JPH01184119A - Heat-shrinkable product - Google Patents

Heat-shrinkable product

Info

Publication number
JPH01184119A
JPH01184119A JP797588A JP797588A JPH01184119A JP H01184119 A JPH01184119 A JP H01184119A JP 797588 A JP797588 A JP 797588A JP 797588 A JP797588 A JP 797588A JP H01184119 A JPH01184119 A JP H01184119A
Authority
JP
Japan
Prior art keywords
crosslinking
heat
tube
ethylene
resin compsn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP797588A
Other languages
Japanese (ja)
Inventor
Takashi Sawazaki
沢崎 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP797588A priority Critical patent/JPH01184119A/en
Publication of JPH01184119A publication Critical patent/JPH01184119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To improve heat resistance and freeze resistance and to give a long heat aging life, by molding, crosslinking and drawing a resin compsn. wherein an ethylene-propylene block copolymer having a specified ethylene component and a specified melt index is a base polymer. CONSTITUTION:A heat-shrinkable product is obtd. by molding a resin compsn. wherein an ethylene-propylene block copolymer having 1-20wt.% ethylene component and a melt index of 0.1-10 is a base polymer in a required shape, crosslinking it by a proper means and drawing it. Crosslinking of the resin compsn. is done either by compounding a polyfunctional monomer as a crosslinking auxiliary in the resin compsn. and crosslinking it by means of an ionizing radiation or by mixing in advance a silane compd. in the resin compsn. to graft-polymerize it and crosslinking the resin compsn. brought into contact with water in the presence of a silanol condensation catalyst. Molding of a heat-shrinkable product and imparting heat-shrinkability are done by extruding a material compd. into a tube shape by means of an extruder, carrying out a crosslinking treatment and expanding the diameter of the tube by means of a continuous diameter expansion method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石油、ガスなどの液体輸送用バイブラインの
防食被覆に好適な耐熱性、耐寒性ならびに耐熱劣化性を
有する熱収縮性物品に係わるものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a heat-shrinkable article having heat resistance, cold resistance, and heat deterioration resistance suitable for anticorrosive coating of vibrator lines for transporting liquids such as oil and gas. It is related.

(従来技術および発明が解決しようとする課題)石油、
ガス、水の輸送や電線、ケーブルの保護などに利用され
る地中埋設用鋼管の防食には、従来アスファルトが用い
られてきたが、これは高温で軟化し、低温では脆化し、
また塗装に際しては作業性が悪いなどの欠点があるため
、近年低密度ポリエチレンやエポキシ粉体塗料を用いる
ように変わりつつある。特に低密度ポリエチレンは安価
な上に低温特性を特徴とする特性が優れており、パイプ
ラインの外面防食被覆に広く用いられている。
(Prior art and problems to be solved by the invention) Petroleum,
Asphalt has traditionally been used to prevent corrosion of underground steel pipes used for transporting gas and water and protecting electric wires and cables, but asphalt softens at high temperatures and becomes brittle at low temperatures.
Furthermore, since there are drawbacks such as poor workability when painting, there has been a shift in recent years to the use of low-density polyethylene or epoxy powder coatings. In particular, low-density polyethylene is inexpensive and has excellent low-temperature properties, and is widely used as an anticorrosive coating on the exterior surface of pipelines.

しかるに、最近、特に石油や天然ガス等の液体輸送にお
いては、効率を向上させるため高圧輸送になってきた。
However, recently, high-pressure transportation has been used to improve efficiency, especially in the transportation of liquids such as oil and natural gas.

この場合は、流体は120 ’Cまで昇温して輸送され
る場合があり、低密度ポリエチレンでは耐熱性が不足す
るため、より融点の高いポリプロピレン(以下PPと略
す)を材料とするライニング鋼管が開発されている。こ
の場合には、鋼管の溶接接続部にもPPを主たる材料と
する熱収縮性物品が必要とされる。
In this case, the fluid may be transported at a temperature of up to 120'C, and low-density polyethylene lacks heat resistance, so a steel pipe lined with polypropylene (hereinafter abbreviated as PP), which has a higher melting point, is used. being developed. In this case, a heat-shrinkable article mainly made of PP is required for the welded joints of the steel pipes.

PPを材料として熱収縮性物品を作製することについて
はいくつかの技術的問題点がある。その一つは、熱収縮
性を付与するのに必要な架橋に関係するものであって、
PPは、通常第3級の炭素を有するため橋かけよりも分
子切断が優先して熱収縮性を付与するほど橋かけするこ
とが困難てある。また仮に、橋かけできても分子切断も
同時に生じ、これかもとになって劣化の連鎖反応を起こ
し易く、耐熱劣化寿命は短いものになってしまう。
There are several technical problems with making heat-shrinkable articles using PP as a material. One of them is related to the crosslinking required to impart heat shrinkability.
Since PP usually contains tertiary carbon, it is difficult to cross-link to the extent that molecular cleavage takes precedence over cross-linking and imparts heat shrinkability. Furthermore, even if cross-linking is possible, molecular cleavage occurs at the same time, which tends to cause a chain reaction of deterioration, resulting in a short heat-resistant deterioration life.

