JPH01184097A - Treatment of waste water and equipment thereof - Google Patents

Treatment of waste water and equipment thereof

Info

Publication number
JPH01184097A
JPH01184097A JP63008402A JP840288A JPH01184097A JP H01184097 A JPH01184097 A JP H01184097A JP 63008402 A JP63008402 A JP 63008402A JP 840288 A JP840288 A JP 840288A JP H01184097 A JPH01184097 A JP H01184097A
Authority
JP
Japan
Prior art keywords
raw water
tank
wastewater
biological contact
contact mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63008402A
Other languages
Japanese (ja)
Other versions
JP2686464B2 (en
Inventor
Hiromi Ikechi
弘見 池知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIYOKUSUI PLANNING KK
Original Assignee
KIYOKUSUI PLANNING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIYOKUSUI PLANNING KK filed Critical KIYOKUSUI PLANNING KK
Priority to JP63008402A priority Critical patent/JP2686464B2/en
Publication of JPH01184097A publication Critical patent/JPH01184097A/en
Application granted granted Critical
Publication of JP2686464B2 publication Critical patent/JP2686464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To subject waste water to purifying treatment biologically and efficiently and to miniaturize the installation by providing a raw water pump for feeding waste water in a raw water tank to a rotary biological contact mechanism and providing a discharge port for feeding water to be treated of this mechanism to an aeration tank. CONSTITUTION:After introducing waste water to be treated into a raw water tank, waste water in this raw water tank is fed to a rotary biological contact mechanism by a raw water pump and herein fixing microorganisms are preferentially bread and grown and waste water is biologically subjected to purifying treatment. Then the water to be treated of this rotary biological contact mechanism is allowed to fall to an aeration tank of the lower part through its discharge port and fed thereto and in this aeration tank, floating microorganisms are preferentially bred and the fed water to be treated is subjected to purifying treatment. The fixing microorganisms remaining in the deep layer part of the aeration tank 1 are transferred into a regulation section 9 from the bottom part of a partition wall 8 and returned to the rotary biological contact mechanisms 2 via a circulation pump 11 and a measuring tank 5 and the fixing microorganisms are rebred.

Description

【発明の詳細な説明】 「発明の目的」 本発明は廃水処理方法およびその装置に係り、各種廃水
を比較的コンパクトな設備により合理的且つ効率的に浄
化することのできる方法およびその装置を得ようとする
ものである。
Detailed Description of the Invention Object of the Invention The present invention relates to a wastewater treatment method and device, and provides a method and device that can purify various wastewaters rationally and efficiently using relatively compact equipment. This is what we are trying to do.

(産業上の利用分野) 各種企業からの廃水と共に生活雑廃水をも浄化処理する
ための技術。
(Industrial application field) Technology for purifying domestic wastewater as well as wastewater from various companies.

(従来の技術) 今日における各種生産技術の発展普及は食品類、畜産、
廃棄物処理、化学処理、染色その他の製産ないし加工工
程において廃水の発生が不可避であり、斯うした企業に
おいてはその廃水によって河川、湖沼あるいは海洋が汚
染されることからこのような廃水を浄化処理することに
ついては種々な研究、開発が重ねられて来た。即ち河川
などにおける水質汚染は企業からの廃水が主因とされ、
上記のような各産業において排出される廃水が最も大量
となることから斯うした廃水を生ずる企業はすべて恩人
のように考えられ、従ってこのような廃水を浄化処理す
るための技術は種々に検討が重ねられて来た。
(Conventional technology) The development and spread of various production technologies today is
The generation of wastewater is unavoidable during waste treatment, chemical processing, dyeing, and other manufacturing or processing processes, and these companies must purify such wastewater because it contaminates rivers, lakes, and oceans. Various research and developments have been carried out regarding processing. In other words, water pollution in rivers and other areas is mainly caused by wastewater from companies.
Since the wastewater discharged by each of the above-mentioned industries is the largest amount, all companies that generate such wastewater are considered to be benefactors, and therefore various technologies for purifying such wastewater are being studied. were piled up.

即ちこのような浄化処理法としては微生物を利用するこ
とが最も自然的且つ低コストであって、その処理方式と
しては浮遊懸濁方式と固定生物膜方式に大別され、前者
には活性汚泥法、曝気式ラグーン法があり、後者には接
触曝気法がある。
In other words, the use of microorganisms is the most natural and low-cost method for such purification treatment, and the treatment methods are broadly divided into floating suspension method and fixed biofilm method, and the former includes activated sludge method, , the aerated lagoon method, and the latter includes the contact aeration method.

(発明が解決しようとする課題) 上記のような従来の排水処理設備においては何れにして
も設備が巨大で、設置面積も大であり、負荷変動に対す
る対応性に乏しいし、処理水質や汚泥性状の変動に影響
され易いなどの不利がある。
(Problems to be Solved by the Invention) In any case, the conventional wastewater treatment equipment as described above is huge, has a large installation area, has poor responsiveness to load fluctuations, and has problems with the quality of treated water and sludge properties. There are disadvantages such as being easily influenced by fluctuations in

特に設備が巨大で設置面積が大となることはそれなりの
大企業においては利用し得ても今日における河川などの
汚濁は小企業や生活雑廃水などに原因するところが大で
あって、そうした小企業などにおいてはそのような設備
を採用し得ない。就中、近時における地価の高騰は少く
とも数百−を必要とするようなこの種設備の採用を事実
上不可能としている。
In particular, the huge size of the equipment and the large installation area may be useful for large companies, but the pollution in rivers and other areas today is largely caused by small companies and household wastewater, and such small companies Such equipment cannot be used in such areas. In particular, the recent rise in land prices has made it virtually impossible to employ this type of equipment, which requires at least several hundred units.

