JPH01183481A - Production of ceramic superconductor - Google Patents

Production of ceramic superconductor

Info

Publication number
JPH01183481A
JPH01183481A JP63007687A JP768788A JPH01183481A JP H01183481 A JPH01183481 A JP H01183481A JP 63007687 A JP63007687 A JP 63007687A JP 768788 A JP768788 A JP 768788A JP H01183481 A JPH01183481 A JP H01183481A
Authority
JP
Japan
Prior art keywords
superconductor
oxygen ion
pattern
oxide ceramic
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63007687A
Other languages
Japanese (ja)
Inventor
Megumi Nagano
長野 恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63007687A priority Critical patent/JPH01183481A/en
Publication of JPH01183481A publication Critical patent/JPH01183481A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title superconductor of each specified shape and pattern, by oxygen ion implantation into an oxide ceramic to be made into a superconductor. CONSTITUTION:A composite oxide thin film 8 consisting of an oxide ceramic of the composition LnM2Cu3O7-x (where, Ln is rare earth element; M is alkaline earth metal) is prepared on an electrical insulating substrate 9. Thence, oxygen ion beams 10 from an oxygen ion source 1 is implanted in a specified pattern into the thin film 8. This process makes the portion where said ion beams 10 were implanted into a superconductor. Said implantation can be made in any pattern, therefore, the objective superconductor of any shape and/or pattern desired can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は酸化物セラミックス体超電導体の製造方法に
関し、特に酸化物セラミックス体上に所定のパターンの
超電導体を形成するセラミックス超電導体の製造方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an oxide ceramic superconductor, and particularly to a method for producing a ceramic superconductor in which a predetermined pattern of superconductors is formed on an oxide ceramic body. Regarding.

〔従来の技術〕[Conventional technology]

1986年にベドノルツらが、La−Ba−Cu−0系
複合酸化物で高い臨界温度(Tc )を有する超電導物
質の存在を示して以来、Tcが急速に上昇し、1987
年2月には98 Kが記録された。これにより液体窒素
を冷媒とする超電導体の実用化の可能性が出てきた。
Since Bednorz et al. showed the existence of a superconducting material with a high critical temperature (Tc) in the form of a La-Ba-Cu-0 complex oxide in 1986, Tc has rapidly increased, and in 1987
In February, 98K was recorded. This opens the possibility of practical application of superconductors using liquid nitrogen as a coolant.

これまでに発見されている高いTcをもつ物質としては
、Ln−M−Cu−0系複合酸化物(ただし、LnはL
a 、Nd、Pm、Sm、 Eu 、Gd 、 Dy、
Ho 、 Er 。
Materials with high Tc that have been discovered so far include Ln-M-Cu-0 complex oxides (Ln is L
a, Nd, Pm, Sm, Eu, Gd, Dy,
Ho, Er.

Tm、Yb、Lu、Yのうちの少なくとも一糧類9Mは
Ba 、 Sr 、 Caのうちの少なくとも一種類)
が知られており、例えばLnM2CusOy −x な
る組成の複合酸化物の場合0<X<0.6に相当する酸
素濃度において斜方晶構造となり高い臨界温度を示すこ
とが知られている。
At least one of Tm, Yb, Lu, and Y (9M is at least one of Ba, Sr, and Ca)
For example, in the case of a composite oxide having the composition LnM2CusOy -x, it is known that at an oxygen concentration corresponding to 0<X<0.6, it becomes an orthorhombic structure and exhibits a high critical temperature.