またPPは剛性が大きいため、ロール状に巻き取ったり
する場合に作業性が悪く、また低温脆性もポリエチレン
(以下PEと略称する)に較へて悪いため寒冷地におけ
る使用に耐えない。また、融点が高いため、熱収縮時に
は高い温度に加熱する必要があり、作業性が悪い。
Furthermore, since PP has high rigidity, it has poor workability when wound up into a roll, and its low-temperature brittleness is worse than polyethylene (hereinafter abbreviated as PE), so it cannot withstand use in cold regions. In addition, since it has a high melting point, it is necessary to heat it to a high temperature during thermal contraction, resulting in poor workability.

これらの欠点を回避するため、例えば 特開昭60−1
45836号、特開昭61−40152号では、未架橋
のPP層の外側に架橋した熱収縮性PEj5jを、内側
にホットメルト接着剤層を設けているが、この方法によ
れば、PP層は熱収縮性を持たないために、収縮作業性
が悪く、バーナー等で強力に加熱しなければならず、チ
ューブ外面が焦げたりする。また、鋼管等に収縮した後
の特性では120℃における押込み深さ(DIN306
70の方法による)を測定すると、針はPE層を貫通す
るから、PE層の厚み分だけ大きな値となってしまう。
In order to avoid these drawbacks, for example, JP-A-60-1
45836 and JP-A No. 61-40152, a crosslinked heat-shrinkable PEj5j is provided on the outside of an uncrosslinked PP layer, and a hot melt adhesive layer is provided on the inside. According to this method, the PP layer is Since it does not have heat shrinkability, the shrinkage workability is poor, and strong heating with a burner or the like is required, resulting in the outer surface of the tube being scorched. In addition, the characteristics after shrinking into steel pipes, etc. are the indentation depth at 120℃ (DIN306
70), the needle penetrates the PE layer, so the value becomes larger by the thickness of the PE layer.

また、特開昭61−64429号においては、PPと、
PE等のPP以外のポリオレフィンとをPPが40〜9
0重量%となるようにブレンドし、これにトリメチロー
ルプロパントリアクリレートのような架橋助剤の存在下
に電離性放射線を10Mrad照射して架橋する方法が
提案されている。
Moreover, in JP-A No. 61-64429, PP and
Polyolefin other than PP such as PE and PP is 40 to 9
A method has been proposed in which the mixture is blended to a concentration of 0% by weight and crosslinked by irradiating it with 10 Mrad of ionizing radiation in the presence of a crosslinking aid such as trimethylolpropane triacrylate.

しかしこの方法によれば、PE等の他のポリオレフィン
をブレンドすると、その割合が多くなるに従って押込み
深さが深くなり、PPの特性が損なわれる。その上この
方法では、電離性放射線の照射線量が10Mradと大
きいため架橋と同時に分子切断も起こり、収縮後に高温
で使用すると、短時間で表面層にクラックの発生が起こ
る。
However, according to this method, when other polyolefins such as PE are blended, the indentation depth becomes deeper as the proportion thereof increases, and the properties of PP are impaired. Furthermore, in this method, since the irradiation dose of ionizing radiation is as large as 10 Mrad, molecular scission occurs at the same time as crosslinking, and if used at high temperatures after shrinkage, cracks will occur in the surface layer in a short time.

本発明は、従来の技術が有する上記問題点に鑑みなされ
たものであり、その目的とするところは、製造工程及び
収縮時の作業性もよく、低温及び高温特性も良好で、し
かも耐熱寿命の長いポリプロピレン系熱収縮性物品を提
供しようとするものである。
The present invention has been made in view of the above-mentioned problems of the conventional technology, and aims to provide good workability during the manufacturing process and shrinkage, good low-temperature and high-temperature properties, and a long heat-resistant life. The purpose is to provide a long polypropylene heat-shrinkable article.

(課題を解決するための手段) 上記目的を達成するために、本発明の熱収縮性物品は、
エチレン成分1〜20重量%、メルトインデックス(以
下MIと略す)0.1〜10のエチレン・プロピレンブ
ロックコポリマをベースポリマとする樹脂組成物が、所
望形状に成形され、適宜な手段で架橋された後、延伸さ
れてなるものである。
(Means for Solving the Problems) In order to achieve the above object, the heat-shrinkable article of the present invention has the following features:
A resin composition having an ethylene content of 1 to 20% by weight and an ethylene/propylene block copolymer having a melt index (hereinafter abbreviated as MI) of 0.1 to 10 as a base polymer was molded into a desired shape and crosslinked by an appropriate means. After that, it is stretched.

