後の磁気抵抗
を小さくすることが難しく、塗布量を厚くする必要があ
り不経済となり、100を過えると、塗布時の粉末を配
向させることが難しくなり、磁気抵抗を小さくすること
が難しくなるため、このアスペクト比は3〜100とす
る。特に好ましいのは10〜30である。非晶質合金粉
末の製造方法としてはスパッタ方式のような固相から、
粉末を作製する方法(特開昭60−39106号)や本
出願人が先に出願したキャビテーション法(特開昭58
−6907号)のような溶融金属から直接粉末を作製す
る方法等種々提案されているが、本発明サイズの粉末を
作製するには粉砕法が工業的には最も好ましい。しかし
、熱を加えて構造緩和を起させた後に粉砕する方法(特
開昭55−128506号)や水素をチャージさせて脆
化させた後粉砕する方法(特開昭56−87610号)
では、本発明の粉末は得られにくく塊状となる。
If this aspect ratio is less than 3, it is difficult to reduce the magnetic resistance after coating, and the amount of coating needs to be increased, which becomes uneconomical. If it exceeds 100, it becomes difficult to orient the powder during coating. Since it becomes difficult to reduce magnetic resistance, this aspect ratio is set to 3 to 100. Particularly preferred is 10-30. Manufacturing methods for amorphous alloy powder include solid phase methods such as sputtering,
A method for producing powder (Japanese Patent Application Laid-Open No. 60-39106) and a cavitation method (Japanese Patent Application Laid-Open No. 58-1989) that the present applicant previously applied
Although various methods have been proposed, such as methods for directly producing powder from molten metal such as No. 6907), a pulverization method is industrially most preferred for producing powder of the size of the present invention. However, there is a method of applying heat to cause structural relaxation and then crushing (Japanese Patent Laid-Open No. 55-128506), and a method of charging hydrogen to cause embrittlement and then crushing (Japanese Patent Laid-Open No. 56-87610).
In this case, the powder of the present invention is difficult to obtain and becomes lumpy.

本発明粉末を得る生産手段としては特願昭58−038
942号公報に提示したジェット気流による粉末同志の
破砕による表面はく離をさせる方法または粉末を塑性変
形させながら粉砕するスタンプミル法等が考えられる。
As a production means for obtaining the powder of the present invention, Japanese Patent Application No. 58-038
Possible methods include the method proposed in Japanese Patent No. 942 in which surface exfoliation is achieved by crushing the powder together using a jet stream, or the stamp mill method in which the powder is pulverized while being plastically deformed.

実施例I C06B、 aFen、 zSi I 78I O組成
をキャビテーション法により100〜500μmの粉末
を作製し、この粉末を更にジェットミルにて粉砕し、1
5μm以下の粉末を得た。この粉末は厚さが0.5〜3
.0μm、長さ3〜15μmであった。
Example I A powder of 100 to 500 μm was prepared from the composition of C06B, aFen, and zSi I 78I O by the cavitation method, and this powder was further pulverized with a jet mill to obtain 1
A powder of 5 μm or less was obtained. This powder has a thickness of 0.5 to 3
.. The diameter was 0 μm, and the length was 3 to 15 μm.

この粉末をアクリル樹脂を用いて塗料化し、塩ビのフィ
ルム上に塗布して板状磁気シールド材とした。
This powder was made into a paint using acrylic resin and applied onto a PVC film to form a plate-shaped magnetic shielding material.

この板状磁気シールド材について、第1図の装置によっ
て磁気シールド性を調べた。即ち、電磁銅板(珪素鋼板
)類コア4に磁化コイル5を巻付けたものを磁場源とし
、磁化コイル5に励磁電流を供給して磁束6を発生させ
、板状磁気シールド材1を通過する漏洩磁束の強さをコ
ア4の端部から100mm離れた(図中に11で示す。
The magnetic shielding properties of this plate-shaped magnetic shielding material were examined using the apparatus shown in FIG. That is, a magnetizing coil 5 wound around an electromagnetic copper plate (silicon steel plate) core 4 is used as a magnetic field source, and an excitation current is supplied to the magnetizing coil 5 to generate magnetic flux 6, which passes through the plate-shaped magnetic shielding material 1. The strength of the leakage magnetic flux was measured at a distance of 100 mm from the end of the core 4 (indicated by 11 in the figure).

)位置に配した検出コイル7で測定し、この測定結果に
基づいて磁気シールド性を評価する。板状磁気シールド
材1は、コア4と検出コイル7との間に検出コイル7か
ら1511の位置(図中に12で示す。)に位置させで
ある。また、磁化コイル5に供給する励磁電流を変化さ
せることにより、磁束6によって形成される磁場の強さ
を変化させるようにしである。
), and the magnetic shielding properties are evaluated based on the measurement results. The plate-shaped magnetic shielding material 1 is located between the core 4 and the detection coil 7 at a position 1511 from the detection coil 7 (indicated by 12 in the figure). Furthermore, by changing the excitation current supplied to the magnetizing coil 5, the strength of the magnetic field formed by the magnetic flux 6 is changed.