LnM2Cu307−xの組成のセラミックス超電導体
を得るために、まずLnM2Cu307−xの複合酸化
物セラミックス体が蒸着、焼結、溶射等の手法で形成さ
れる。このときXは上記範囲を外れる(x’>0.6’
)ので次に熱処理を行ってXを制御し、超電導体化する
ことが行われる。
In order to obtain a ceramic superconductor having a composition of LnM2Cu307-x, a composite oxide ceramic body of LnM2Cu307-x is first formed by methods such as vapor deposition, sintering, and thermal spraying. At this time, X is outside the above range (x'>0.6'
), then a heat treatment is performed to control X and make it a superconductor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上述のセラミックス超電導体の製造方法に
2いては複合酸化物セラミックス体の全体を超電導体化
することはできるが、いかなる形状の酸化物セラミック
ス体をも自由に形成できるわけではないので任意の形状
、パターンのセラミックス超電導体を得ることには制約
がある。
However, in the method 2 for manufacturing a ceramic superconductor described above, although the entire composite oxide ceramic body can be made into a superconductor, it is not possible to freely form an oxide ceramic body in any shape. However, there are limitations to obtaining patterned ceramic superconductors.

この発明は上述の点に鑑みてなされ、その目的は、酸化
物セラミックス体中の酸素濃度の制御を任意のパターン
で行うことにより、所定の形状。
The present invention has been made in view of the above points, and an object thereof is to control the oxygen concentration in an oxide ceramic body in an arbitrary pattern to form a predetermined shape.

パターンのセラミックス超電導体を製造する方法を提供
することにある。
An object of the present invention is to provide a method for manufacturing a patterned ceramic superconductor.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的はこの発明によれば、希土類元素(Ln )
とアルカリ土類元素(M)と銅(Cu )とを含み組成
LnM2Cu307−1を有する酸化物セラミックス体
に酸素イオンを注入し、前記酸化物セラミ。
According to the invention, the above object is achieved by the rare earth element (Ln)
Oxygen ions are implanted into an oxide ceramic body containing an alkaline earth element (M) and copper (Cu) and having a composition LnM2Cu307-1 to produce the oxide ceramic.

クス体上に所定のパターンの超電導体を形成することに
よって達成される。
This is achieved by forming a predetermined pattern of superconductors on the glass body.

希土類元素LnとしてはLa、Nd、Pm、Sm、Eu
Rare earth elements Ln include La, Nd, Pm, Sm, Eu
.

Gd 、 Dy 、 Ho 、 Er 、 Tm 、 
Yb 、 Lu 、 Y のうちの少なくとも一種類、
アルカリ土類元素MとしてはBa。
Gd, Dy, Ho, Er, Tm,
At least one type of Yb, Lu, Y,
The alkaline earth element M is Ba.

Sr、Caのうちの少なくとも一種類が選ばれる、Xに
ついては0(x(1の範囲の酸化物セラミックス体が使
用される。
At least one of Sr and Ca is selected, and for X, an oxide ceramic body in the range of 0(x(1) is used.

酸化物セラミックス体としては薄膜、薄板9円筒、柱状
体等のセラミックス有形物があり、これがrIRt、イ
オンビームの被注入体となる。酸化物セラミックス体に
注入する酸素イオンビームとしては、一般のイオン注入
装置の酸素イオン源から発せられるものが用いられる。
Examples of oxide ceramic bodies include tangible ceramic bodies such as thin films, thin plates, cylinders, and columnar bodies, which serve as objects to be implanted with rIRt and ion beams. The oxygen ion beam to be implanted into the oxide ceramic body is one emitted from an oxygen ion source of a general ion implantation device.

〔作用〕[Effect]

LnM2CusOy−xの組成を有する酸化物セラミッ
クス体に酸素イオンビームが注入されると、注入された
領域の酸素濃度が増加し、上記組成のXにつき0(x(
0,6を満足するようになる。結晶構造はこのとき斜方
晶である。このようにして酸素イオンビームの注入部が
超電導体となる。酸素イオンビーム注入は任意パターン
で行えるので、任意の形状、パターンの超電導体が形成
される。
When an oxygen ion beam is implanted into an oxide ceramic body having the composition LnM2CusOy-x, the oxygen concentration in the implanted region increases and becomes 0(x(
0.6 will be satisfied. The crystal structure is then orthorhombic. In this way, the oxygen ion beam implanted portion becomes a superconductor. Since oxygen ion beam implantation can be performed in any pattern, a superconductor with any shape or pattern can be formed.