本発明において、ベースポリマとしてエチレン成分が1
〜20重量%、MIが 0.1〜10であるエチレン・
プロピレンブロックコポリマな用いる理由は、ポリプロ
ピレンホモポリマであると剛性が高すぎて、加工工程で
のロール巻等の作業性が悪く、また脆化温度も常温付近
のため寒冷地にての使用に耐えないからであり、またエ
チレン・プロピレンランダムコポリマの場合は、結晶化
度が低いため機械的物性や耐熱性が劣るので好ましくな
い。更に、エチレン・プロピレンブロックコポリマであ
っても、エチレン成分が20重量%を越えると融点の低
下により耐熱性が低下するので好ましくなく、1重量%
未溝では耐寒性がポリプロピレンホモポリマと同様悪く
好ましくない。
In the present invention, the base polymer contains 1 ethylene component.
~20% by weight, ethylene with MI of 0.1-10.
The reason for using propylene block copolymer is that polypropylene homopolymer has too high rigidity, making it difficult to work with roll winding in the processing process, and its embrittlement temperature is around room temperature, so it cannot withstand use in cold regions. Moreover, in the case of ethylene-propylene random copolymer, it is not preferable because its crystallinity is low and its mechanical properties and heat resistance are poor. Furthermore, even in the case of ethylene/propylene block copolymers, if the ethylene component exceeds 20% by weight, the heat resistance will decrease due to a decrease in the melting point, which is not preferable;
Ungrooved material has poor cold resistance, similar to polypropylene homopolymer, and is not preferred.

また、Mlが0.1未満であると成型加工時に流動性が
悪く、10を越えると機械的特性が不十分となり、いず
れの場合も好ましくない。
Furthermore, if Ml is less than 0.1, the fluidity during molding will be poor, and if it exceeds 10, the mechanical properties will be insufficient, and either case is not preferred.

尚、製品の柔軟性や押出加工性を付与する目的で、ポリ
エチレン、ポリブテン−1,4−メチルペンテン−1等
のポリマを適宜ブレンドすることができる。これらのポ
リマーの添加量は、35重量%以内とするのが好ましい
。これ以上になると、120℃における押し込み深さが
大きくなる等、耐熱性が低下するためである。
In addition, for the purpose of imparting flexibility and extrusion processability to the product, a polymer such as polyethylene or polybutene-1,4-methylpentene-1 may be blended as appropriate. The amount of these polymers added is preferably within 35% by weight. This is because if the temperature exceeds this value, the indentation depth at 120° C. becomes large, and the heat resistance deteriorates.

本発明において、樹脂組成物を架橋させる方法としては
、例えば、該樹脂組成物中に架橋助剤として多官能性モ
ノマを配合して、電離性放射線により架橋させる方法、
あるいは該樹脂組成物中に予めシラン化合物を混合して
グラフト重合させ、しかる後シラノール縮合触媒の存在
下に水分と接触させ架橋させる方法などがある。その具
体例として、例えばベースポリマ100重量部に対し、
分子中にアクリロイロキシ基またはメタクリロイロキシ
基を少なくとも3個有する化合物を0. 1〜20重量
部とフェノール系誘導体0.55〜5゜0重量部を配合
し、ベースポリマの融点以上の温度で加熱成型し、しか
る後電離性放射線を照射することにより架橋を行う方法
、あるいは、ベースポリマにジベンゾイルパーオキサイ
ドおよびターシャリ−ブチルパーベンゾエートからなる
群から選はれたラジカル発生剤および一般式RR’5i
Y2(式中、Rは1価のオレフィン性不飽和炭化水素基
またはハイドロカーボンオキシ基、Yは加水分解し得る
有機基、R′は脂肪族不飽和結合を含まない1価の炭化
水素基、基Y、基Rのいずれかの有機基)にて表される
シラン化合物を添加した樹脂組成物をラジカル発生剤の
熱分解温度以上の温度にてグラフト反応させ、得られた
グラフトコポリマを予めあるいはグラフト反応後に存在
させたシラノール縮合触媒の作用下に水分と接触させて
架橋を行う方法等を挙げることができる。
In the present invention, the method of crosslinking the resin composition includes, for example, a method of blending a polyfunctional monomer as a crosslinking aid into the resin composition and crosslinking with ionizing radiation;
Alternatively, there is a method in which a silane compound is mixed in advance into the resin composition, graft polymerized, and then brought into contact with moisture in the presence of a silanol condensation catalyst to crosslink it. As a specific example, for example, for 100 parts by weight of the base polymer,
A compound having at least three acryloyloxy groups or methacryloyloxy groups in the molecule is 0. A method in which 1 to 20 parts by weight and 0.55 to 5.0 parts by weight of a phenolic derivative are blended, heat molded at a temperature higher than the melting point of the base polymer, and then crosslinked by irradiation with ionizing radiation, or , a radical generator selected from the group consisting of dibenzoyl peroxide and tert-butyl perbenzoate and a general formula RR'5i in the base polymer.
Y2 (wherein R is a monovalent olefinically unsaturated hydrocarbon group or hydrocarbonoxy group, Y is a hydrolyzable organic group, R' is a monovalent hydrocarbon group containing no aliphatic unsaturated bond, A resin composition to which a silane compound represented by an organic group (Y or R) is grafted is subjected to a graft reaction at a temperature higher than the thermal decomposition temperature of the radical generator, and the resulting graft copolymer is preliminarily or Examples include a method of crosslinking by contacting with moisture under the action of a silanol condensation catalyst present after the graft reaction.

また、本発明における樹脂組成物には、カーボンブラッ
ク等の顔料、各種老化防止剤等、架橋や成型加工を阻害
しない添加剤を加えることができる。
Further, additives such as pigments such as carbon black, various anti-aging agents, and the like that do not inhibit crosslinking or molding processing can be added to the resin composition in the present invention.

