JPH01183575A - Method for treating surface of carbon fiber - Google Patents

Method for treating surface of carbon fiber

Info

Publication number
JPH01183575A
JPH01183575A JP63009380A JP938088A JPH01183575A JP H01183575 A JPH01183575 A JP H01183575A JP 63009380 A JP63009380 A JP 63009380A JP 938088 A JP938088 A JP 938088A JP H01183575 A JPH01183575 A JP H01183575A
Authority
JP
Japan
Prior art keywords
carbon fiber
ultraviolet rays
oxygen
wavelength
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63009380A
Other languages
Japanese (ja)
Inventor
Junichi Fujita
順一 藤田
Atsushi Takeda
篤 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I S I I KK
Osaka Gas Co Ltd
Original Assignee
I S I I KK
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I S I I KK, Osaka Gas Co Ltd filed Critical I S I I KK
Priority to JP63009380A priority Critical patent/JPH01183575A/en
Publication of JPH01183575A publication Critical patent/JPH01183575A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain carbon fiber excellent as a reinforcing material for composite materials having excellent reinforcing function, by irradiating the surface of the carbon fiber with ultraviolet rays in the presence of oxygen, modifying and hydrophylizing the surface thereof. CONSTITUTION:The surface of carbon fiber is irradiated with ultraviolet rays at a wavelength within the range of 1,000-4,050Angstrom in the presence of oxygen (e.g., under atmospheric pressure) for, e.g., about 10min, and modified. According to the method, the surface of the carbon fiber can be hydrophilized to enhance the adhesive properties to a substrate. Thereby the reinforcing function of the carbon fiber is sufficiently exhibited to afford the aimed excellent carbon- fiber reinforced product.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、炭素繊維の表面処理方法に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a method for surface treatment of carbon fibers.

〈従来の技術〉 近年では、セメント、水性ペイント、コーテイング材、
石こうおよび親水性有機接着材などを母材とし、その母
材に炭素繊維を混入することにより、この炭素繊維を補
強材とした各種の複合材料を得、この複合材料に他の材
料を混合するなどして固化し、これによって強度の高い
製品が得られるようになってきている。
<Conventional technology> In recent years, cement, water-based paint, coating materials,
By using gypsum, hydrophilic organic adhesive, etc. as a base material and mixing carbon fiber into the base material, various composite materials are obtained using this carbon fiber as a reinforcing material, and other materials are mixed into this composite material. It is becoming possible to obtain products with high strength.

〈発明が解決しようとする課題〉 しかしながら、従来の炭素繊維では、ピッチ系やポリア
クリロニトリル(PAN)系のいずれのものでも、その
表面が水に濡れにくいために、他の材料との混合固化に
際して水を用いる場合に母材とのなじみが悪く、炭素繊
維と母材との付着力が弱くなり、補強材としての機能が
低下する欠点があった。
<Problems to be Solved by the Invention> However, with conventional carbon fibers, whether they are pitch-based or polyacrylonitrile (PAN)-based, their surfaces are difficult to wet with water, making them difficult to mix and solidify with other materials. When water is used, it has the disadvantage that it does not blend well with the base material, weakens the adhesion between the carbon fibers and the base material, and deteriorates its function as a reinforcing material.

本発明は、このような事情に鑑みてなされたものであっ
て、繊維表面を改質して、親水性に優れた炭素繊維を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide carbon fibers with excellent hydrophilicity by modifying the fiber surfaces.

く課題を解決するための手段〉 本発明の炭素繊維の表面処理方法は、このような目的を
達成するために、酸素の存在下で、炭素繊維の表面に紫
外線を照射することを特徴としている。
Means for Solving the Problems> In order to achieve the above object, the carbon fiber surface treatment method of the present invention is characterized by irradiating the surface of carbon fibers with ultraviolet rays in the presence of oxygen. .

紫外線としては、波長が1000〜4050人のものが
適用できる。
As the ultraviolet light, one having a wavelength of 1000 to 4050 is applicable.

く作用〉 本発明の構成によれば、炭素繊維の表面を上述のように
処理した結果、その炭素繊維に親水性を付与できた。
Effect> According to the configuration of the present invention, as a result of treating the surface of the carbon fiber as described above, hydrophilicity could be imparted to the carbon fiber.

