JPH01183511A - Flow straightening cylinder for spinning - Google Patents

Flow straightening cylinder for spinning

Info

Publication number
JPH01183511A
JPH01183511A JP282288A JP282288A JPH01183511A JP H01183511 A JPH01183511 A JP H01183511A JP 282288 A JP282288 A JP 282288A JP 282288 A JP282288 A JP 282288A JP H01183511 A JPH01183511 A JP H01183511A
Authority
JP
Japan
Prior art keywords
spinning
bath
flow
liquid
straightening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP282288A
Other languages
Japanese (ja)
Inventor
Yoshihiro Takeuchi
竹内 芳裕
Yasunobu Nishimoto
西本 安信
Masaharu Mizuno
正春 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP282288A priority Critical patent/JPH01183511A/en
Publication of JPH01183511A publication Critical patent/JPH01183511A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a spinning flow-straightening cylinder controlling the complicated flow of a solution in a bath without producing the differences in the temperature and concentration of the bath solution between the interior and exterior of the spinning flow-straightening cylinder, thereby permitting to provide spun fibers having a high maximum draw ratio in a state free of the disturbance of the spun fibers. CONSTITUTION:A porous material such as a metal net or punched metal is used as a material for the cylindrical member of a spinning flow-straightening cylinder 1 for a dry-wet type or gel type spinning method and the upper terminal portion of the spinning flow-straightening cylinder 1 is exposed above a coagulating bath solution or cooling bath solution 5. Thereby, the cylinder permits to reduce the differences in the temperature and concentration of the bath solution between the interior and exterior of the spinning flow-straightening cylinder to <=1 deg.C and <=1%, respectively, to decrease the disturbance and fluctuation of spun fibers 3 and to control the flow of the solution in the bath 6 and the coagulation rate or cooling rate of the solution.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規な紡糸整流筒、特に、乾湿式またはゲル紡
糸法などに用いろ紡糸整流筒に閣する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is directed to a novel spinning straightener, particularly to a filter spinning straightener used in wet-dry or gel spinning methods.

(従来の技術) 従来の乾湿式またはゲル紡糸法は紡出口金より気相部へ
重合体溶iαを吐出い次いで凝固繊維またはゲル繊維を
凝固浴または冷却浴内へ導くようにした紡糸方法である
。このような紡糸方法に′おいては、繊維の凝固または
ゲル化を速やかにかっ均一に進行させるため一定員以上
の凝固液または冷却液を浴内に供給する必要があり、そ
の際浴内に生ずる液流により紡出直後の繊維が乱れ、定
常状態での紡糸が行えず、四端な場合には気相部での繊
維同士の接着さえ生じ、得られた繊維の品質も悪いとい
う欠点があった。
(Prior art) The conventional wet-dry or gel spinning method is a spinning method in which a polymer solution iα is discharged from a spinning orifice into a gas phase, and then coagulated fibers or gel fibers are introduced into a coagulating bath or a cooling bath. be. In such spinning methods, it is necessary to supply a certain amount of coagulation liquid or cooling liquid into the bath in order to coagulate or gel the fibers quickly and uniformly. The disadvantage is that the resulting liquid flow disturbs the fibers immediately after spinning, making it impossible to perform spinning in a steady state, and in the case of four-end spinning, fibers may even adhere to each other in the gas phase, resulting in poor quality fibers. there were.

このような欠点を解決するため特開昭59−16810
9、特開昭59−228012ではろうと状の流管を凝
固浴あるいは冷却浴内に設置し。
In order to solve these drawbacks, Japanese Patent Application Laid-Open No. 59-16810
9. In JP-A-59-228012, a funnel-shaped flow tube is installed in a coagulation bath or a cooling bath.

定常状態で紡糸を行なわせしめているが、流管をバイブ
または一般板材で構成しているため、流管の内部と外部
とで浴液の温度差、濃度差を生ずる欠点があった。また
、流管が紡出口金を取り囲まず、離れて設置されている
ため、繊維が気相部より浴液内に進入する際に受ける浴
内i夜流の影響は大きく、得られた凝固繊維またはゲル
繊維の品質を悪化せしめるという欠点があった。
Although spinning is performed in a steady state, since the flow tube is constructed of a vibrator or a general plate material, there is a drawback that a temperature difference and a concentration difference occur in the bath liquid between the inside and outside of the flow tube. In addition, since the flow tube does not surround the spinning orifice and is installed at a distance, the influence of the flow in the bath when the fiber enters the bath liquid from the gas phase is large, and the resulting coagulated fiber Alternatively, there is a drawback that the quality of the gel fiber is deteriorated.