第1図の装置を使用し、磁化コイル5への供給電力は直
流とし、板状磁気シールド材1の単位面積当たりの非晶
質合金粉末塗布重量を変化させ、板状磁気シールド材1
を通過する漏洩磁束を測定した。この例では、印加磁場
をIGにしている。
Using the apparatus shown in FIG. 1, the power supplied to the magnetizing coil 5 is DC, and the applied weight of the amorphous alloy powder per unit area of the plate-shaped magnetic shielding material 1 is changed.
The leakage magnetic flux passing through was measured. In this example, the applied magnetic field is IG.

その結果は第2図に示す通りである。The results are shown in FIG.

比較のため平均粒径10μmでアスペクト比3以下の同
一組成の粉末を同様の方法で塗布したフィルムを測定し
た。図−2に示すように、同一組成の粉末を用いても磁
気シールド特性には大きな差が見られる。アスペクト比
を大きくすることにより、磁気抵抗が小さくなり磁気シ
ールド特性が向上し同一組成の薄帯に近い特性を塗布化
によって可能となった。
For comparison, a film coated with powder of the same composition having an average particle size of 10 μm and an aspect ratio of 3 or less in a similar manner was measured. As shown in Figure 2, there are large differences in magnetic shielding properties even when powders with the same composition are used. By increasing the aspect ratio, magnetic resistance is reduced and magnetic shielding properties are improved, making it possible to achieve properties close to those of a thin ribbon of the same composition by coating.

実施例2 Fe7eSi+Jq組成の非晶質合金薄帯を衝撃ミルに
て50〜200μmの粉末とし、更にスタンプミルにて
粉砕し20μm以下の粉末を得た。この粉末は厚さが0
.2〜2μm、長さ3〜20μmであった(第3図参照
) この粉末を実施例1と同様にアクリル樹脂を用いて塗料
化し、紙上に塗布し磁気シールド材とした。
Example 2 An amorphous alloy ribbon having a composition of Fe7eSi+Jq was made into a powder of 50 to 200 μm in an impact mill, and further ground in a stamp mill to obtain a powder of 20 μm or less. This powder has a thickness of 0
.. The powder had a diameter of 2 to 2 μm and a length of 3 to 20 μm (see FIG. 3). This powder was made into a paint using an acrylic resin in the same manner as in Example 1, and was applied onto paper to form a magnetic shielding material.

この磁気シールド材を第1図の評価装置において、DC
300Gの印加磁界中で漏洩磁界を測定した。また比較
のため同一組成のアスペクト比が3以下の粉末を用いて
同様に作成した塗布紙も測定した。結果を第4図に示す
ように良好なシールド特性を示すことがわかる。
This magnetic shielding material was measured at DC
The leakage magnetic field was measured in an applied magnetic field of 300G. For comparison, a coated paper similarly prepared using a powder having the same composition and an aspect ratio of 3 or less was also measured. As the results are shown in FIG. 4, it can be seen that good shielding characteristics are exhibited.

〔効果〕〔effect〕

本発明は磁気シールド材を塗布可能とさせ得る磁気シー
ルド材の利用分野を拡大させ得る。又、磁気シールド材
を容易に塗布可能とすることは、たとえば、道路や廊下
等に磁気シールド材による案内を作り、無人カーや盲人
用のガイドとすることも可能となる。
The present invention can expand the field of application of magnetic shielding materials that can be applied. Furthermore, by being able to easily apply the magnetic shielding material, it becomes possible, for example, to create guides using the magnetic shielding material on roads, corridors, etc., and use it as guides for unmanned cars and blind people.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、磁気シールド評価方法に用いられる装置の側
面図、第2図はC0611,8Fea、 z’si I
 78I O組成のシールド特性を示す図、第3図はF
eヮ。Si、38g組成の粒子構造を示す電子顕微鏡写
真、第4図はFe7eSi l 3B9組成のシールド
特性を示す図である。 図中: 1−−−−−−−−−−−−−−電磁気シールド材4−
−−−−−−−−−−−−−−電電磁鋼板製コア5−−
−−−−−−−−−−−−電磁化コイル6−−−−−−
−−−−−−−−電磁 束7−−−−−−−−−−−−
−−−検出コイル代理人 弁理士  桑 原 英 明 第2図 草併面4W当り唾今璽」1   に91m2第4図 。 ゛へ、 ゝ、 咬      〜〜 騒         \ 鳴          \〜 簿で                       
       〜\シこ#えイ列慎
Figure 1 is a side view of the device used in the magnetic shield evaluation method, Figure 2 is C0611,8Fea, z'si I
Figure 3 shows the shielding characteristics of the 78I O composition.
Ew. An electron micrograph showing the particle structure of the Si, 38g composition, and FIG. 4 is a diagram showing the shielding characteristics of the Fe7eSi 1 3B9 composition. In the diagram: 1-----------------Electromagnetic shielding material 4-
−−−−−−−−−−−−−Electromagnetic steel core 5−−
−−−−−−−−−−−− Electromagnetic coil 6−−−−−−
−−−−−−−−Electromagnetic flux 7−−−−−−−−−−−−
---Detection coil agent Hideaki Kuwahara, patent attorney Figure 2: 91 m2 per 4W on the grass side (Fig. 4).゛He, ゝ, bite ~~ noise \ sound \ ~ in the book
〜\shiko#eiireshin