これは、紫外線を酸素に照射することによって、酸素が
ラジカル化し、そのラジカル化した酸素が炭素繊維の表
面に作用する結果、炭素繊維の表面状態を改質し、水に
対する親和力が良くなるものと推測される。
This is because by irradiating oxygen with ultraviolet rays, oxygen becomes radicals, and the radicalized oxygen acts on the surface of carbon fibers, modifying the surface condition of carbon fibers and improving their affinity for water. Guessed.

この反応は、次のようなものであろうと推察される。This reaction is presumed to be as follows.

一部 〈実施例〉 以下、本発明の実施例を図面に基づいて詳細に説明する
Part (Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図の放電装置の斜視図および第2図の紫外線照射を
説明する一部破断斜視図それぞれに示すように、高純度
石英1により放電管2,2を封入して構成された放電装
置3を、開閉蓋4を備えた密閉ボックス5内に入れ、炭
素繊維のフェルト6をその放電装置3上に置き、大気圧
下において紫外線を照射し、空気中の酸素を励起させ、
その励起した酸素を炭素繊維の表面に作用させた。7は
電源である。
As shown in the perspective view of the discharge device in FIG. 1 and the partially cutaway perspective view of FIG. is placed in a sealed box 5 equipped with an opening/closing lid 4, a carbon fiber felt 6 is placed on the discharge device 3, and ultraviolet rays are irradiated under atmospheric pressure to excite oxygen in the air.
The excited oxygen was applied to the surface of the carbon fiber. 7 is a power source.

放電管としては、50/60Hz、100Vの電源によ
り、入力が10数W〜80W、波長が1849人〜36
50人の範囲内で波長変更可能なように2種類の放電管
を用いた。
As a discharge tube, with a 50/60Hz, 100V power supply, the input is 10 W to 80 W, and the wavelength is 1849 to 36 W.
Two types of discharge tubes were used so that the wavelength could be changed within a range of 50 people.

里土皇験■ 上記処理方法において、2537人を主体とする紫外線
波長を、入力を80Wとし、50mn+X50閥の大き
さで厚みが10mでかつ重量が3゜5gの炭素繊維のフ
ェルト6Aを用い、その表裏両面それぞれに対する照射
時間を2分間、5分間、10分間それぞれに設定して炭
素繊維の表面処理を行い、3種の試料6A・・・を作成
した。
Sato Kojiken ■ In the above treatment method, the input is 80W for the ultraviolet wavelength mainly used by 2537 people, and carbon fiber felt 6A with a size of 50mm + 50cm, a thickness of 10m and a weight of 3. The carbon fibers were surface-treated by setting the irradiation time for each of the front and back surfaces to 2 minutes, 5 minutes, and 10 minutes, respectively, to create three types of samples 6A.

これら3種の試料6A・・・と、表面処理をしない炭素
繊維とを用い、第3図の断面図に示すように、水槽8中
に浮かせ、その水中に沈んだ厚さtを測定したところ、
次表に示す結果を得た。
Using these three types of samples 6A... and carbon fibers without surface treatment, they were floated in a water tank 8 as shown in the cross-sectional view of Fig. 3, and the thickness t of the submerged water was measured. ,
The results shown in the following table were obtained.

表 この結果から、炭素繊維の表面を紫外線で照射処理する
ことにより、炭素繊維を親水性に改質できていることが
明らかであり、また、紫外線の照射時間を長(する程親
水性を向上できることが明らかである。
From the results shown in the table, it is clear that by irradiating the surface of carbon fiber with ultraviolet rays, it is possible to modify the carbon fiber to make it hydrophilic. It is clear that it can be done.

策l裏腋斑 照射する紫外線の波長を1849人、2537人、36
50人の各波長を主体として、上記第1実験例と同じ炭
素繊維のフェルトにそれぞれ10分間照射し、その試料
の水中に沈んだ厚さtを測定し、横軸を波長、縦軸を厚
さtとしてプロットしたところ、第4図に示すようなグ
ラフを得た。
The wavelength of the ultraviolet rays used to irradiate the back axillary spots was 1849 people, 2537 people, and 36 people.
The same carbon fiber felt as in the first experimental example was irradiated for 10 minutes with each wavelength of 50 people as the main subject, and the thickness t of the sample submerged in water was measured, with the horizontal axis representing the wavelength and the vertical axis representing the thickness. When plotted as t, a graph as shown in FIG. 4 was obtained.