(発明が解決しようとする問題点) 本発明に関わる乾湿式またはゲル紡糸法は9重合体溶液
を紡出口金より一旦気相部に吐出させた後、凝固あるい
は冷却浴液中に導入するものである。これにより低ドラ
フト、低張力下での凝固あるいはゲル1ヒを行わせ、延
伸性に優れた凝固繊維またはゲル繊維を得ることができ
る。したがって。
(Problems to be Solved by the Invention) The wet-dry or gel spinning method according to the present invention involves first discharging a nine-polymer solution from a spinning nozzle into a gas phase, and then coagulating or introducing it into a cooling bath liquid. It is. As a result, coagulation or gel formation can be performed under low draft and low tension, and coagulated fibers or gel fibers with excellent stretchability can be obtained. therefore.

凝固浴あるいは冷却浴液の温度および濃度を管理。Controls the temperature and concentration of coagulation bath or cooling bath liquid.

制御可能なものとし、加えて該浴内の液流の影響を軽減
することが紡糸安定性ならびに凝固繊維およびゲル繊維
を延伸して得られる最終延伸糸の品質向上をもたらす。
Controllability and, in addition, reducing the influence of liquid flow within the bath improves the spinning stability and the quality of the final drawn yarn obtained by drawing the coagulated and gel fibers.

特に高強度高弾性率繊維を製造するにあたっては、延伸
性向上は強度9弾性率の向上に大きな影響を与えること
が知られており、凝固あるいはゲルm維の浴液の温度、
濃度または浴内の液流で代表される凝固または冷却環境
を制御することは不可欠なものとなっている。
In particular, when producing high-strength, high-modulus fibers, it is known that improving stretchability has a great effect on improving strength and modulus.
It has become essential to control the solidification or cooling environment represented by the concentration or liquid flow within the bath.

上記の点に鑑み9本発明者らは紡出口金直後に設置され
る紡糸!!流筒について鋭意検討した結果。
In view of the above points, the inventors of the present invention have developed a spinning machine installed immediately after the spinning nozzle! ! This is the result of careful consideration of the flow cylinder.

本発明に到達した。特に、紡糸整流筒の内部と外部に浴
液の温度差、濃度差を生じさせず、簡便かつ効率的に複
雑な省内の液流を制御し、高品質の繊維を得る紡糸整流
筒な提供することを目的とする。
We have arrived at the present invention. In particular, we provide a spinning straightener that can easily and efficiently control complex liquid flow within a bath without creating a temperature or concentration difference between the inside and outside of the spinning straightener to produce high-quality fibers. The purpose is to

(問題を解決するための手段) 本発明は次の構成を有する。(Means to solve the problem) The present invention has the following configuration.

乾湿式まEたはゲル紡糸法における紡糸整流筒が。The spinning rectifier tube in wet-dry or E or gel spinning methods.

多孔材質か1らなる筒状部材で構成され、かつ紡出口金
の直後に紡糸整流筒の上端部が凝固浴液もしくは冷却浴
液面上に露出するように設置されたことを特徴とする紡
糸整流筒。
Spinning comprising a cylindrical member made of a porous material, and installed immediately after the spinning nozzle so that the upper end of the spinning straightener is exposed above the coagulation bath liquid or cooling bath liquid surface. Rectifier tube.

以下本発明を図面を参照しながら具体的に説明する。The present invention will be specifically described below with reference to the drawings.

第1図は本発明にかかる紡糸整流筒の一実施例を示すも
ので、1は紡糸整流筒、2は紡出口金。
FIG. 1 shows an embodiment of the spinning straightener according to the present invention, where 1 is the spinning straightener and 2 is the spinning nozzle.

3は紡出された糸条、4は方向変換ガイド、5は乾湿式
紡糸においては凝固液、ゲル紡糸においては冷却漬、6
は乾湿式紡糸においては凝固浴、ゲル紡糸においては冷
却浴を示す、また、第2図。
3 is a spun yarn, 4 is a direction change guide, 5 is a coagulating liquid in wet/dry spinning, and 6 is a cooling soak in gel spinning.
FIG. 2 shows a coagulation bath in dry-wet spinning and a cooling bath in gel spinning.

第3図、第4図、第5図は本発明の紡糸整流賄を示すも
ので、11は整流筒本体の筒状部材、12は筒状部材の
円周方向の補強材、13は筒状部材の軸方向の補強材、
14は紡出口金の最外吐出孔中心を結んでできる図形を
示す。
3, 4, and 5 show the spinning straightening member of the present invention, in which 11 is a cylindrical member of the straightening cylinder main body, 12 is a reinforcing member in the circumferential direction of the cylindrical member, and 13 is a cylindrical member. axial reinforcement of the member;
14 shows a figure formed by connecting the centers of the outermost discharge holes of the spinning nozzle.