〔実施例〕〔Example〕

次にこの発明の実施例を1面に基づいて説明する。 Next, an embodiment of the present invention will be described based on one side.

(実施例1) 第1図はこの発明の一実施例を示すもので、注入室7は
真空ポンプ6に実り高真空に排気されている。一方酸素
イオン源1から図示しない引き出し電極で引き出された
酸素イオンビーム10は、加速電極2に印加された加速
電源3による高電圧によって加速され、マグネシア製の
絶縁基板9上の複合酸化物薄膜8に注入される。酸素イ
オンビームlOの通路の途中には、対向する走査電極4
が、互いに直角になるよう二対設置されて七り(図では
一対のみ示す)、走査電源5によって酸素イオンビーム
10を所定パターンで走査可能である。
(Embodiment 1) FIG. 1 shows an embodiment of the present invention, in which an injection chamber 7 is connected to a vacuum pump 6 and evacuated to a high vacuum. On the other hand, an oxygen ion beam 10 extracted from an oxygen ion source 1 by an extraction electrode (not shown) is accelerated by a high voltage from an acceleration power source 3 applied to an acceleration electrode 2, and is accelerated by a composite oxide thin film 8 on an insulating substrate 9 made of magnesia. is injected into. In the middle of the path of the oxygen ion beam 1O, there are opposing scanning electrodes 4.
are installed in two pairs at right angles to each other (only one pair is shown in the figure), and the scanning power source 5 can scan the oxygen ion beam 10 in a predetermined pattern.

複合酸化物薄膜8はYr3a 2 Cu3 o7−x 
(0(x (1)が用いられる。この薄膜は)tFマグ
ネトロンスバ。
Composite oxide thin film 8 is Yr3a 2 Cu3 o7-x
(0(x (1) is used. This thin film is) tF magnetron bus.

夕装置を用い、スバ、り電力300W、RF周波数13
.56 MHz 、 Ar圧力2 Paの条件で、YB
a2Cu3O7−xの組成の酸化物セラミックスをター
ゲットと−して1 pm厚に形成される。得られた薄膜
のXは0.8で正方晶である。この薄膜は液体Wf温度
で超電導を示ざない。
Using the evening equipment, the power was 300W and the RF frequency was 13.
.. Under the conditions of 56 MHz and Ar pressure of 2 Pa, YB
It is formed to a thickness of 1 pm using an oxide ceramic having a composition of a2Cu3O7-x as a target. The obtained thin film has an X value of 0.8 and is a tetragonal crystal. This thin film does not exhibit superconductivity at liquid Wf temperatures.

得られた複合酸化物薄膜8に対して酸素イオンビーム1
0が所定パターンで注入される。注入の条件は次の通り
である。
Oxygen ion beam 1 is applied to the obtained composite oxide thin film 8.
Zeros are injected in a predetermined pattern. The injection conditions were as follows.

加速電圧:120kV V−ズ量: 1 x 10  atoms/m酸素イオ
ンビーム10の注入された部分は超電導特性を示し、そ
の臨界温度Tcは84にである。注入部分の組成はYB
a2Cu3O7,s即ちX:0.4であり、結晶構造は
斜方晶であることがわかった。
Accelerating voltage: 120 kV V-Z amount: 1 x 10 atoms/m The implanted portion of the oxygen ion beam 10 exhibits superconducting properties, and its critical temperature Tc is 84°C. The composition of the injection part is YB
a2Cu3O7,s, that is, X: 0.4, and the crystal structure was found to be orthorhombic.