Claims (1)

【特許請求の範囲】[Claims]  厚さ0.1〜10μm、長さ1〜50μmでアスペク
ト比(長さ/厚さ)が3〜100の薄片形状を有した塗
布用磁気シールド非晶質合金軟磁性粉末。
A magnetic shielding amorphous alloy soft magnetic powder for coating having a flake shape with a thickness of 0.1 to 10 μm, a length of 1 to 50 μm, and an aspect ratio (length/thickness) of 3 to 100.
JP63008228A 1988-01-20 1988-01-20 Amorphous alloy powder for magnetic shield Pending JPH01184202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63008228A JPH01184202A (en) 1988-01-20 1988-01-20 Amorphous alloy powder for magnetic shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63008228A JPH01184202A (en) 1988-01-20 1988-01-20 Amorphous alloy powder for magnetic shield

Publications (1)

Publication Number Publication Date
JPH01184202A true JPH01184202A (en) 1989-07-21

Family

ID=11687302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63008228A Pending JPH01184202A (en) 1988-01-20 1988-01-20 Amorphous alloy powder for magnetic shield

Country Status (1)

Country Link
JP (1) JPH01184202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190917A (en) * 2014-08-27 2014-12-10 镇江宝纳电磁新材料有限公司 Method for orientating scale-like metal soft magnetic micro powder through combination of gravity and rolling force

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139702A (en) * 1987-07-31 1989-06-01 Tdk Corp Powder for magnetic shield, magnetic shield material and manufacture of powder
JPH01173796A (en) * 1987-12-28 1989-07-10 Tdk Corp Magnetic shielding material
JPH01205404A (en) * 1987-10-16 1989-08-17 Tdk Corp Soft magnetic powder for magnetic shield and magnetic shielding material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139702A (en) * 1987-07-31 1989-06-01 Tdk Corp Powder for magnetic shield, magnetic shield material and manufacture of powder
JPH01205404A (en) * 1987-10-16 1989-08-17 Tdk Corp Soft magnetic powder for magnetic shield and magnetic shielding material
JPH01173796A (en) * 1987-12-28 1989-07-10 Tdk Corp Magnetic shielding material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190917A (en) * 2014-08-27 2014-12-10 镇江宝纳电磁新材料有限公司 Method for orientating scale-like metal soft magnetic micro powder through combination of gravity and rolling force

Similar Documents

Publication Publication Date Title
Houshiar et al. Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties
Fish Soft magnetic materials
Maaz et al. Temperature dependent coercivity and magnetization of nickel ferrite nanoparticles
Childress et al. Granular cobalt in a metallic matrix
Becker Reversal mechanism in copper-modified cobalt-rare-earths
Zhan et al. Nanocomposite co/sio/sub 2/soft magnetic materials
JPS62221199A (en) Magnetic shielding material
Kobayashi et al. Magnetic properties of the single magnetic domain particles of Sm2Fe17Nx compounds
Zolghadr et al. Magnetic property of $\alpha $-Fe2O3–GO nanocomposite
US20140346389A1 (en) Superparamagnetic iron oxide and silica nanoparticles of high magnetic saturation and a magnetic core containing the nanoparticles
Leostean et al. Comparative study of core–shell iron/iron oxide gold covered magnetic nanoparticles obtained in different conditions
Lv et al. Controllable synthesis and magnetism of iron oxides nanorings
JPH01184202A (en) Amorphous alloy powder for magnetic shield
Raghasudha et al. Effect of Cr Substitution on magnetic properties of Mg nanoferrites synthesized by citrate-gel auto combustion method
JP2816362B2 (en) Powder for magnetic shielding, magnetic shielding material and powder manufacturing method
Uehori et al. Magnetic properties of iron-cobalt alloy particles for magnetic recording media
Giri et al. AC magnetic properties of FeCo nanocomposites
JPH07135106A (en) Magnetic core
JP2625708B2 (en) Method for producing ultra-high coercivity metal powder
Couderchon Magnetic alloys with vanishing anisotropies
Sudfeld et al. Magnetic cobalt nanocrystals organized in patches and chains
Hernandez et al. Magnetic properties of mechanically alloyed MnO+ FeCo
Amin et al. Magnetic properties of uniform spherical magnetite particles prepared from ferrous hydroxide gels
Kubisztal et al. Collective superspin glass state of interacting cobalt ferrite nanoparticles
Miyahara et al. Fine iron particles having super high coercivity