すなわち9本発明における紡糸!!流筒の筒状部材とし
ては金網、パンチングメタルなどの多孔材質が挙げられ
るが、形状保持性を有する多孔材質からなる筒状部材で
あればよく、これらに制限されるものではない、一方、
−殻板材、バイブでは紡糸整流筒の内部と外部に顕著な
温度差、濃度差を生じ均一性の面で劣る。すなわち、筒
状部材としては紡糸整流筒の内部と外部とで温度差、濃
度差が生じないように内部と外部とて浴液の流通が可能
となる金網、パンチングメタルなどの開孔部分を持つ多
孔材質が好ましい、開孔率(単位面積に対する平均間孔
部面積の割合)としては、0゜2以上、0.6以下が好
ましい、0.6より大であればt1!2流の影響を完全
に制御することが困難となり、0.2より小では紡糸整
流筒の内部と外部との浴液の流通が不十分となり、温度
差、811度差を生じ易くなる傾向がある。特に好走し
くは、0゜3以上、0.5以下である。
That is, 9 spinning in the present invention! ! Examples of the cylindrical member of the flow tube include porous materials such as wire mesh and punched metal, but the cylindrical member may be any cylindrical member made of a porous material that retains its shape, and is not limited to these materials.
- Shell plate materials and vibrators cause significant temperature and concentration differences between the inside and outside of the spinning straightener, resulting in poor uniformity. In other words, the cylindrical member has an opening made of wire mesh, punched metal, etc. that allows the bath liquid to flow between the inside and outside of the spinning rectifying cylinder so that there is no temperature difference or concentration difference between the inside and outside of the spinning straightening tube. A porous material is preferable.The porosity (ratio of average pore area to unit area) is preferably 0°2 or more and 0.6 or less.If it is larger than 0.6, the influence of t1!2 flow is reduced. It becomes difficult to control completely, and if it is smaller than 0.2, the flow of the bath liquid between the inside and outside of the spinning rectifier cylinder becomes insufficient, and a temperature difference of 811 degrees tends to occur. Especially good running is 0°3 or more and 0.5 or less.

また、紡糸整流筒の取り付は位置としては、該整流筒の
上端部から凝固t?1液而も面くは冷却浴液面までの距
離yffll11が0<yかつ該整流筒の上端部が液面
より上部(気相部中)にあることが必須である。紡糸整
流筒の上端部が全く液面上に露出せず、該整流筒全体が
凝固浴液もしくは冷却浴i夜中に完全に没している場合
には、紡出口金より一旦気相部に吐出された繊維が凝固
浴液もしくは冷却浴液中に導入される際、浴内液流の影
響を受け。
In addition, the installation position of the spinning straightening tube is from the upper end of the spinning straightening tube to the solidification t? For one liquid, it is essential that the distance yffll11 to the cooling bath liquid level be 0<y and that the upper end of the rectifying cylinder be above the liquid level (in the gas phase). If the upper end of the spinning straightener is not exposed above the liquid level and the entire straightener is completely submerged in the coagulation bath or cooling bath overnight, the spinning straightener is once discharged into the gas phase from the spinning nozzle. When the fibers are introduced into the coagulation bath liquid or cooling bath liquid, they are affected by the liquid flow in the bath.

低ドラフト、低張力下での凝固あるいはケル1ヒを行う
ことはできず、甚だ延伸性の劣った凝固繊維またはゲル
繊維しか得られない、一方、紡糸整流筒の上端部が少し
でも凝固浴液もしくは冷却浴液面上に露出していれば、
紡出された繊維が凝固浴液もしくは冷却浴液中に導入さ
れる際に受ける浴内液流の影響を著しく軽減することが
でき、延伸性に優れた凝固tali維もしくはゲル繊維
を得ることができる。
Coagulation or quenching cannot be performed under low draft or low tension, and only coagulated fibers or gel fibers with extremely poor drawability can be obtained. Or if it is exposed above the cooling bath liquid level,
It is possible to significantly reduce the influence of the liquid flow in the bath when the spun fibers are introduced into the coagulation bath liquid or cooling bath liquid, and it is possible to obtain coagulated tali fibers or gel fibers with excellent drawability. can.

また、筒状部材の横断面形状は図に示したような円、矩
形だけでなく、任意の多角形、楕円てあっても良く、複
雑な浴内の液流を制御するためには糸条の周囲を完全に
囲む形態を持つことが好ましい、紡糸整流筒の反紡出口
金側内寸法と横断面形状としては、任意で良く、必要に
応じて第4図に示す先細り、あるいは第5図に示す先太
すの筒状体を選ぶことができる。
In addition, the cross-sectional shape of the cylindrical member is not limited to the circle or rectangle shown in the figure, but may also be any polygon or ellipse. The inner dimensions and cross-sectional shape of the spinning rectifier tube on the side opposite to the spinning nozzle may be arbitrary, and may be tapered as shown in FIG. 4 or as shown in FIG. 5 as necessary. You can choose a cylindrical body with a thick tip as shown in the figure.

整流筒紡出口金側内寸法と横断面形状としては。The inside dimensions and cross-sectional shape of the rectifying tube spinning nozzle are as follows.