又処理効率が必ずしも充分でない。即ちこのような廃水
処理設備に関してその能力を求める指標としてBOD容
積負荷があり、BOD負荷量(kg−BOD/日)を容
積単位としたもの(kg−80口/r+?・日)とした
ものであるが、従来の標準活性汚泥法や接触酸化法では
このBOD負荷量が0.35〜0、8 kg−BOD/
 rtr・日程度であり、比較的高いものとされる回転
円板法やバイオフィルター法においても最高で3kg−
BOD/ rd・日であり、その処理効率は低い。
Furthermore, processing efficiency is not necessarily sufficient. In other words, the BOD volumetric load is used as an index to determine the capacity of such wastewater treatment equipment, and the BOD load (kg-BOD/day) is expressed as a unit of volume (kg-80 units/r+?・day). However, in the conventional standard activated sludge method and catalytic oxidation method, this BOD load is 0.35 to 0.8 kg-BOD/
rtr/day, and even in the rotating disk method and biofilter method, which are relatively expensive, the maximum
BOD/rd·day, and its processing efficiency is low.

処理コストが高額である。即ちこの種廃水処理装置にお
いて酸素を供給し好気性微生物の作用を利用することが
不可欠で、この酸素供給のためのコストは単位電力(K
WH)当りの酸素移動量(kgOz/KW11)で求め
られるが、超深層曝気法と表面曙気法以外は0.5〜1
.8 kgOz/KWH程度であり、しかも超深層曝気
法は80m以上の水深をもった曝気槽を建設するもので
あることから耐震構造などをも必要として著しく巨額で
あり、表面曝気法は騒音や飛沫および泡の飛散による2
次公害を伴うなどの不利があって、結局は酸素移動量の
低い方法に、 よらざるを得ず、必然的に処理コストが
巨額化する欠点を有している。
Processing costs are high. In other words, in this type of wastewater treatment equipment, it is essential to supply oxygen and utilize the action of aerobic microorganisms, and the cost for this oxygen supply is approximately
It is determined by the amount of oxygen transferred per WH (kgOz/KW11), but it is 0.5 to 1 except for the ultra-deep aeration method and the surface aeration method.
.. 8 kgOz/KWH, and since the ultra-deep aeration method involves constructing an aeration tank with a water depth of 80 m or more, it requires an earthquake-resistant structure, which is extremely expensive, and the surface aeration method has problems with noise and droplets. and 2 due to foam scattering.
There are disadvantages such as secondary pollution, and in the end one has no choice but to use a method with a low amount of oxygen transfer, which inevitably has the drawback of increasing processing costs.

設置のための工期、工費が大である。即ち上記のように
大型とならざるを得ない従来のものはその設置のための
工期が数カ年に及ぶのが普通で、当然にその工費も嵩む
不利がある。
The construction period and cost for installation are large. In other words, as mentioned above, conventional devices that have to be large in size usually require several years to install, which naturally has the disadvantage of increasing construction costs.

なお従来のものにおいては上記以外にも、負荷変動に対
する対応性、発生汚泥量、処理水質などの何れかにおい
て制限を受け、設備の改造や運転管理が困難であるなど
の欠点がある。
In addition to the above, conventional systems have other drawbacks such as limitations in response to load fluctuations, amount of sludge generated, quality of treated water, etc., and difficulty in equipment modification and operation management.

「発明の構成」 (課題を解決するための手段) 16  処理すべき廃水を回転生物接触機構と曝気タン
クに導入すると共に循環せしめて順次に処理し、沈降処
理してから放流することを特徴とする廃水処理方法。
"Structure of the Invention" (Means for Solving the Problems) 16 The wastewater to be treated is introduced into a rotating biological contact mechanism and an aeration tank, and is circulated to be sequentially treated, subjected to sedimentation treatment, and then discharged. wastewater treatment method.

2、処理すべき廃水を受入れる原水槽と回転生物接触機
構および曝気タンクを有し、前記原水槽の廃水を回転生
物接触機構に送入する原水ポンプと該回転生物接触機構
の処理水を曝気タンクに供給する排出口を備えたことを
特徴とする廃水処理装置。
2. It has a raw water tank that receives wastewater to be treated, a rotating biological contact mechanism, and an aeration tank, a raw water pump that sends the wastewater from the raw water tank to the rotating biological contact mechanism, and an aeration tank that transfers the treated water of the rotating biological contact mechanism. A wastewater treatment device characterized by being equipped with an outlet for supplying water to the wastewater.

3、曝気タンクの一側に底部で開放された仕切壁を形成
し、該仕切壁で区分された調整区劃に原水を導入し該調
整区劃から原水ポンプにより原水を回転生物接触機構に
供給するようにした前記第1項に記載の廃水処理装置。
3. Form a partition wall open at the bottom on one side of the aeration tank, introduce raw water into a regulating section divided by the partition wall, and supply the raw water from the regulating section to the rotating biological contact mechanism using a raw water pump. The wastewater treatment device according to item 1 above.