また、本発明において、熱収縮性物品に成型する方法及
び熱収縮性付与の方法としては、大別して二つの方法が
ある。その一つは、主として、内径50mm程度以下の
細径界のための方法であって、材料コンパウンドを押出
機にてチューブ状に押出した後、架橋処理を行い、しか
る後連続拡径法により拡径する。連続拡径法としては、
チューブを樹脂の融点以上に予め加熱しておき、ダイス
内にてチューブ内部が与圧となるような差圧を印加する
方法などいくつかの方法がある。他の方法は、押出機あ
るいはインフレーションによりコンパウンドをシートあ
るいはフィルム状に押出し、架橋処理の後、延伸により
熱収縮性を付与し、このシートあるいはフィルムを鉄製
等のマンドレルに巻回した後熱融着により積層状のチュ
ーブとなすもので、例えば内径50mm以上の中、大径
品に好適な方法である。
Furthermore, in the present invention, there are roughly two methods for molding into a heat-shrinkable article and for imparting heat-shrinkable properties. One of these methods is mainly for small fields with an inner diameter of about 50 mm or less, in which the material compound is extruded into a tube shape using an extruder, crosslinked, and then expanded by a continuous diameter expansion method. diameter. As for the continuous diameter expansion method,
There are several methods, such as a method in which the tube is preheated to a temperature higher than the melting point of the resin, and a pressure difference is applied within the die so that the inside of the tube is pressurized. Another method is to extrude the compound into a sheet or film using an extruder or inflation, apply heat shrinkage by stretching after crosslinking, and then heat-seal the sheet or film after winding it around a mandrel made of iron or the like. This method is suitable for medium-sized and large-diameter products, for example, those with an inner diameter of 50 mm or more.

本発明の熱収縮性物品は、その内側に必要に応じてボッ
トメルト接着剤層を設けてもよい。ホットメルト接着剤
としては、例えばポリアミド系あるいは変性ポリオレフ
ィン系接着剤を用いることができる。変性ポリオレフィ
ンとしては、ポリエチレン、ポリプロピレン、エチレン
・プロピレン共重合体、ポリブテン−1、ポリ−4−メ
チルペンテン−1等のポリオレフィンにアクリル酸、メ
タクリル酸、マレイン酸、無水マレイン酸等の脂肪族不
飽和カルボン酸あるいはその無水物をグラフトしたもの
が好適である。
The heat-shrinkable article of the present invention may be provided with a bot-melt adhesive layer on the inside thereof, if necessary. As the hot melt adhesive, for example, a polyamide adhesive or a modified polyolefin adhesive can be used. Modified polyolefins include polyolefins such as polyethylene, polypropylene, ethylene/propylene copolymer, polybutene-1, poly-4-methylpentene-1, and aliphatic unsaturation such as acrylic acid, methacrylic acid, maleic acid, and maleic anhydride. Preferred are those grafted with carboxylic acid or its anhydride.

(実施例) 以下に、本発明の実施例を示す。(Example) Examples of the present invention are shown below.

(実施例1) エチレン成分10%、Mll、0のエチレン・プロピレ
ンブロックコポリマ100重量部に対し、架橋助剤とし
てトリメチロールプロパントリアクリレート1.4部、
フェノール系老化防止剤0.2部及びカーボンブラック
0.5部を配合し、バンバリーミキサにより混練し、ペ
レット状とした後、65mmφ単軸押出機により厚さ0
.34mm、幅1000mmのフィルムとし、更にこの
フィルムにI M r adの電離性放射線を照射した
。得られたフィルムのゲル分率は43%であった。この
フィルムを1軸延伸機にて延伸倍率が2倍となるように
フィルムの長平方向に延伸を行った後、外径100mm
の鋼管に離型紙を介して肉厚が1mmとなるようにフィ
ルム長手方向に巻回し、雰囲気温度230℃の恒温槽に
30分間放置しその後冷却してチューブ状に一体化して
熱収縮性チューブとした。
(Example 1) 1.4 parts of trimethylolpropane triacrylate as a crosslinking agent was added to 100 parts by weight of an ethylene/propylene block copolymer with an ethylene component of 10% and Mll of 0.
0.2 parts of a phenolic anti-aging agent and 0.5 parts of carbon black were blended, kneaded using a Banbury mixer to form pellets, and then pelletized using a 65 mmφ single-screw extruder to a thickness of 0.
.. A film having a size of 34 mm and a width of 1000 mm was prepared, and the film was further irradiated with IMRad ionizing radiation. The gel fraction of the obtained film was 43%. This film was stretched in the longitudinal direction of the film using a uniaxial stretching machine so that the stretching ratio was doubled, and then the outer diameter was 100 mm.
The film was wound in the longitudinal direction around a steel tube with a release paper in between so that the wall thickness was 1 mm, and the film was left in a constant temperature bath at an ambient temperature of 230°C for 30 minutes, then cooled and integrated into a tube shape to form a heat-shrinkable tube. did.