紡出口金の最外吐出孔中心を結んでできる図形に対し、
その外側に空隙幅εmmが5≦ε≦100を満足するよ
うな横断面形状が好ましい、εが100より大であれば
、紡糸整流筒下部から浴液が流入しやすくなるため糸条
の乱れが生じ、後工程での延伸倍率を低下せしめ、εが
5より小であれば微かな糸条の乱れにより容易に紡糸整
流筒と接触し易くなる傾向がある。特に好ましくは、1
0≦ε≦50である。
For the figure formed by connecting the centers of the outermost discharge holes of the spinning nozzle,
It is preferable that the cross-sectional shape is such that the gap width εmm satisfies 5≦ε≦100 on the outside.If ε is larger than 100, the bath liquid will easily flow in from the lower part of the spinning straightening cylinder, so that the yarn will not be disturbed. If ε is smaller than 5, there is a tendency for the yarn to easily come into contact with the spinning straightener due to slight disturbance of the yarn. Particularly preferably, 1
0≦ε≦50.

紡糸整流筒の長さとしては、紡出口金の対向する最外吐
出孔中心間距離の最大値をpmmとしたとき、p以上、
pXlo、0以下が好ましい、  pXlo、0より大
であれば紡糸開始時の糸出し作業性が難となり、1)よ
り小では紡糸!!流両筒下部ら浴1夜が流入しやすくな
るため糸条の乱れが生じ。
The length of the spinning straightening tube is p or more, when the maximum distance between the centers of opposing outermost discharge holes of the spinning nozzle is pmm,
It is preferable that pXlo is 0 or less; if pXlo is greater than 0, it will be difficult to take out the yarn at the start of spinning; ! The yarn tends to flow into the lower part of the flow cylinder, causing disturbance of the threads.

後工程での延伸倍率を低下させ易くなる1頃向がある。There is a direction around 1 which makes it easier to reduce the stretching ratio in the subsequent process.

特に好ましくはpX2.0以上、  pX5. 0以下
である。
Particularly preferably pX2.0 or more, pX5. It is less than or equal to 0.

なお9本発明装置を、用いた紡糸に供される重合体溶液
としてはポリエチレン、ボjプロピレン。
Note that the polymer solution used for spinning using the apparatus of the present invention was polyethylene and propylene.

ポリ−4−メチル−1−ペンテン、全芳香族ポリアミド
、ポリアクリロニトリル、ポリ(フッ化ビニリデン)、
ポリビニルアルコールなどの乾湿式。
Poly-4-methyl-1-pentene, fully aromatic polyamide, polyacrylonitrile, poly(vinylidene fluoride),
Wet and dry method using polyvinyl alcohol, etc.

ゲル紡糸に適する繊維形成性重合体を該重合体の溶媒に
溶解してなるもので、特に限定されるものではない。
It is made by dissolving a fiber-forming polymer suitable for gel spinning in a solvent for the polymer, and is not particularly limited.

(作用) 本発明装置においては、紡糸整流筒の筒状部材材質を多
孔材質となし、かつ該紡糸整流筒の上端部を凝固浴液も
しくは冷却浴液より露出させることにより、紡糸整流筒
の内部と外部の温度差を1℃以下、濃度差を1%以下と
なし、紡出糸条の乱れ、捲れを減少させ、複雑な浴内の
液流および凝固速度もしくは冷却速度の制御を可能なも
のとした。
(Function) In the apparatus of the present invention, the material of the cylindrical member of the spinning straightening tube is made of a porous material, and the upper end of the spinning straightening tube is exposed from the coagulation bath liquid or the cooling bath liquid. The temperature difference between the bath and the outside is 1℃ or less, the concentration difference is 1% or less, reducing disturbance and curling of the spun yarn, and making it possible to control the liquid flow in the bath and the solidification rate or cooling rate. And so.

以下実施例によって本発明をさらに詳細に説明する。The present invention will be explained in more detail below with reference to Examples.

なお9本例中の上端部〜液面距離とは紡糸整流筒の取り
付は位置を規定するものであり、該整流筒上端部と凝固
浴液面の距離を示す、(+)記号は該整流筒上端部が液
面上に露出していることを表し、(−)記号は該整流筒
上端部が液中に没しているたとを表す、また、最大延伸
倍率とは、凝固繊維をメタノール浴中で4倍の前延伸を
実施し。
Note that the distance from the upper end to the liquid level in this example 9 defines the mounting position of the spinning straightening tube, and the (+) symbol indicates the distance between the upper end of the straightening tube and the liquid level of the coagulation bath. The upper end of the rectifying cylinder is exposed above the liquid level, and the (-) symbol indicates that the upper end of the rectifying cylinder is submerged in the liquid. A 4x pre-stretching was carried out in a methanol bath.