4、原水ポンプから回転生物接触機構に対する原水供給
系に計量槽を設け、該計量槽と曝気タンクとの間に還流
管を設け、一定ヘッド差条件下で計量槽の原水を回転生
物接触機構に送入するようにした前記第1項に記載の廃
水処理装置。
4. A measuring tank is provided in the raw water supply system from the raw water pump to the rotating biological contact mechanism, a return pipe is provided between the measuring tank and the aeration tank, and the raw water in the measuring tank is fed to the rotating biological contact mechanism under a constant head difference condition. The wastewater treatment device according to the above item 1, wherein the wastewater treatment device

(作用) 回転生物接触機構において定着性微生物が優先的に生育
成長して廃水の浄化を図り、又曝気タンクにおいて浮遊
性微生物が優先的に生育して廃水の浄化を図る。
(Function) In the rotating organism contact mechanism, colonizing microorganisms preferentially grow and grow to purify wastewater, and in the aeration tank, planktonic microorganisms preferentially grow and purify wastewater.

上記のように定着性微生物と浮遊性微生物の生育成長に
よる浄化が交互に加えられることにより効率的な廃水浄
化がなされる。
As described above, efficient wastewater purification is achieved by alternately applying purification through growth of colonizing microorganisms and planktonic microorganisms.

曝気タンクの一側に底部で開放された仕切壁を形成し、
該仕切壁で区分された調整区劃に原水を導入することに
より曝気タンクが調整槽として作用する。
Forming a partition wall open at the bottom on one side of the aeration tank,
By introducing raw water into the regulating area divided by the partition wall, the aeration tank acts as a regulating tank.

計量槽を介して原水を回転生物接触機構に導入すること
により回転生物接触機構に定常的な原水の導入を図る。
By introducing raw water into the rotating biological contact mechanism through a measuring tank, a steady flow of raw water is introduced into the rotating biological contact mechanism.

(実施例) 上記したような本発明によるものの具体的な実施態様に
ついて説明すると、本発明においては処理すべき廃水を
回転生物接触機構と曝気タンク機構とに循環せしめて処
理することを提案することは前記の如くであり、回転生
物接触機構においては糸状性菌のような定着性微生物を
生育せしめ、曝気タンクにおいては浮遊性微生物の生育
を図ることによって全体として効率的な廃水浄化処理を
実現するものである。
(Example) To explain the specific embodiment of the present invention as described above, the present invention proposes to treat wastewater by circulating it through a rotating biological contact mechanism and an aeration tank mechanism. As mentioned above, by growing colonizing microorganisms such as filamentous fungi in the rotating biological contact mechanism and growing planktonic microorganisms in the aeration tank, efficient wastewater purification is achieved as a whole. It is something.

即ちこのような本発明方法を実施するための装置につい
ての1例は第1図に示す如くであって、処理すべき廃水
である原水は原水タンク3に流入せしめられ、該原水タ
ンク3に設けられた原水ポンプ10からの原水パイプ1
6は先ずスクリーン4に原水を供給し、原水中に含有さ
れた夾雑固形分を篩分けしシュート17を介して受器4
0に受入れしめる。篩下である原水41は曝気タンク1
の一例に底部を連通した仕切壁8により区分して形成さ
れた調整区劃9に受入れられ、該調整区劃9内に設けら
れた循環ポンプ11からの循環パイプ15により回転生
物接触機構2に前置された計量槽5に供給される。即ち
原水タンク3に受入れられた原水は発生源における作業
状況によって間欠的となるのが一般であるのに対し回転
生物接触機構2における接触処理は定常的であって計量
槽5を介し常に一定量が供給されて処理されるが、この
ような関係からして単位時間当り多量に供給される原水
は一旦曝気タンク1の調整区劃9に受入れられて該曝気
タンク1の水位レベルを上昇せしめるが、実質的には仕
切壁8によって直接に曝気タンク1へ流入することが阻
止され、循環ポンプ11により略定常的に計量槽5へ送
入される。
That is, an example of an apparatus for carrying out the method of the present invention is as shown in FIG. Raw water pipe 1 from the raw water pump 10
6 first supplies raw water to the screen 4, sieves out the foreign solids contained in the raw water, and passes it through the chute 17 to the receiver 4.
Accept it to 0. The raw water 41 that is under the sieve is transferred to the aeration tank 1.
For example, it is received in a regulating section 9 that is divided by a partition wall 8 that communicates with the bottom, and is connected to the rotating biological contact mechanism 2 through a circulation pipe 15 from a circulation pump 11 provided in the regulating section 9. It is supplied to the measuring tank 5 placed in front. In other words, while the raw water received in the raw water tank 3 is generally intermittent depending on the working conditions at the source, the contact treatment in the rotating biological contact mechanism 2 is constant, and a constant amount is always supplied through the measuring tank 5. However, given this relationship, the raw water that is supplied in large quantities per unit time is once received in the adjustment section 9 of the aeration tank 1 and raises the water level of the aeration tank 1. , is substantially prevented from flowing directly into the aeration tank 1 by the partition wall 8, and is sent into the metering tank 5 almost constantly by the circulation pump 11.