さらに上記の酸素イオンビーム注入を行った複合酸化物
薄膜8を酸素雰囲気中において温度550℃で3時間の
熱処理を行ったところ、[[導特性の向上が見られ、臨
界温度が94にとなった。組成はYBa2Cu30a*
でx=0.1であツタ。
Furthermore, when the composite oxide thin film 8 subjected to the above-mentioned oxygen ion beam implantation was heat-treated at a temperature of 550°C for 3 hours in an oxygen atmosphere, an improvement in conductivity was observed, and the critical temperature reached 94°C. Ta. Composition is YBa2Cu30a*
So x=0.1 and ivy.

(実施例2) 第2図はこの発明の他の実施例を示すもので、第1図と
同一の部材には同一の符号を付し説明を省略する。第1
図との相異点は、走査電極、走査電源が無く、その代り
パイプ状の焼結体12が回転台11の上に載置され1方
向に回転しつつ軸方向に上下に移動する点である。
(Embodiment 2) FIG. 2 shows another embodiment of the present invention, in which the same members as in FIG. 1 are given the same reference numerals and their explanations will be omitted. 1st
The difference from the figure is that there are no scanning electrodes or scanning power supplies, and instead a pipe-shaped sintered body 12 is placed on a rotary table 11 and rotates in one direction while moving up and down in the axial direction. be.

パイプ状の焼結体の組成は実施例1と同様にY B a
 zCu 307−1 (0< x< 1 )である。
The composition of the pipe-shaped sintered body is YB a as in Example 1.
zCu 307-1 (0<x<1).

この焼結体は前記組成tこなるよう、各金属の酸化物粉
体を配合してよく混合してアルミナまたはマグネシアの
ルツボのなかで700℃〜950℃の温度で仮焼し、そ
れぞれの粉体を反応させたあと、得られた粉体をライカ
イ機などで粉砕してから、ポリビニルアルコール等のバ
インダを添加してパイプ状のものを押出成型し、その後
大気中において850℃の温度で5時間焼成して形成す
ることができる。パイプ状焼結体12の結晶構造は正方
晶、Xは0.9である。外径は251ml 、内径20
 ms 、長さ50關である。
This sintered body is made by blending oxide powders of each metal, mixing them thoroughly, and calcining them in an alumina or magnesia crucible at a temperature of 700°C to 950°C to obtain the above composition. After reacting the powder, the resulting powder is pulverized using a Raikai machine, etc., and a binder such as polyvinyl alcohol is added to extrude it into a pipe shape. It can be formed by firing for hours. The crystal structure of the pipe-shaped sintered body 12 is tetragonal, and X is 0.9. Outer diameter is 251ml, inner diameter is 20
ms, length 50 degrees.

このような焼結体12にcf素イオンビームlOヲスバ
イラルに注入する。酸素イオンビーム注入条件は次の通
りである。
A cf elementary ion beam lO is injected into the sintered body 12 in a viral manner. The oxygen ion beam implantation conditions are as follows.

加速電圧:120kV ド  −  ズ  量 :   1xlo  atom
sβ回転台回転数:4rpm 軸方向移動速度 = 5龍/回転 酸素イオンビーム10の注入部は超電導性を示し、臨界
温度は79 Kであった。このようにしてコイル状のセ
ラミックス超電導体を形成することができる。
Acceleration voltage: 120kV Dose amount: 1xlo atom
sβ rotary table rotation speed: 4 rpm Axial movement speed = 5 dragons/rotation The implantation part of the oxygen ion beam 10 exhibited superconductivity, and the critical temperature was 79 K. In this way, a coiled ceramic superconductor can be formed.