引続き該糸条を乾燥後240℃の加熱空気流中で後延伸
した場合に、後延伸工程において全糸条が切断するにい
たった時の全延伸倍率であり、全延伸倍率が少なくとも
22倍以上でないと目標とする強度弾性率を有する繊維
は得られない、また。
When the yarn is subsequently dried and then post-stretched in a heated air stream at 240°C, this is the total stretching ratio at which all the yarns are cut in the post-stretching process, and the total stretching ratio is at least 22 times or more. Otherwise, fibers with the target strength-elasticity modulus cannot be obtained.

紡糸開始作業の容易さとは、紡糸開始時に紡出口金より
吐出された自由落下繊維の紡糸整流筒内通過性を示した
(o;紡糸整流筒に繊維が全く接触しない場合、Δ;該
筒に若干接触する場合)。
The ease of the spinning start operation refers to the ability of the free-falling fibers discharged from the spinning nozzle to pass through the spinning straightening cylinder at the start of spinning (o; when the fibers do not contact the spinning straightening cylinder at all; Δ; when the fibers do not contact the spinning straightening cylinder at all; (if there is slight contact).

実施例1 数平均分子量が約17万のポリビニルアルコール12重
量%、ジメチルスルホキシド88重量%の混合物を10
0℃で溶解し、同温度て孔径が0゜1mm、口金内最外
吐出孔の孔中心間直径が1001旧1の紡出口金を用い
、液温15℃のメタノール85重量%/ジメチルスルホ
キシF’ 15重量%の液中に第2図に示す紡糸整流筒
を用いて乾湿式紡糸した。すなわち、紡出糸条は、10
rn/分ないし20m7分の速度で液中を鉛直下方に1
000 man走行し、方向変換ガイドにより走行方向
を斜め上方に変え、液中より脱した後引取りローラに引
き取られた。また、メタノールを紡出口金下方より上方
に向けて500′l!;C/時供給した。その際、筒状
部材として金網40メツシユ(開孔率二37゜0%)で
構成され、内寸法φ150mm (・ε=25)、長さ
450mm(p=0.45)の形状を有する紡糸整流筒
をその上端部が凝固浴液面より5.On+ m露出する
ように設置した。
Example 1 A mixture of 12% by weight of polyvinyl alcohol with a number average molecular weight of about 170,000 and 88% by weight of dimethyl sulfoxide was
Melted at 0°C, using a spinning nozzle with a pore diameter of 0°1 mm and a center-to-hole diameter of the outermost discharge hole in the spinneret of 1001/1, 85% by weight of methanol/dimethylsulfoxy at a liquid temperature of 15°C was used. Wet-dry spinning was carried out in a solution containing 15% by weight of F' using a spinning straightener shown in FIG. That is, the spun yarn is 10
vertically downward in the liquid at a speed of rn/min to 20 m/min.
After running for 000 man, the running direction was changed diagonally upward by a direction changing guide, and after coming out of the liquid, it was taken up by a take-up roller. Also, pour 500'l of methanol upward from the bottom of the spinning nozzle. ;C/hour was supplied. At that time, the cylindrical member was made of 40 meshes of wire mesh (porosity: 237°0%), and had an inner dimension of φ150 mm (·ε=25) and a length of 450 mm (p=0.45). 5. Place the cylinder so that its upper end is above the liquid level of the coagulation bath. It was installed so that On+m was exposed.

その結果温度差(整流筒内部−整流筒外部)=0.5℃
、濃度差(整流筒内部−整流筒外部)=0.6%となり
、最大延伸培率=23.0倍を有する凝固繊維が得られ
た。また、紡出糸条も全く紡糸整流筒に接触しなかった
As a result, temperature difference (inside the rectifier tube - outside the rectifier tube) = 0.5℃
The concentration difference (inside the straightening tube - outside the straightening tube) was 0.6%, and a coagulated fiber having a maximum stretching ratio of 23.0 times was obtained. Furthermore, the spun yarn did not come into contact with the spinning straightener at all.

実施例2 実施例1と同一の重合体溶液を使用し、孔径が0、 1
2mm、口金内の対向する最外吐出孔の孔中心間距離が
10100mmX200の矩形の紡出口金を用い、液温
20℃のメタノール85重量%/ジメチルスルホキシド
15重量%の液中に乾湿式紡糸した。紡出糸条は、15
m/分ないし20m/分の速度で液中を鉛直下方に10
00mm走行し。
Example 2 The same polymer solution as in Example 1 was used, and the pore sizes were 0 and 1.
Using a rectangular spinning nozzle with a diameter of 2 mm and a distance between the centers of opposing outermost discharge holes in the nozzle of 10100 mm x 200 mm, dry-wet spinning was carried out in a liquid containing 85% by weight of methanol/15% by weight of dimethyl sulfoxide at a liquid temperature of 20°C. . The spun yarn is 15
vertically downward in the liquid at a speed of 10 m/min to 20 m/min.
Traveled 00mm.