計量槽5においては同じ(底部の開放された中仕切51
が設けられていると共に堰板52が設けられ、循環ポン
プ11からの原水は中仕切51の一側に供給されると共
に還流管53が中仕切51の他側に設けられていて堰板
52のレベル以上に供給された原水を再び調整区!19
に戻し、堰板52を超えてオーバフローした原水を吐出
室54における一定のヘッド差をもって回転生物接触機
構2へ定常供給するように成っている。
The same is true for the measuring tank 5 (the partition 51 is open at the bottom).
is provided, and a weir plate 52 is provided, and the raw water from the circulation pump 11 is supplied to one side of the partition 51, and a return pipe 53 is provided to the other side of the partition 51. Adjustment zone again for raw water supplied above the level! 19
The raw water that has overflowed beyond the weir plate 52 is constantly supplied to the rotating organism contact mechanism 2 with a certain head difference in the discharge chamber 54.

回転生物接触機構2においては仔細が第2.3図に示さ
れるような回転部体21を回転軸24に配設し、該回転
軸24および回転部体21がモータ20を以て回動され
ているが、このような機構2においてその回転軸24よ
り若干下方の水面レベルを採って前記原水が湛えられて
゛いることは第1図の通りであり、即ちこのような水面
レベルにおいて回転生物接触機構2の他側には排出口2
2が設けられ、該排出口22からの処理液は前記曝気槽
1の他側に戻される。
In the rotating living organism contact mechanism 2, a rotating body 21, the details of which are shown in FIG. However, as shown in Fig. 1, in such a mechanism 2, the raw water is stored at a water surface level slightly below the rotating shaft 24. That is, at such a water surface level, the rotating organism contact mechanism 2 There is an outlet 2 on the other side.
2 is provided, and the treated liquid from the discharge port 22 is returned to the other side of the aeration tank 1.

曝気槽1には第1図と共に第3図に仔細が示される如く
曝気ポンプ12が一側底部に設けられていて空気を吐出
し、核種1に湛えられた処理液に対し曝気処理するが、
このような曝気槽1の他側には放流口13が設けられて
いて電動または電磁機構13により開披される弁を介し
て適宜に放流し、又°汚泥引抜管7により底部に集積し
た汚泥を抜取るように成っている。
As shown in detail in FIG. 1 and FIG. 3, in the aeration tank 1, an aeration pump 12 is installed at the bottom of one side and discharges air to aerate the treatment liquid filled with the nuclide 1.
A discharge port 13 is provided on the other side of the aeration tank 1, and the sludge that has accumulated at the bottom is discharged through a valve opened by an electric or electromagnetic mechanism 13. It is designed to extract.

第1.3.4図に明かなように曝気槽1の上方に回転生
物接触機構2を組付けたこの実施態様の場合において曝
気槽1の高さは一般的に2m以上であり、従って斯かる
曝気槽1上にデツキプレートを配設し、又昇降梯子19
や手摺19aなどを配設して作業者が回転生物接触機構
2やスクリーン4などの作動状況を見廻り得るように成
っている、更に曝気槽lの一側部には操作盤18が設け
られていてその運転作動状態をセットし自動的な操業を
なすようにされている。
As is clear from Figure 1.3.4, in the case of this embodiment in which the rotating organism contact mechanism 2 is installed above the aeration tank 1, the height of the aeration tank 1 is generally 2 m or more, and therefore A deck plate is installed on top of the aeration tank 1, and a climbing ladder 19 is installed.
A handrail 19a and the like are provided so that the operator can check the operating status of the rotating organism contact mechanism 2, screen 4, etc. Furthermore, an operation panel 18 is provided on one side of the aeration tank l. It is designed to set its operating state and operate automatically.

曝気槽1における回転部体21としては適宜の円盤状回
転部体を採用することができるが、本発明者等の実地的
に検討した好ましい具体例としては比表面積を大ならし
め、しかも定着性微生物である糸状菌類を安定に定着さ
せて原水および空気との接触を高度に図るため、塩化ビ
ニリデン系繊維のカール状材を交錯配列しバインダーに
より繊維相互の交点を接着させた立体的モジュールを採
用することであり、即ち交錯締結された繊維の全表面が
前記微生物の定着域で、しかも空気(酸素)との接触面
として利用され、効率的な糸状菌類などの生育を得しめ
、原水の浄化処理を行わしめる。
As the rotating member 21 in the aeration tank 1, an appropriate disk-shaped rotating member can be adopted, but a preferred specific example based on practical research by the present inventors has a large specific surface area and a fixing property. In order to stably colonize filamentous fungi, which are microorganisms, and achieve high contact with raw water and air, we have adopted a three-dimensional module in which curled vinylidene chloride fibers are intertwined and the intersections of the fibers are adhered with a binder. In other words, the entire surface of the interlaced fibers is used as a colonization area for the microorganisms and also as a contact surface with air (oxygen), allowing efficient growth of filamentous fungi and purifying raw water. Finish processing.