この結果から、1849人〜2537人の波長の紫外線
を照射した場合に好適な結果を得ることができ、そして
、2537人〜3650人の波長の紫外線を照射した場
合にも効果があった。
From this result, suitable results could be obtained when irradiating ultraviolet rays with a wavelength of 1,849 to 2,537 people, and effects were also obtained when irradiating ultraviolet rays with a wavelength of 2,537 to 3,650 people.

本発明は、前述の炭素繊維のフェルトに限らず、それよ
りも密度が小さい炭素繊維のマットおよびチゴップ状、
ミルド状の炭素繊維加工品や粉状炭素材およびその焼結
体にも適用できる。
The present invention is not limited to the above-mentioned carbon fiber felt, but also carbon fiber mats and chigop-shaped carbon fibers having a lower density.
It can also be applied to milled carbon fiber processed products, powdered carbon materials, and sintered bodies thereof.

また、本発明は、大気圧下に限らず、例えば、密閉容器
内に純酸素を封入して紫外線を照射処理するようにして
も良い。
Further, the present invention is not limited to atmospheric pressure, and for example, pure oxygen may be sealed in a closed container and the ultraviolet ray irradiation treatment may be performed.

〈発明の効果〉 以上の説明から明らかなように、本発明によれば、炭素
繊維の表面を親水性に改質するから、他の材料との混合
固化に際して水を用いる場合に、その炭素繊維が濡れや
すくて母材とのなじみが良くなり、炭素繊維と母材との
付着力を強くすることができ、炭素繊維の補強機能を充
分に発揮させ、繊維強化製品を得る上において、橿めて
優れた炭素繊維を得ることができる。
<Effects of the Invention> As is clear from the above description, according to the present invention, the surface of carbon fiber is modified to be hydrophilic, so when water is used for mixing and solidifying with other materials, the carbon fiber It is easy to wet and blends well with the base material, making it possible to strengthen the adhesion between the carbon fiber and the base material, fully demonstrating the reinforcing function of carbon fiber, and obtaining fiber-reinforced products. It is possible to obtain excellent carbon fiber.

【図面の簡単な説明】 第1図は放電装置の斜視図、第2図は、紫外線照射を説
明する一部破断斜視図、第3図は、親水性の測定手法を
説明する断面図、第4図は、第2実験例における、水中
に沈んだ厚さと照射する紫外線の波長との相対関係を示
すグラフである。
[Brief Description of the Drawings] Figure 1 is a perspective view of the discharge device, Figure 2 is a partially cutaway perspective view explaining ultraviolet irradiation, Figure 3 is a cross-sectional view explaining the hydrophilicity measurement method, FIG. 4 is a graph showing the relative relationship between the thickness submerged in water and the wavelength of irradiated ultraviolet rays in the second experimental example.

Claims (2)

【特許請求の範囲】[Claims] (1)酸素の存在下で、炭素繊維の表面に紫外線を照射
することを特徴とする炭素繊維の表面処理方法。
(1) A method for surface treatment of carbon fibers, which comprises irradiating the surface of carbon fibers with ultraviolet rays in the presence of oxygen.
(2)請求項(1)項の炭素繊維の表面処理方法におい
て、前記紫外線の波長が1000〜4050Åである炭
素繊維の表面処理方法。
(2) The method for surface treating carbon fibers according to claim (1), wherein the wavelength of the ultraviolet rays is 1000 to 4050 Å.
JP63009380A 1988-01-19 1988-01-19 Method for treating surface of carbon fiber Pending JPH01183575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63009380A JPH01183575A (en) 1988-01-19 1988-01-19 Method for treating surface of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63009380A JPH01183575A (en) 1988-01-19 1988-01-19 Method for treating surface of carbon fiber

Publications (1)

Publication Number Publication Date
JPH01183575A true JPH01183575A (en) 1989-07-21

Family

ID=11718846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63009380A Pending JPH01183575A (en) 1988-01-19 1988-01-19 Method for treating surface of carbon fiber

Country Status (1)

Country Link
JP (1) JPH01183575A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272184A (en) * 2004-03-23 2005-10-06 Honda Motor Co Ltd Method for manufacturing hydrophilic carbon nanotube
JP2013167031A (en) * 2012-02-15 2013-08-29 Fujitsu Ltd Apatite-coated carbon based material and method for producing the same
JP2016056491A (en) * 2014-09-11 2016-04-21 倉敷紡績株式会社 Fiber sheet for fiber-reinforced resin and production method of the same, and molded body using the same and production method of the molded body
CN106192360A (en) * 2016-07-06 2016-12-07 绵阳高新区三阳塑胶有限责任公司 A kind of carbon fiber surface quick compound hardening treatment method
JP2019099989A (en) * 2017-11-30 2019-06-24 国立大学法人 岡山大学 Production method of carbon nano structure, and carbon nano structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272184A (en) * 2004-03-23 2005-10-06 Honda Motor Co Ltd Method for manufacturing hydrophilic carbon nanotube
JP2013167031A (en) * 2012-02-15 2013-08-29 Fujitsu Ltd Apatite-coated carbon based material and method for producing the same
JP2016056491A (en) * 2014-09-11 2016-04-21 倉敷紡績株式会社 Fiber sheet for fiber-reinforced resin and production method of the same, and molded body using the same and production method of the molded body
CN106192360A (en) * 2016-07-06 2016-12-07 绵阳高新区三阳塑胶有限责任公司 A kind of carbon fiber surface quick compound hardening treatment method
JP2019099989A (en) * 2017-11-30 2019-06-24 国立大学法人 岡山大学 Production method of carbon nano structure, and carbon nano structure

Similar Documents

Publication Publication Date Title
Khorasani et al. Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material
Li et al. High-energy radiation technique treat on the surface of carbon fiber
Guillemot et al. Ti4+ to Ti3+ conversion of TiO2 uppermost layer by low-temperature vacuum annealing: interest for titanium biomedical applications
EP0792905A3 (en) Continuous process for preparing polypropylene compositions with improved stress crack resistance and high melt strength
Gupta et al. Surface modification of polyester films by RF plasma
Shao et al. Photochemical activity of black phosphorus for near‐infrared light controlled in situ biomineralization
Zargar et al. Preparation, characterization, and silanization of 3D microporous PDMS structure with properly sized pores for endothelial cell culture
Zhang et al. Surface modification of aramid fibers with γ‐ray radiation for improving interfacial bonding strength with epoxy resin
Brüser et al. Surface modification of carbon nanofibres in low temperature plasmas
ES2159280T3 (en) LIPOSOMAS FILLED WITH GAS AND ITS USE AS CONTRACTORS OF ULTRASOUNDS.
JPH06182195A (en) Method for glow discharge plasma treatment under atmospheric pressure
DE50101418D1 (en) Process for the production of grained polyolefin films and their use
JPH01183575A (en) Method for treating surface of carbon fiber
Govindaraj et al. Osteoblast compatibility of minerals substituted hydroxyapatite reinforced poly (sorbitol sebacate adipate) nanocomposites for bone tissue application
EP0673751A2 (en) Process for modifying surface of fluororesin product
Almansoori et al. Surface modification of the laser sintering standard powder polyamide 12 by plasma treatments
CN110522950A (en) Fibroin albumen/hydroxyapatite compound rest and preparation method thereof
Kusano et al. Plasma treatment of carbon fibres and glass-fibre-reinforced polyesters at atmospheric pressure for adhesion improvement
Parwez et al. Carbon nanotubes reinforced hydroxyapatite composite for biomedical application
Sato et al. Protein adsorption on PTFE surface modified by ArF excimer laser treatment
Chang et al. The Effects of Fiber Surface Treatments by a Cold Plasma in Carbon Fiber/Bismaleinide Composites
Toda et al. Interfacial assembly of bioinspired nanostructures mediated by supersensitive crystals
JP2005068185A (en) Photocatalyst-supported structure and method for producing the same
Konada et al. Effect of surface treatments on tensile and flexural properties of carbon fiber reinforced friction material
Murugarren et al. Highly aligned bacterial nanocellulose films obtained during natural biosynthesis