方向変換ガイドにより走行方向を斜め上方に変え。The direction change guide changes the running direction diagonally upward.

液中より脱した後引取りローラに引き取られた。After coming out of the liquid, it was picked up by a take-up roller.

また、凝固液を糸条の走行方向と直交するように250
07K /時供給した。その際、筒状部材としてパンチ
ングメタル(孔径:φ3mm、孔間ピッチ:5.Omm
、開孔率:32.6%)で構成され。
In addition, the coagulation liquid was applied at 250° C. perpendicularly to the running direction of the yarn.
07K/hour was supplied. At that time, punching metal (hole diameter: φ3 mm, pitch between holes: 5.0 mm) was used as the cylindrical member.
, porosity: 32.6%).

内寸法140關(ε±20)X240mm(ε=20)
、長さ400問(p=0.4)の形状を有する横断面が
矩形の紡糸整流筒をその上端部が凝固浴液面より10.
0mm露出するように設置した。
Inner dimensions 140mm (ε±20) x 240mm (ε=20)
, a spinning rectifier tube with a rectangular cross section and a length of 400 questions (p=0.4) is placed such that its upper end is 10 mm above the coagulation bath liquid level.
It was installed so that 0 mm was exposed.

その結果温度差(整流筒内部−整流筒外部)=0、 4
’C,−a度差(整流筒内部−整流筒外部)=0.3%
となり、最大延伸倍率=22.5倍を有する凝固繊維が
得られた。また、紡出糸条も全く紡糸整流筒に接触しな
かった。
As a result, the temperature difference (inside the rectifier tube - outside the rectifier tube) = 0, 4
'C, -a degree difference (inside the rectifier tube - outside the rectifier tube) = 0.3%
Thus, a coagulated fiber having a maximum draw ratio of 22.5 times was obtained. Furthermore, the spun yarn did not come into contact with the spinning straightener at all.

実施例3 実施例1と同一の重合体溶液を使用し、実施例2と同一
紡糸条件、供給液量で乾湿式紡糸した。
Example 3 Using the same polymer solution as in Example 1, wet-dry spinning was carried out under the same spinning conditions and feed liquid amount as in Example 2.

その際、筒状部材としてパンチングメタル(孔径:φ1
1.5mm、孔間ピッチ: 14. 0mm、開孔率:
(31,5%)で構成され、内寸法1 /、L Omm
 (ε= 20) X 2−40mm (ε=20)、
  長さ400mm(p=0.4)の形状を有する紡糸
整流筒をその上端部が凝固浴液面より6. 0mm露出
ずろように設置した。
At that time, punching metal (hole diameter: φ1) is used as the cylindrical member.
1.5mm, hole pitch: 14. 0mm, open area ratio:
(31,5%), internal dimension 1/, L Omm
(ε=20) X 2-40mm (ε=20),
A spinning rectifying cylinder having a length of 400 mm (p=0.4) is placed so that its upper end is above the coagulation bath liquid level. It was installed with an exposure offset of 0 mm.

その結果温度差(整流筒内部−整流筒外部)=0.3℃
、−a度差(整流筒内部−整流筒外部)=0.3%とな
ったが、最大延伸倍率:21.5@と22倍よりもやや
低い繊維が得られた。また。
As a result, temperature difference (inside the rectifier tube - outside the rectifier tube) = 0.3℃
, -a degree difference (inside the straightening cylinder - outside the straightening cylinder) = 0.3%, but the maximum draw ratio was 21.5 @, which was slightly lower than 22 times. Also.

紡糸開始作業は整流筒内に流入する浴液流量多くなるた
め繊維の乱れ、捲れがやや大きくなった。
At the start of spinning, the flow rate of the bath liquid flowing into the straightening cylinder increased, so the turbulence and curling of the fibers increased somewhat.

比較例1 実施例1と同一の重合体溶液を使用し、実施例1と同一
紡糸条件、供給液量で乾湿式紡糸した。
Comparative Example 1 The same polymer solution as in Example 1 was used, and dry-wet spinning was performed under the same spinning conditions and feed liquid amount as in Example 1.

その際、紡糸整流筒は設置しなかった。At that time, no spinning straightener was installed.

その結果温度差(整流筒内部−整流筒外部)=0℃、濃
度差(整流筒内部−整流筒外部)=θ%であったが、最
大延伸倍率=17.8倍と目標値22培よりも非常に低
い繊維しか得られなかフた。
As a result, the temperature difference (inside the straightening tube - outside the straightening tube) = 0℃, and the concentration difference (inside the straightening tube - outside the straightening tube) = θ%, but the maximum stretching ratio = 17.8 times and the target value of 22 times. However, very low fiber content was obtained.