直径が1000〜1500mとされた前記回転部体21
は一般的に2〜6回/1Ilin程度の速度で回転機構
2内で回転されることにより原水(廃水)および空気(
酸素)との好ましい接触が図られ微生物の有効な生育条
件が形成され、BODが6000ppmあるいはそれ以
上に達するような高濃度廃水であっても効率的に処理し
得る。
The rotating body 21 has a diameter of 1000 to 1500 m.
is generally rotated within the rotating mechanism 2 at a speed of about 2 to 6 times/Ilin, thereby converting raw water (wastewater) and air (
Favorable contact with oxygen (oxygen) is achieved to create effective growth conditions for microorganisms, and even highly concentrated wastewater with a BOD of 6000 ppm or more can be efficiently treated.

上記のようにして効率的な曝気槽1の処理を経た処理液
においては定着性微生物の低減した状態となっているこ
とは明かであり、即ちこの処理液が曝気槽1に送られて
曝気されることにより曝気処理効率も高められる。即ち
定着性微生物の低減し、浮遊性微生物成分の高い処理液
が定着性微生物による阻害作用を受けることの少い条件
下でこの曝気槽1の処理を受けるわけであるからこの浮
遊性微生物の生育条件が整えられることとなって効率的
な曝気処理結果を得しめる。
It is clear that the number of colonizing microorganisms in the treated liquid that has been efficiently processed in the aeration tank 1 as described above is reduced, that is, this treated liquid is sent to the aeration tank 1 and aerated. This also increases the aeration efficiency. In other words, the growth of planktonic microorganisms is reduced because the treatment solution containing a high proportion of planktonic microorganisms is subjected to treatment in the aeration tank 1 under conditions in which the number of colonizing microorganisms is reduced and the treated solution with high planktonic microorganisms is less likely to be inhibited by colonizing microorganisms. Once the conditions are set, efficient aeration treatment results can be obtained.

前記のような曝気槽1内の処理液は、特に原水槽3から
の原水流入が停止したような時間帯において仕切壁8の
底部から調整区劃9内へ移入され、循環ポンプ11、計
量槽5を介して回転生物接触機構2に送給される。即ち
曝気槽l内において浮遊性微生物は該曝気槽1の液面側
である浮遊域において豊富となる傾向があり、従って核
種1の深層部においては定着性微生物が残るものと推定
され、斯うした深層部が再び回転生物接触機構2に送ら
れて前記の接触処理を受は定着性微生物の生育が図られ
る。
The treated liquid in the aeration tank 1 as described above is transferred from the bottom of the partition wall 8 into the adjustment section 9, especially during times when the inflow of raw water from the raw water tank 3 has stopped, and is transferred to the circulation pump 11 and the metering tank. 5 to the rotating biological contact mechanism 2. That is, in the aeration tank 1, planktonic microorganisms tend to be abundant in the floating area on the liquid surface side of the aeration tank 1, and it is therefore presumed that colonizing microorganisms remain in the deep layer of the nuclide 1. The deep layer portion is sent again to the rotating organism contact mechanism 2, where it undergoes the above-mentioned contact treatment and the growth of colonizing microorganisms is attempted.

父上記のような処理が順次に繰返されることにより定着
性微生物および浮遊性微生物のそれぞれが他の微生物の
存在による妨害作用を可及的に縮減させた条件下におい
て夫々の微生物による生育(従って廃水の浄化)が進行
せしめられることとなり、そうした結果として著しく効
率的な処理結果をもたらすことができる。
By repeating the above-mentioned treatments in sequence, each of the colonizing microorganisms and planktonic microorganisms can grow under conditions that minimize the interference caused by the presence of other microorganisms (therefore, the wastewater (purification), and as a result, a significantly more efficient treatment result can be achieved.

本発明によるものの作業時間8時間による標準的な食品
その他の生産設備に対する運転工程の1例を要約して示
すと第5図の如くである。即ち生産設備の作業時間中は
廃水を順次に受入れ、回転生物接触機構2を24時間連
続作動して処理することを前提とした運転計画であって
、原水ポンプlO1循環ポンプ11、回転生物接触機構
2、曝気槽1における曝気ポンプ12および電磁弁13
の作動関係を表として示したもので、原水ポンプ10の
作動による原水の受入れは前記作業時間に即応させて8
時間であり、循環ポンプ11および回転生物接触機構2
はこの原水受入れと同時にスタートし、循環ポンプ11
は原水の受入れから約20時間運転し、回転生物接触機
構2は24時間連続回転する。一方曝気ポンプ12は原
水受入停止後にスタートしてBOD負荷量に応じて20
時間程度まで適宜に空気を吐出して曝気処理する。
FIG. 5 summarizes an example of the operating process for standard food and other production equipment with a working time of 8 hours according to the present invention. In other words, the operation plan is based on the premise that during the working hours of the production equipment, wastewater is sequentially received and the rotating biological contact mechanism 2 is operated continuously for 24 hours for treatment. 2. Aeration pump 12 and solenoid valve 13 in aeration tank 1
This table shows the operational relationship between the raw water pump 10 and the operation of the raw water pump 10.
time, the circulation pump 11 and the rotating biological contact mechanism 2
starts at the same time as receiving this raw water, and the circulation pump 11
The system operates for about 20 hours after receiving raw water, and the rotating biological contact mechanism 2 continuously rotates for 24 hours. On the other hand, the aeration pump 12 starts after the raw water intake stops and pumps 200 liters depending on the BOD load amount.
Aeration treatment is performed by appropriately discharging air for about an hour.