得られた熱収縮性チューブを200°Cのシリコンオイ
ルバス中にて30分間熱処理した後、内径方向の収縮率
を測定したところ55%であった。
After heat-treating the obtained heat-shrinkable tube in a silicone oil bath at 200°C for 30 minutes, the shrinkage rate in the inner diameter direction was measured and found to be 55%.

また、このチューブから試験片を切削し、JISK−7
216の方法により衝撃脆化温度を測定したところ一2
8℃であった。
In addition, a test piece was cut from this tube and JISK-7
The impact embrittlement temperature was measured by the method of 216.
The temperature was 8°C.

また、上記のようにして得られた熱収縮チューブを外径
50間の鋼管にかぶせ、プロパンガストーチで加熱し、
鋼管上に均一に収縮密着せしめた。
In addition, the heat-shrinkable tube obtained as described above was placed over a steel pipe with an outer diameter of 50 mm, heated with a propane gas torch,
It was evenly contracted and adhered to the steel pipe.

このサンプルを用いてD I N30670の方法にて
120℃での押し込み深さを測定したところ0゜30I
TIITlであった。また鋼管上に収縮させたチューブ
を160℃の空気恒温槽中に20日間放置したが、何等
外観の変化は認められなかった。
Using this sample, the indentation depth at 120°C was measured using the method of D I N30670 and it was 0°30I.
It was TIITl. Further, the tube that had been shrunk on the steel pipe was left in an air constant temperature bath at 160° C. for 20 days, but no change in appearance was observed.

(比較例1) 実施例1で使用したと同じエチレン・プロピレンブロッ
クコポリマを65mmφ押出機により肉厚0.2mmの
フィルム状に押し出した。このフィルムを実施例1で用
いたと同じ鋼管に離型紙を介して肉厚が1mmとなるよ
うに巻回し、ざらにこの上に架橋された長手方向収縮率
70%のポリエチレンフィルム(膜厚0.17mm)を
肉厚が1mmとなるように長手方向に巻回し、巻終わり
端を固定して実施例1と同一方法にてチューブ状と成し
、同様の方法にて物性評価を行った。結果を第1表に示
した。
(Comparative Example 1) The same ethylene-propylene block copolymer used in Example 1 was extruded into a film with a thickness of 0.2 mm using a 65 mmφ extruder. This film was wound around the same steel tube used in Example 1 with a release paper in between so that the wall thickness was 1 mm, and on top of this was roughly cross-linked a polyethylene film with a longitudinal shrinkage rate of 70% (film thickness 0.5 mm). 17 mm) was wound in the longitudinal direction so that the wall thickness was 1 mm, and the end of the winding was fixed to form a tube shape in the same manner as in Example 1, and the physical properties were evaluated in the same manner. The results are shown in Table 1.

(実施例2) エチレン成分13%、Mll、0のエチレン・プロピレ
ンブロックコポリマ100重量部に対し、γメタクリロ
キシプロピルトリメトキシシラン1、5部、ベンゾイル
パーオキサイド0.5部、カーボンブラック0.5部、
フェノール系老化防止剤0.3部を加え、65mm押出
機にてロッド状に押出し、ペレット状グラフトコポリマ
とした。これと別に、同じコポリマ100重量部にジブ
チル錫ジラウレート4部フェノール系老化防止剤5部を
添加し、40mm押出機にてロッド状に押し出してペレ
ット状触媒マスターバッチとした。
(Example 2) 1.5 parts of γ-methacryloxypropyltrimethoxysilane, 0.5 parts of benzoyl peroxide, and 0.5 parts of carbon black to 100 parts by weight of ethylene-propylene block copolymer with an ethylene component of 13% and Mll of 0. Department,
0.3 part of a phenolic anti-aging agent was added and extruded into a rod shape using a 65 mm extruder to obtain a pellet-shaped graft copolymer. Separately, 4 parts of dibutyltin dilaurate and 5 parts of a phenolic antioxidant were added to 100 parts by weight of the same copolymer, and the mixture was extruded into a rod shape using a 40 mm extruder to obtain a pellet-shaped catalyst masterbatch.

しかる後、グラフトコポリマ:触媒マスターバッチ=2
0: 1の重量比でこれらを混合し、65關押出機にて
膜厚0 、4 mm、幅1000mmのフィルムを得た
。このフィルムをセルロース系不織布と重ねてロール状
に巻き、80℃の温水中に16時間浸漬した後該布織布
を除去してゲル分率53%のフィルムとした。
After that, graft copolymer: catalyst masterbatch = 2
These were mixed at a weight ratio of 0:1, and a film with a thickness of 0.4 mm and a width of 1000 mm was obtained using a 65 mm extruder. This film was layered with a cellulose-based nonwoven fabric, wound into a roll, and immersed in warm water at 80°C for 16 hours, and then the woven fabric was removed to obtain a film with a gel fraction of 53%.

得られたフィルムを実施例1と同一の方法にて延伸後積
層してチューブ化し、物性評価を行フた。
The obtained film was stretched and laminated to form a tube in the same manner as in Example 1, and the physical properties were evaluated.

結果を第1表に示した。The results are shown in Table 1.