比較例2 実施例1と同一の重合体溶液を使用し、実施例1と同一
紡糸条件、供給液量で乾湿式紡糸した。
Comparative Example 2 Using the same polymer solution as in Example 1, dry-wet spinning was carried out under the same spinning conditions and feed liquid amount as in Example 1.

その際、パイプ(開孔率:0%)で構成され、内寸法φ
1’50 m1ll (C= 25 ) を長さ450
mm(p=0.45)の形状を有する紡糸整流筒をその
上端部が凝固浴液面より8. 0mm露出するように設
置した。
At that time, it is composed of a pipe (porosity: 0%), and the internal dimension φ
1'50 ml (C=25) to length 450
mm (p=0.45), the upper end of which is 8.mm (p=0.45) above the coagulation bath liquid level. It was installed so that 0 mm was exposed.

その結果温度差(整流筒内部−整流筒外部)=2、 5
゛C,濃度差(整流筒内部−!!流両筒外部=3.0%
となり、目標値1℃以下、1%以下を達成できず、最大
延伸倍率=20.8倍と目標値22倍よりも低かフた。
As a result, the temperature difference (inside the rectifier tube - outside the rectifier tube) = 2, 5
゛C, concentration difference (inside the straightening tube -!! Outside the flow tube = 3.0%
Therefore, the target values of 1° C. or lower and 1% or lower could not be achieved, and the maximum stretching ratio was 20.8 times, which was lower than the target value of 22 times.

比較例3 実施例1と同一の重合体溶液を使用し、°実施例1と同
一紡糸条件、供給液量で乾湿式紡糸した。
Comparative Example 3 Using the same polymer solution as in Example 1, dry-wet spinning was carried out under the same spinning conditions and feed liquid amount as in Example 1.

その際、筒状部材としてパンチングメタル(孔径:φ3
+nm、孔間ピッチ: 5. Omm、開孔率=32゜
6%)で構成され、内寸法102mm(ε=1)X20
2mm(ε=1)、  長さ400mm(p=0.4)
の形状を有する紡糸整流筒をその上端部が凝固浴tα面
より10.0mmの位置、つまり該整流筒が完全に浴液
内に没するような位置に設置した。
At that time, punching metal (hole diameter: φ3) is used as the cylindrical member.
+nm, hole pitch: 5. 0mm, open area ratio = 32゜6%), internal dimensions 102mm (ε = 1) x 20
2mm (ε=1), length 400mm (p=0.4)
A spinning straightening tube having the shape of was placed at a position where its upper end was 10.0 mm from the tα plane of the coagulation bath, that is, at a position where the straightening tube was completely submerged in the bath liquid.

その結果温度差(整流筒内部−整流筒外部)=0.2℃
、1度差(整流筒内部−整流筒外部)=0.1%となフ
たが、最大延伸倍率=18.6倍と目標1fi22倍よ
りも非常に低い繊維しか得られなかった。
As a result, temperature difference (inside the rectifier tube - outside the rectifier tube) = 0.2℃
, 1 degree difference (inside the straightening cylinder - outside the straightening cylinder) = 0.1%, but the maximum stretching ratio = 18.6 times, which was much lower than the target 1fi22 times, was obtained.

以下、上記実施例1〜3.比較例1〜3の結果を表1に
まとめた。
Below, the above Examples 1 to 3. The results of Comparative Examples 1 to 3 are summarized in Table 1.

(以下余白) (発明の効果) (1)紡糸!i流筒の内部と外部との温度差、fi度差
を減少することができ、高い最大延伸倍率を持つ、高品
質の繊維を得られる。
(Left below) (Effects of the invention) (1) Spinning! The temperature difference and the fi degree difference between the inside and outside of the i-stream cylinder can be reduced, and high-quality fibers with a high maximum draw ratio can be obtained.

(2)複雑な浴内の液流を制御可能とし、糸孔れのない
安定した紡糸状態を得られる。
(2) It is possible to control the liquid flow in a complex bath, and a stable spinning state without yarn holes can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる紡糸整流筒の一実施例を示し、
第2図、第3図、第4図、第5図は本発明の紡糸整流筒
の他の実施例を示す。 1・・・紡糸整流筒 2・・・紡出口金 3・・・紡出された糸条 4・・・方向変換ガイド 5・・・乾湿式紡糸においては凝固液、ゲル紡糸におい
ては冷却液 6・・・乾湿式紡糸においては・凝固浴、ゲル紡糸にお
いては冷却浴 11・・・整流筒本体の筒状部材 12・・・筒状部材の円周方向の補強材13・・・筒状
部材の軸方向の補強材 14・・・紡出口金の最外吐出孔中心を結んでできる図
形 p・・・紡出口金の最外吐出孔中心間距離の最大値p”
・・・1)相当値
FIG. 1 shows an embodiment of the spinning straightener according to the present invention,
FIGS. 2, 3, 4, and 5 show other embodiments of the spinning straightener of the present invention. 1... Spinning straightening tube 2... Spinning nozzle 3... Spun yarn 4... Direction changing guide 5... Coagulating liquid in wet/dry spinning, cooling liquid 6 in gel spinning ...In dry-wet spinning, coagulating bath; in gel spinning, cooling bath 11...Cylindrical member 12 of the straightening cylinder body...Reinforcement material 13 in the circumferential direction of the tubular member...Typical member Reinforcing material 14 in the axial direction of...A figure p formed by connecting the centers of the outermost discharge holes of the spinning orifice...Maximum value p of the center-to-center distance of the outermost discharge holes of the spinning orifice
...1) Equivalent value