この曝気は連続または間欠の何れでもよいが曝気ポンプ
12の停止後は曝気槽1が沈降槽として作用することに
なり、この沈降時間を3時間程度採ってから電動または
電磁弁を開いて放流する。
This aeration may be continuous or intermittent, but after the aeration pump 12 is stopped, the aeration tank 1 will act as a settling tank, and after about 3 hours of settling time, the electric or solenoid valve is opened to release the water. .

本発明によるものの具体的の操業例について説明すると
以下の如くである。
A specific example of operation according to the present invention will be described below.

操業例1゜ 豆腐製造工場における廃水である原水の組成はpHが6
.6で、88分が1189■/kg、CODが755、
4■/kg、BoDが1905■/kg、T−Nが50
.0 mg/ kgであり、このような原水が上記した
第1〜4図に示すような設備に供給され、回転生物接触
機構2と曝気槽lによる処理を交互に受けて定着性微生
物および浮遊性微生物の生育が交互に図られた。
Operation example 1゜The composition of raw water, which is wastewater in a tofu manufacturing factory, has a pH of 6.
.. 6, 88 minutes is 1189■/kg, COD is 755,
4■/kg, BoD 1905■/kg, T-N 50
.. 0 mg/kg, and such raw water is supplied to the equipment shown in Figs. Growth of microorganisms was attempted alternately.

回転生物接触機構2の出口および曝気槽1がらの排出液
を受けた沈澱槽および該沈澱槽からの排出液を凝集濾過
した放流液を1時間毎に測定した結果の平均値を要約し
て示すと次の第1表に示す如くであって、BOD負荷が
57.2 kg−BOD/ 日(7)操業条件下でのB
OD除去率は98%に達し、頗る優れた結果であること
が確認された。なおこのときのスクリーン4として用い
られた綱目は100メツシユであった。
A summary of the average values of the results of hourly measurements of the sedimentation tank that received the discharged liquid from the outlet of the rotating biological contact mechanism 2 and the aeration tank 1, and the discharged liquid obtained by coagulating and filtering the discharged liquid from the sedimentation tank is shown below. As shown in Table 1 below, the BOD load is 57.2 kg-BOD/day (7) under operating conditions.
The OD removal rate reached 98%, which was confirmed to be an excellent result. Note that the mesh used as the screen 4 at this time was 100 mesh.

第  1  表 操業例2゜ 漬物工場からの廃水はBOD負荷が116.3kg−B
OD/日であり、操業例1の場合のBOD負荷の2倍に
相当したものであることから操業例1で用いた設備を2
基採用し、又そのスクリーンとしては0.5flのもの
を用いた。
Table 1 Operation example 2゜ Wastewater from a pickle factory has a BOD load of 116.3 kg-B
OD/day, which is equivalent to twice the BOD load in Operation Example 1, so the equipment used in Operation Example 1 was
A 0.5 fl screen was used as the screen.

前記廃水のpHは5.6であり、SSは42■/l、B
ODは1550■/1であって、この原液を供給し、操
業例1におけると同じに回転生物接触機構出口および曝
気槽出口沈澱槽における測定結果の平均値は次の第2表
の如くであった。
The pH of the wastewater is 5.6, SS is 42■/l, B
The OD was 1550/1, and this stock solution was supplied, and the average values of the measurement results at the outlet of the rotating biological contact mechanism and the settling tank at the aeration tank outlet were as shown in Table 2 below, as in Operation Example 1. Ta.

第2表 操業例3゜ 水産加工設備からの廃水におけるpHは6.4で、SS
が約4400■/1、BoDが約3300ffv/1、
CODが約1800■/fのものであり、この廃水につ
いての処理結果を操業例1におけると同じに測定した結
果は次の第3表の如くであった。
Table 2 Operation example 3゜The pH of wastewater from seafood processing equipment is 6.4, and SS
is approximately 4400■/1, BoD is approximately 3300ffv/1,
The COD was about 1800 .mu./f, and the treatment results for this wastewater were measured in the same manner as in Operation Example 1, and the results were as shown in Table 3 below.

第3表 操業例4゜ 食品調整設備からの廃水に対し本発明を採用した。即ち
該廃水におけるpn値は5.4で、ssは178aw/
l、BODは1091+ng/j!であり、又CODは
307■/lであり、この廃水に対して本発明装置およ
び方法を適用した結果を操業例2におけると同じに求め
たところ次の第4表の如くであった。
Table 3 Operation Example 4 The present invention was adopted for wastewater from food preparation equipment. That is, the pn value of the wastewater is 5.4, and the ss is 178aw/
l, BOD is 1091+ng/j! The COD was 307 .mu./l, and the results obtained by applying the apparatus and method of the present invention to this wastewater in the same manner as in Operation Example 2 were as shown in Table 4 below.