さらに上述の酸素イオンビーム注入を行った焼結体を、
酸素雰囲気中において温度580℃で5時間熱処理を行
ったところ、注入部の臨界温度が98Kに高まった。
Furthermore, the sintered body subjected to the above-mentioned oxygen ion beam implantation,
When heat treatment was performed at a temperature of 580° C. for 5 hours in an oxygen atmosphere, the critical temperature of the injection part increased to 98K.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、希土類元素(Ln)とアルカリ土類
元素(Pwt)と銅(Cu)とを含み、組成LnM 2
Cu3 o、−xを有する一酸化物セラミックス体に酸
素イオンビームを注入するので、注入部が超電導体化し
、その結果任意のバクーンのセラミックス超電導体を酸
化物セラミックス体上に形成することが可能となる。
According to this invention, it contains a rare earth element (Ln), an alkaline earth element (Pwt), and copper (Cu), and has a composition LnM 2
Since an oxygen ion beam is implanted into a monoxide ceramic body containing Cu3o, -x, the implanted part becomes a superconductor, and as a result, it is possible to form any type of ceramic superconductor on the oxide ceramic body. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例になるセラミックス超電導
体製造方法の説明図、第2図は他の実施例になるセラミ
ックス超・1導体製造方法の説明図である。 8:複合酸化物薄膜、10:酸素イオンビーム、第 1
 (3)
FIG. 1 is an explanatory diagram of a method for manufacturing a ceramic superconductor according to one embodiment of the present invention, and FIG. 2 is an explanatory diagram of a method for manufacturing a ceramic superconductor according to another embodiment. 8: Composite oxide thin film, 10: Oxygen ion beam, 1st
(3)

Claims (1)

【特許請求の範囲】[Claims] 1)希土類元素(Ln)とアルカリ土類元素(M)と銅
(Cu)とを含み組成LnM_2Cu_3O_7_−_
Xを有する酸化物セラミックス体に酸素イオンを注入し
、前記酸化物セラミックス体上に所定のパターンの超電
導体を形成することを特徴とするセラミックス超電導体
の製造方法。
1) Composition LnM_2Cu_3O_7_-_ Contains rare earth element (Ln), alkaline earth element (M) and copper (Cu)
A method for manufacturing a ceramic superconductor, which comprises implanting oxygen ions into an oxide ceramic body having X to form a superconductor in a predetermined pattern on the oxide ceramic body.
JP63007687A 1988-01-18 1988-01-18 Production of ceramic superconductor Pending JPH01183481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63007687A JPH01183481A (en) 1988-01-18 1988-01-18 Production of ceramic superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63007687A JPH01183481A (en) 1988-01-18 1988-01-18 Production of ceramic superconductor

Publications (1)

Publication Number Publication Date
JPH01183481A true JPH01183481A (en) 1989-07-21

Family

ID=11672697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63007687A Pending JPH01183481A (en) 1988-01-18 1988-01-18 Production of ceramic superconductor

Country Status (1)

Country Link
JP (1) JPH01183481A (en)

Similar Documents

Publication Publication Date Title
US4920094A (en) Process for producing superconducting thin films
JP2671916B2 (en) Method for manufacturing superconductor and method for manufacturing superconducting circuit
DE3854977T2 (en) Process for the deposition of a superconducting thin film
JP2933225B2 (en) Metal oxide material
JPH01183481A (en) Production of ceramic superconductor
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JP2713343B2 (en) Superconducting circuit fabrication method
JPH0825742B2 (en) How to make superconducting material
JP2603688B2 (en) Superconducting material reforming method
JP2564562B2 (en) How to make superconducting material
JP2557446B2 (en) Method for producing complex oxide-based superconducting thin film
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
JP2765138B2 (en) Preparation method of high quality oxide superconducting thin film
JPH0574528B2 (en)
JP2525852B2 (en) Preparation method of superconducting thin film
JP2791409B2 (en) Method for producing target material for forming oxide superconducting thin film
JPH02141568A (en) Production of thin superconducting film of multiple oxide
KR100232296B1 (en) Superconductive wire
JP2567446B2 (en) Preparation method of superconducting thin film
KR0157625B1 (en) The fabrication method of high temperature superconductor thin film by bismuth diffusion
JPH06287100A (en) Formation of thin oxide superconducting film containing rare earth element
JP2571781B2 (en) Method of forming superconducting circuit
JPH01192720A (en) Production of superconducting thin film
JP2501615B2 (en) Preparation method of superconducting thin film
JP2501616B2 (en) Preparation method of superconducting thin film