(実施例3) エチレン成分8%、MIo、6のエチレン・プロビレン
ブロックコボリマ80重量部とMIo、3密度0.92
5の中密度ポリエチレン20重量部、トリメチロールプ
ロパントリメタクリレート1.4部フェノール系老化防
止剤0.25部、カーボンブラック0.6部を混練し、
ペレット状とした後、実施例1と同じ方法にて厚さ0.
34mmにフィルム化し、0.7Mradの電離性放射
線を照射してゲル分率57%のフィルムを得た。このフ
ィルムを実施例1と同一の方法にて延伸後チユーブ化し
、物性評価を行った。結果を第1表に示した。
(Example 3) 80 parts by weight of ethylene propylene block cobolimer with 8% ethylene content, MIo, 6 and MIo, 3 density 0.92
20 parts by weight of the medium-density polyethylene of No. 5, 1.4 parts of trimethylolpropane trimethacrylate, 0.25 parts of a phenolic antioxidant, and 0.6 parts of carbon black,
After forming into pellets, the same method as in Example 1 was used to obtain a thickness of 0.
It was formed into a film of 34 mm and irradiated with ionizing radiation of 0.7 Mrad to obtain a film with a gel fraction of 57%. This film was stretched and formed into a tube in the same manner as in Example 1, and its physical properties were evaluated. The results are shown in Table 1.

(比較例2) エチレン成分6%、MIo、5のエチレン・プロピレン
ブロックコポリマ48重量部とMIo、7密度0.94
の高密度ポリエチレン52重量部、トリメチロールプロ
パントリメタクリレート1.0部フェノール系老化防止
剤0.25部、カーボンブラック0.5部を混練し、ペ
レット状とした後、実施例1と同じ方法にて厚さ0.3
4mmにフィルム化し、10Mradの電離性放射線を
照射してゲル分率44%のフィルムを得た。このフィル
ムを実施例1と同一の方法にて延伸後チユーブ化し、物
性評価を行った。結果を第1表に示した。
(Comparative Example 2) 48 parts by weight of ethylene-propylene block copolymer with 6% ethylene content, MIo, 5 and MIo, 7 density 0.94
After kneading 52 parts by weight of high-density polyethylene, 1.0 part of trimethylolpropane trimethacrylate, 0.25 parts of a phenolic anti-aging agent, and 0.5 parts of carbon black to form pellets, the same method as in Example 1 was carried out. thickness 0.3
It was formed into a film of 4 mm and irradiated with ionizing radiation of 10 Mrad to obtain a film with a gel fraction of 44%. This film was stretched and formed into a tube in the same manner as in Example 1, and its physical properties were evaluated. The results are shown in Table 1.

(比較例3) MIo、8のポリプロピレンホモポリマ100重量部に
、トリメチロールプロパントリメタクリレ−)1.0部
、フェノール系老化防止剤0.3部、カーボンブラック
0.5部を混練し、ペレット状とした後、実施例1と同
じ方法にて厚さ0.34mmにフィルム化し、0.8M
radの電離性放射線を照射してゲル分率51%のフィ
ルムを得た。このフィルムを実施例1と同一の方法にて
延伸後チューブ化し、物性評価を行った。結果を第1表
に示した。
(Comparative Example 3) 100 parts by weight of a polypropylene homopolymer with an MIo of 8 was kneaded with 1.0 part of trimethylolpropane trimethacrylate, 0.3 part of a phenolic antioxidant, and 0.5 part of carbon black. After pelletizing, it was made into a film with a thickness of 0.34 mm using the same method as in Example 1, and 0.8M
A film with a gel fraction of 51% was obtained by irradiation with rad ionizing radiation. This film was stretched and formed into a tube in the same manner as in Example 1, and its physical properties were evaluated. The results are shown in Table 1.

(実施例4) 外型100mmの鋼管に、離型紙を介して厚さ1mmの
マレイン酸変性ポリプロピレン系接着剤を一周巻き付け
、更にこの上に実施例1にて作製した延伸フィルムを厚
さが1mmとなるように巻回し、しかる後実施例1と同
一の方法にてチューブとしたものを2本用意した。この
チューブ1本を200℃のシリコンオイルバス中に30
分放置し、内径方向の収縮率を測定したところ、58%
であった。
(Example 4) A 1 mm thick maleic acid-modified polypropylene adhesive was wrapped around a steel pipe with an outer mold of 100 mm via a release paper, and the stretched film prepared in Example 1 was further placed on top of this with a thickness of 1 mm. Two tubes were prepared using the same method as in Example 1. Place this tube in a silicone oil bath at 200℃ for 30 minutes.
When the shrinkage rate in the inner diameter direction was measured, it was 58%.
Met.

別のチューブを、表面をショツトブラストにて研磨した
外径50mmの鋼管にかぶせ、プロパンガストーチにて
加熱し、鋼管表面に均一にチューブを収縮密着せしめた
。このチューブの鋼管への密着性の温度依存性は、第1
図のごとくであった。
Another tube was placed over a steel pipe with an outer diameter of 50 mm whose surface had been polished by shot blasting, and heated with a propane gas torch to uniformly shrink and adhere the tube to the surface of the steel pipe. The temperature dependence of the adhesion of this tube to the steel pipe is
It was as shown in the figure.