第4表 即ちこのような操業結果によるときは何れにしてもBO
D除去率において85%以上、場合によっては98%に
達するものであることが確認され、このような除去率は
従来のこのような設備におけるよりは格段に優れたもの
と言える。しかも設備を設定するために必要とする敷地
は1基では10−前後であって従来のものの数分の1以
下と言うべき甚だ僅少である。即ち中小企業における廃
水、あるいは−船釣な家庭などにおける生活廃水に対し
て充分に適用し得る規模のものであった。
Table 4, that is, when based on such operation results, BO in any case
It was confirmed that the D removal rate was 85% or more, reaching 98% in some cases, and it can be said that such a removal rate is much better than that in conventional equipment. Moreover, the area required to set up the equipment is approximately 10 - 10 square meters per unit, which is extremely small, less than a fraction of that of conventional equipment. In other words, it was of a scale that could be sufficiently applied to wastewater from small and medium-sized businesses, or domestic wastewater from households fishing on boats.

又上記のような操業結果についてその酸素移動効率を求
めたところ2〜4 kgOz/KWHであって、超深層
曝気法に準する高度のものであり、80m以上のような
超深層施工を必要としないで高い処理効率を得しめるこ
とが確認された。
In addition, the oxygen transfer efficiency obtained from the above operation results was 2 to 4 kgOz/KWH, which is equivalent to the ultra-deep aeration method, and requires ultra-deep construction such as 80 m or more. It was confirmed that high processing efficiency could be obtained without using

更にそのBOD容積負荷を求めたところ7kg−BOD
/ rrr・日取上であり、場合によっては18kg−
BO口/r+?・日にも達し、従来の一般的に2 kg
−BOD/d・日収下、最高でも3 kg−BOD/ 
rd・日収下のものに比しその性能を飛躍的に向上して
いることを知った。
Furthermore, when we calculated the BOD volumetric load, it was 7kg-BOD.
/rrr/day, and in some cases 18kg-
BO mouth/r+?・The traditional weight is generally 2 kg.
-BOD/d・Under daily income, maximum 3 kg-BOD/
I learned that the performance has been dramatically improved compared to those under rd/daily income.

「発明の効果」 以上説明したような本発明による々きは効率的な廃水の
浄化処理を生物学的に実施することができるものであり
、従って設備の著しいコンパクト化を図り、大企業のみ
ならず中小企業ないし生活環境廃水の如きに対しても適
宜に採用することを可能となし、又運転操業のための処
理コストを充分に低減し、更には工期や工費の縮減を図
り、騒音その他の公害原因など−を解消するなどの効果
を共に有しており、工業的にその効果の大きい発明であ
る。
``Effects of the Invention'' The method according to the present invention as explained above is capable of biologically carrying out efficient wastewater purification treatment, and therefore the equipment can be significantly downsized, making it suitable for large companies only. It can be used appropriately for small and medium-sized enterprises and living environment wastewater, and it can sufficiently reduce treatment costs for operation and operation, further reduce construction period and construction costs, and reduce noise and other problems. This invention has the effect of eliminating the causes of pollution, etc., and is a highly effective invention industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであって、第1図
は本発明による装置の概要を示した説明図、第2図は本
発明装置の1例についての平面図、第3図はその部分切
欠側面図、第4図はその正面図、第5図は本発明方法を
8時扱業の廃水発生源で採用する場合の運転工程の図表
である。 然してこれらの図面において、1は曝気タンク、2は回
転生物接触機構、3は原水槽、4はスクリーン、5は計
量槽、6は排水樋、7は排泥機構、8は仕切壁、10は
原水ポンプ、11は循環ポンプ、12は曝気ポンプ、1
3は電磁弁を示すものである。 特許出願人  株式会社極水プランニング発   明 
  者  池   知   弘   兄弟  /   
fil。 第  4  m
The drawings show the technical contents of the present invention, and FIG. 1 is an explanatory diagram showing an overview of the device according to the present invention, FIG. 2 is a plan view of an example of the device of the present invention, and FIG. FIG. 4 is a partially cutaway side view of the same, FIG. 4 is a front view of the same, and FIG. 5 is a diagram of the operating process when the method of the present invention is adopted at a wastewater generation source of an 8 o'clock business. In these drawings, 1 is an aeration tank, 2 is a rotating biological contact mechanism, 3 is a raw water tank, 4 is a screen, 5 is a measuring tank, 6 is a drainage gutter, 7 is a sludge removal mechanism, 8 is a partition wall, and 10 is a Raw water pump, 11 is circulation pump, 12 is aeration pump, 1
3 indicates a solenoid valve. Patent applicant Kyokusui Planning Invention Co., Ltd.
Brother Tomohiro Ike /
fil. 4th m

Claims (1)