Claims (1)

【特許請求の範囲】[Claims] 乾湿式またはゲル紡糸法における紡糸整流筒が、多孔材
質からなる筒状部材で構成され、かつ紡出口金の直後に
紡糸整流筒の上端部が凝固浴液もしくは冷却浴液面上に
露出するように設置されたことを特徴とする紡糸整流筒
The spinning straightener in the wet-dry or gel spinning method is composed of a cylindrical member made of a porous material, and the upper end of the spinning straightener is exposed above the coagulation bath liquid or cooling bath liquid surface immediately after the spinning nozzle. A spinning rectifier tube characterized by being installed in.
JP282288A 1988-01-08 1988-01-08 Flow straightening cylinder for spinning Pending JPH01183511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP282288A JPH01183511A (en) 1988-01-08 1988-01-08 Flow straightening cylinder for spinning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP282288A JPH01183511A (en) 1988-01-08 1988-01-08 Flow straightening cylinder for spinning

Publications (1)

Publication Number Publication Date
JPH01183511A true JPH01183511A (en) 1989-07-21

Family

ID=11540104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP282288A Pending JPH01183511A (en) 1988-01-08 1988-01-08 Flow straightening cylinder for spinning

Country Status (1)

Country Link
JP (1) JPH01183511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047437A1 (en) 2011-09-26 2013-04-04 三菱レイヨン株式会社 Dry-wet spinning device and method for manufacturing synthetic fiber
KR101401215B1 (en) * 2013-01-28 2014-05-28 주식회사 효성 Apparatus for coagulating doped solution of polyacrylonitrile precursor for a carbon fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047437A1 (en) 2011-09-26 2013-04-04 三菱レイヨン株式会社 Dry-wet spinning device and method for manufacturing synthetic fiber
KR20140052062A (en) 2011-09-26 2014-05-02 미쯔비시 레이온 가부시끼가이샤 Dry-wet spinning device and method for manufacturing synthetic fiber
JPWO2013047437A1 (en) * 2011-09-26 2015-03-26 三菱レイヨン株式会社 Synthetic fiber manufacturing method and dry-wet spinning apparatus
TWI510685B (en) * 2011-09-26 2015-12-01 Mitsubishi Rayon Co Dry-wet spinning apparatus and method for producing synthetic fiber
US9458557B2 (en) 2011-09-26 2016-10-04 Mitsubishi Rayon Co., Ltd. Method for manufacturing synthetic fiber
KR101401215B1 (en) * 2013-01-28 2014-05-28 주식회사 효성 Apparatus for coagulating doped solution of polyacrylonitrile precursor for a carbon fiber

Similar Documents

Publication Publication Date Title
KR100574198B1 (en) Spinner for spinning a synthetic thread
RU2120504C1 (en) Cellulose filament manufacture method and apparatus
WO2001038614A1 (en) Apparatus and method for forming materials
RU2132418C1 (en) Forming apparatus
JP2006506537A (en) Apparatus and method for forming materials
JPS6122042B2 (en)
JPH01183511A (en) Flow straightening cylinder for spinning
US3049755A (en) Process and apparatus for stretch spinning cuprammonium rayon
TW561206B (en) Method and apparatus for extruding continuously molded bodies
JPH0219508A (en) Spinning column of natural suction type of bath solution
JPH0310723B2 (en)
JPH11350244A (en) Production of acrylic fiber
JP3799061B2 (en) Method for making filaments from optically anisotropic spinning solution
JPS6065110A (en) Production of poly-p-phenylene terephthalamide fiber
KR100313621B1 (en) Air nozzle and method for oil migration of fiber spinning
JP2002348723A (en) Circular nozzle for wet spinning
JP2004360148A (en) Spinneret for dry and wet type spinning
JPH01250406A (en) Production of high-tenacity fiber
JP2002294518A (en) Carbon fiber precursor acrylonitrile-based yarn and method for producing the same
JPH01192811A (en) Production of porous hollow fiber
JPH0215641B2 (en)
JPH04174717A (en) Production of spandex monofilament
JPH0291206A (en) Dry-wet spinning process
JPS61282407A (en) Spinneret
JPS602404B2 (en) Method for manufacturing acrylic hollow filament