(実施例5) エチレン成分13%、Mll、0のエチレン・プロピレ
ンブロックコポリマ100重量部に対し、架橋助剤とし
てテトラメチロールメタンテトラアクリレート1.6部
、フェノール系老化防止剤0.3部、カーボンブラック
0.5部をパンバリミキサにて混練し、ベレット状とし
た後、30IIllTlφ単軸押出機にて内径0.68
+nn+、肉厚0.44n+mのチューブ状とした。こ
のチューブに0.7Mradの電離性放射線を照射し、
ゲル分率52%のチューブを得た。このチューブを19
0℃のシリコンオイルバス中にて予熱し、しかる後チユ
ーブ内部が与圧となるような差圧を印加しながら円周方
向に膨張せしめ、次いで冷却可能なアウトサイドマンド
レルにより冷却固化せしめる方法にて熱収縮チューブと
成した。このチューブの内径は1.5mm、肉厚は0.
22mmであった。このチューブを外径0 、7 mm
の錫メツキ導体上に被覆収縮せしめて絶縁線を得た。
(Example 5) To 100 parts by weight of an ethylene-propylene block copolymer with an ethylene component of 13% and Mll of 0, 1.6 parts of tetramethylolmethanetetraacrylate as a crosslinking aid, 0.3 parts of a phenolic antioxidant, and carbon After kneading 0.5 part of black in a panburi mixer and making it into a pellet shape, the inner diameter was 0.68 in a 30IIllTlφ single screw extruder.
+nn+, and a tube shape with a wall thickness of 0.44n+m. This tube was irradiated with ionizing radiation of 0.7 Mrad,
A tube with a gel fraction of 52% was obtained. This tube is 19
The tube is preheated in a silicone oil bath at 0°C, then expanded in the circumferential direction while applying a pressure differential that pressurizes the inside of the tube, and then cooled and solidified using a coolable outside mandrel. Made of heat shrink tubing. The inner diameter of this tube is 1.5 mm, and the wall thickness is 0.5 mm.
It was 22 mm. This tube has an outer diameter of 0.7 mm.
An insulated wire was obtained by shrinking the coating on the tin-plated conductor.

(比較例4) MIl、O11部0.95の高密度ポリエチレンを用い
、実施例5と同一のサイズにチューブ化した後、このチ
ューブに15Mradの電離性放射線を照射してゲル分
率55%のチューブとした。
(Comparative Example 4) High-density polyethylene with MIl and O11 parts of 0.95 was formed into a tube of the same size as in Example 5, and then the tube was irradiated with ionizing radiation of 15 Mrad to obtain a gel fraction of 55%. It was made into a tube.

このチューブをシリコンオイルバスの温度を150′C
とした以外は実施例5と同一の方法にて拡径し、実施例
1におけると同じデイメンジョンを有する熱収縮チュー
ブを得た。このチューブを実施例5にて用いたと同じサ
イズの錫メツキ導体上に被覆収縮せしめて絶縁線を得た
Place this tube in a silicone oil bath at a temperature of 150'C.
The diameter was expanded in the same manner as in Example 5 except that a heat-shrinkable tube having the same dimension as in Example 1 was obtained. This tube was coated and shrunk onto a tin-plated conductor of the same size as used in Example 5 to obtain an insulated wire.

実施例5と比較例4て得た絶縁線に105℃2Okv用
のカットスルー試験(105℃30に■)を行い、短絡
に至るまでの時間を測定したところ、前者が7時間以上
、後者が1.7時間であった。このように、本発明品は
優れた耐高電圧カットスルー特性を示した。
The insulated wires obtained in Example 5 and Comparative Example 4 were subjected to a 105°C 2OkV cut-through test (■ at 105°C 30°C), and the time until short circuit was measured. It was 1.7 hours. Thus, the product of the present invention exhibited excellent high voltage cut-through characteristics.

(実施例6) 実施例2にて作製したシラン化合物グラフトコポリマと
触媒マスターバッチを重量比で20:1となるように混
合し、40叩φ押出機にて内径10闘肉厚1mmのチュ
ーブ状に押し出した。これを60℃の温水中に24時間
浸漬してゲル分率55%のチューブを得た。このチュー
ブを実施例5と同一の連続拡径法にて拡径したところ、
内径23mm肉厚0.48mmの熱収縮チューブを得た
。このチューブを200℃のシリコンオイルバス中にて
30分間処理した後内径方向収縮率を測定したところ、
55%であった。
(Example 6) The silane compound graft copolymer prepared in Example 2 and the catalyst masterbatch were mixed at a weight ratio of 20:1, and a tube shape with an inner diameter of 10 mm and a wall thickness of 1 mm was prepared using a 40 mm extruder. I pushed it out. This was immersed in warm water at 60° C. for 24 hours to obtain a tube with a gel fraction of 55%. When this tube was expanded using the same continuous diameter expansion method as in Example 5,
A heat-shrinkable tube with an inner diameter of 23 mm and a wall thickness of 0.48 mm was obtained. After treating this tube in a silicone oil bath at 200°C for 30 minutes, the shrinkage rate in the inner radial direction was measured.
It was 55%.

尚、上記実施例、比較例で言うゲル分率とは、試料約1
00mgを135℃のテトラリン100cc中にて12
時間抽出し、抽出残分な乾燥後、この重tを抽出前の重
量にて除した値である。
In addition, the gel fraction referred to in the above Examples and Comparative Examples is approximately 1
00mg in 100cc of tetralin at 135℃ for 12
This is the value obtained by dividing the weight t by the weight before extraction after time extraction and drying of the extraction residue.

1g− (発明の効果) 実施例、比較例品の特性比較から明らかなように、本発
明は、耐熱性および耐寒性に優れ、しかも長期の耐熱老
化寿命を有する熱収縮性物品を提供することができ、工
業的に極めて有用である。
1g- (Effects of the Invention) As is clear from the comparison of the characteristics of the Example and Comparative Example products, the present invention provides a heat-shrinkable article that has excellent heat resistance and cold resistance, and has a long heat-resistant aging life. It is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例4における鋼管被覆熱収縮チューブの
剥離強度と温度との関係を示すグラフである。 特許出願人   古河電気工業株式会社温  度 (0
C) 第1図
FIG. 1 is a graph showing the relationship between the peel strength and temperature of the steel pipe-coated heat-shrinkable tube in Example 4. Patent applicant Furukawa Electric Co., Ltd. Temperature (0
C) Figure 1

Claims (1)

【特許請求の範囲】[Claims]  エチレン成分1〜20重量%、メルトインデックス0
.1〜10のエチレン・プロピレンブロックコポリマを
ベースポリマとする樹脂組成物が、成形され、架橋され
た後、延伸されてなる熱収縮性物品。
Ethylene component 1-20% by weight, melt index 0
.. A heat-shrinkable article obtained by molding, crosslinking, and stretching a resin composition having an ethylene-propylene block copolymer of 1 to 10 as a base polymer.
JP797588A 1988-01-18 1988-01-18 Heat-shrinkable product Pending JPH01184119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP797588A JPH01184119A (en) 1988-01-18 1988-01-18 Heat-shrinkable product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP797588A JPH01184119A (en) 1988-01-18 1988-01-18 Heat-shrinkable product

Publications (1)

Publication Number Publication Date
JPH01184119A true JPH01184119A (en) 1989-07-21

Family

ID=11680460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP797588A Pending JPH01184119A (en) 1988-01-18 1988-01-18 Heat-shrinkable product

Country Status (1)

Country Link
JP (1) JPH01184119A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034597A1 (en) * 1994-06-10 1995-12-21 Raychem Corporation Propylene polymer compositions, methods therefor, and articles therefrom
US7361384B2 (en) * 2005-01-14 2008-04-22 Covalence Specialty Materials Corp. Corrosion protection system for transport pipe
CN109153230A (en) * 2016-04-06 2019-01-04 泰克尼普法国公司 Submarine pipeline comprising the sheath containing polypropylene block copolymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034597A1 (en) * 1994-06-10 1995-12-21 Raychem Corporation Propylene polymer compositions, methods therefor, and articles therefrom
US7361384B2 (en) * 2005-01-14 2008-04-22 Covalence Specialty Materials Corp. Corrosion protection system for transport pipe
CN109153230A (en) * 2016-04-06 2019-01-04 泰克尼普法国公司 Submarine pipeline comprising the sheath containing polypropylene block copolymer

Similar Documents

Publication Publication Date Title
AU741527B2 (en) Adhesive resin composition and heat-shrinkable articles made by using the same
US5256226A (en) Process for repairing exposed or damaged parts of a plastic coatings on metal tubing by coating or patching the area with an adhesive polymer composition
CA2187555C (en) Method of producing reformed crosslinked polyethylene articles
JP3131695B2 (en) Manufacturing method of laminated structure
DE69412323T2 (en) Process for coating metal tubes with polyolefin materials
US6361842B1 (en) Reformed crosslinked polyethylene articles
US5367030A (en) Process for crosslinking thermoplastic silane polymers
WO1985003511A1 (en) Polyolefin with good adhesion properties
JPH01184119A (en) Heat-shrinkable product
CN112111097A (en) Formula, preparation method and application of heat-shrinkable tubing
JP2000119403A (en) Thermal recovery article using linear polyolefin
JPH0976429A (en) Heat-shrinkable tube
JPH08259704A (en) Crosslinked tube and heat-shrinkable tube
JPH0376656B2 (en)
JPH06335968A (en) Heat-shrinkable tube
FI93735B (en) Crosslinkable ethylene copolymer, its preparation and crosslinking
JPH05162203A (en) Heat recoverable article and shrinking method thereof
JPH06335967A (en) Heat-shrinkable tube composed of polyethylene resin composition
JPS5971851A (en) Heat-shrinkable plastic tube
JPS6210121A (en) Electrical-insulating crosslinked ethylene copolymer
JPH06335969A (en) Heat-shrinkable tube
JPH01129042A (en) Crosslinked polyolefin resin foam
JP2001009913A (en) Resin-lined steel pipe
JPS61204238A (en) Surface-treatment of polyolefin resin molded article
JPS6021233A (en) Thermal shrinkage-thermal expansion tube