【特許請求の範囲】 1、処理すべき廃水を回転生物接触機構と曝気タンクに
導入すると共に循環せしめて順次に処理し、沈降処理し
てから放流することを特徴とする廃水処理方法。 2、処理すべき廃水を受入れる原水槽と回転生物接触機
構および曝気タンクを有し、前記原水槽の廃水を回転生
物接触機構に送入する原水ポンプと該回転生物接触機構
の処理水を曝気タンクに供給する排出口を備えたことを
特徴とする廃水処理装置。 3、曝気タンクの一側に底部で開放された仕切壁を形成
し、該仕切壁で区分された調整区劃に原水を導入し該調
整区劃から原水ポンプにより原水を回転生物接触機構に
供給するようにした特許請求の範囲第1項に記載の廃水
処理装置。 4、原水ポンプから回転生物接触機構に対する原水供給
系に計量槽を設け、該計量槽と曝気タンクとの間に還流
管を設け、一定ヘッド差条件下で計量槽の原水を回転生
物接触機構に送入するようにした特許請求の範囲第1項
に記載の廃水処理機構。
[Scope of Claims] 1. A wastewater treatment method characterized by introducing wastewater to be treated into a rotating biological contact mechanism and an aeration tank, circulating it, sequentially treating it, and subjecting it to sedimentation before discharging it. 2. It has a raw water tank that receives wastewater to be treated, a rotating biological contact mechanism, and an aeration tank, a raw water pump that sends the wastewater from the raw water tank to the rotating biological contact mechanism, and an aeration tank that transfers the treated water of the rotating biological contact mechanism. A wastewater treatment device characterized by being equipped with an outlet for supplying water to the wastewater. 3. Form a partition wall open at the bottom on one side of the aeration tank, introduce raw water into a regulating section divided by the partition wall, and supply the raw water from the regulating section to the rotating biological contact mechanism using a raw water pump. A wastewater treatment device according to claim 1, wherein the wastewater treatment device is configured to: 4. A measuring tank is provided in the raw water supply system from the raw water pump to the rotating biological contact mechanism, a return pipe is provided between the measuring tank and the aeration tank, and the raw water in the measuring tank is fed to the rotating biological contact mechanism under a constant head difference condition. The wastewater treatment mechanism according to claim 1, wherein the wastewater treatment mechanism is configured to feed wastewater.
JP63008402A 1988-01-20 1988-01-20 Wastewater treatment equipment Expired - Fee Related JP2686464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63008402A JP2686464B2 (en) 1988-01-20 1988-01-20 Wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63008402A JP2686464B2 (en) 1988-01-20 1988-01-20 Wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JPH01184097A true JPH01184097A (en) 1989-07-21
JP2686464B2 JP2686464B2 (en) 1997-12-08

Family

ID=11692181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63008402A Expired - Fee Related JP2686464B2 (en) 1988-01-20 1988-01-20 Wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP2686464B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131773A (en) * 2007-11-30 2009-06-18 Akira Ikechi Waste water treatment method
JP2012187450A (en) * 2011-03-08 2012-10-04 Hiromi Ikechi Wastewater treatment apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128353A (en) * 1974-09-03 1976-03-10 Asahi Chemical Ind Haisui no seibutsugakutekishorihoho oyobi sonosochi
JPS5353159A (en) * 1976-10-25 1978-05-15 Toho Rayon Kk Treating of organic waste water
JPS5449168U (en) * 1977-09-12 1979-04-05
JPS586296A (en) * 1981-07-02 1983-01-13 Daido Steel Co Ltd Device and method for treatment of water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128353A (en) * 1974-09-03 1976-03-10 Asahi Chemical Ind Haisui no seibutsugakutekishorihoho oyobi sonosochi
JPS5353159A (en) * 1976-10-25 1978-05-15 Toho Rayon Kk Treating of organic waste water
JPS5449168U (en) * 1977-09-12 1979-04-05
JPS586296A (en) * 1981-07-02 1983-01-13 Daido Steel Co Ltd Device and method for treatment of water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131773A (en) * 2007-11-30 2009-06-18 Akira Ikechi Waste water treatment method
JP2012187450A (en) * 2011-03-08 2012-10-04 Hiromi Ikechi Wastewater treatment apparatus

Also Published As

Publication number Publication date
JP2686464B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
US5337516A (en) Treatment of polluted water using wetland plants in a floating habitat
US5788836A (en) Sewage treatment system
US6117323A (en) Process for the biological treatment of wastewater with periods of biomass starvation
US7655143B2 (en) Carbon dioxide stimulation of nitrification in activated sludge reactors
WO1996026906A1 (en) Hybrid biological nutrient removal system
CN101426565A (en) Filtration apparatus comprising a membrane bioreactor and a treatment vessel for digesting organic materials
Brenner et al. Wastewater reclamation for agricultural reuse in Israel: trends and experimental results
Hochheimer et al. Biological filters: trickling and RBC design
Shrestha Specific moving bed biofilm reactor in nutrient removal from municipal wastewater
US5454949A (en) Sewage treatment system and method
AU2006298434B2 (en) Method and system for treating organically contaminated waste water
CN101337738B (en) Process for removing bio foam in sewage disposal process by activated sludge process
US11219194B1 (en) Aquaponic nutrient generation module
Drews et al. The Orbal extended aeration activated sludge plant
JPH01184097A (en) Treatment of waste water and equipment thereof
CZ291479B6 (en) Two-stage biological sewage treatment process and apparatus for making the same
CN102503045B (en) Biomembrane sewage processing method
Truax et al. A filtration technique for algal removal from lagoon effluents
Battistoni et al. Fish processing wastewater: emission factors and high load trickling filters evaluation
WO1988005334A1 (en) Methods and apparatus for liquid filtration
AU2004263334A1 (en) Denitrification reactor with a fixed culture
JPS59115790A (en) Sewage treating device
KR20030059178A (en) Apparatus and method for wastewater treatment with enhanced solids reduction(ESR)
US20070102335A1 (en) Apparatus and method for denitrification of treated water from aerobic wastewater treatment systems
KR19980054441A (en) High efficiency combined purification tank

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees