JPH01183457A - Ceramic composition - Google Patents

Ceramic composition

Info

Publication number
JPH01183457A
JPH01183457A JP63005375A JP537588A JPH01183457A JP H01183457 A JPH01183457 A JP H01183457A JP 63005375 A JP63005375 A JP 63005375A JP 537588 A JP537588 A JP 537588A JP H01183457 A JPH01183457 A JP H01183457A
Authority
JP
Japan
Prior art keywords
weight
alumina
parts
raw material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63005375A
Other languages
Japanese (ja)
Other versions
JP2579333B2 (en
Inventor
Michio Horiuchi
道夫 堀内
Takeshi Machii
待井 剛
Michiyo Tokutake
徳武 みち代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP63005375A priority Critical patent/JP2579333B2/en
Publication of JPH01183457A publication Critical patent/JPH01183457A/en
Application granted granted Critical
Publication of JP2579333B2 publication Critical patent/JP2579333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a ceramic composition having high flexural strength, surface smoothness and adhesive strength to metallized film, by adding an alkaline-earth element compound and/or rare-earth element compound to a raw material mixture composed of alumina powder and mullite powder. CONSTITUTION:A raw material mixture composed of 88.0-99.0wt.% of alumina powder and 12.0-1.0wt.% of mullite powder is added with 0.1-10.0wt.% of at least one kind of inorganic component additive selected from an alkaline- earth element compound (e.g. MgO) and/or rare-earth element compound (e.g. Y2O3) and, as necessary, 0.1-3.0wt.% of Nb2O3 and the obtained mixture is calcined in a weakly reducing atmosphere.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミック組成物に関し、特に電子部品材料と
して好適に用いることのできるセラミック組成物に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a ceramic composition, and particularly to a ceramic composition that can be suitably used as an electronic component material.

(従来の技術) 近年、電子部品の高密度実装化、低コスト化に伴い、パ
ッケージおよび基板材料には様々な特性が要求されるよ
うになり、これらの要求に対応して窒化アルミニウム、
炭化ケイ素等の新しいセラミックが開発されている。し
かしながら、従来のアルミナセラミックは、物理的、化
学的な譜性質のバランスの良さ、および低コスト、作業
性の良さ等の点から、特にパッケージ材料としてはいま
だに主流を占めており、近年新たに開発されている窒化
アルミニウム等は用途に応じて部分的に用いられている
に過ぎない。
(Prior art) In recent years, with the increasing density and cost reduction of electronic components, packages and substrate materials are required to have various properties.In response to these demands, aluminum nitride,
New ceramics such as silicon carbide are being developed. However, conventional alumina ceramics are still the mainstream, especially as packaging materials, due to their well-balanced physical and chemical properties, low cost, and good workability. Aluminum nitride and the like are only partially used depending on the application.

上述したアルミナセラミックは比較的長い期間を費やし
て技術蓄積がなされ、品質改善がなされてきているが、
近年は従来品よりもさらに高強度、高表面平滑性を有す
るとともに、高いメタライズ強度を保証できるものが望
まれている。また、用途によってはさらに遮光性が要求
されている。
The alumina ceramics mentioned above have undergone a relatively long period of technological accumulation and quality improvements.
In recent years, there has been a demand for products that have even higher strength and surface smoothness than conventional products, and can guarantee high metallization strength. Further, depending on the application, light-shielding properties are required.

(発明が解決しようとする問題点) アルミナセラミックの機械的強度は、従来技術からもわ
かる通り、アルミナの純度がより高いはど、また、焼成
体の組織がより均一かつより緻密であるほど、そして焼
結粒がより微細であるほど高い値となる。また1表面平
滑性も機械的強度とほぼ同様の傾向で向上する。
(Problems to be Solved by the Invention) As can be seen from the prior art, the mechanical strength of alumina ceramics increases as the purity of alumina increases and as the structure of the fired body becomes more uniform and denser. The finer the sintered grains, the higher the value. Furthermore, the surface smoothness also improves in almost the same manner as the mechanical strength.

しかしながら、相対的に高アルミナ純度のセラミックは
高い抗折強度を有する反面、良好なメタライズ性を保証
できず、実際、従来技術によってつくられている95重
量パーセント以上のアルミナを含有するセラミックは、
同時焼成によるメタライズ層の形成が雅しく、もっばら
後焼成または蒸着法等によってメタライズ層を形成する
セラミック基板として用いられていた。
However, although ceramics with relatively high alumina purity have high bending strength, they cannot guarantee good metallization properties, and in fact, ceramics containing more than 95% by weight of alumina made by conventional techniques
The metallized layer can be formed elegantly by co-firing, and it has been used as a ceramic substrate on which the metallized layer is formed by post-firing or vapor deposition.

一方、これに対し90〜92重量パーセントのアルミナ
を含有するセラミックでは同時焼成によって良好なメタ
ライズ強度は得られるものの満足できる抗折強度が得ら
れない。
On the other hand, with ceramics containing 90 to 92 weight percent alumina, good metallization strength can be obtained by co-firing, but satisfactory flexural strength cannot be obtained.

ここで、メタライズの接着機構としては、焼成時にセラ
ミック中に生成する液相がメタライズ層に浸透しアンカ
ーを形成することが主と考えられるため、焼成中にある
程度の量の液相が生成しないとアンカーの形成が不十分
となりメタライズ強度の低下につながる。そこで、十分
なメタライズ強度を保証するためにアルミナ純度を92
重量%程度以下とし、さらに十分な機械的強度を保証す
る目的で焼結粒のサイズを小さくするために原料中のア
ルミナ粉末として粒径の微細なものを用いることが考え
られるが、粒径の微細なものを用いる場合は一般に緻密
化が阻害される。
Here, the main adhesion mechanism of metallization is thought to be that the liquid phase generated in the ceramic during firing penetrates into the metallized layer and forms an anchor, so a certain amount of liquid phase must be generated during firing. This results in insufficient anchor formation, leading to a decrease in metallization strength. Therefore, in order to guarantee sufficient metallization strength, the alumina purity was increased to 92%.
It is conceivable to use alumina powder with a fine particle size in the raw material in order to reduce the size of the sintered grains to ensure sufficient mechanical strength. When fine particles are used, densification is generally inhibited.

また、従来から焼成時に液相を生成させるために添加さ
れている無機成分添加物(焼結助剤)は、炭酸カルシウ
ム、酸化マグネシウム、酸化ケイ素等が主であり、これ
らを試薬としてそのまま添加するか、または白石灰、タ
ルク、純硅石等の天然鉱物として添加していたが、これ
ら焼結助剤を粒径約2μm以下のアルミナ粉末に適用す
ると、アルミナ純度が92重量%以下の組成物の場合は
緻密化が阻害され、液相の組成および粘度、焼成温度に
もよるが焼成体にふくれが生じてしまう、また、アルミ
ナ純度が96重量%以上の組成物に適用すると緻密で高
強度を有する焼成体は得られるものの、そのメタライズ
性は著しく低く、使用に耐えるものが得られない。
In addition, the inorganic additives (sintering aids) traditionally added to generate a liquid phase during firing are mainly calcium carbonate, magnesium oxide, silicon oxide, etc., and these are added as reagents as they are. However, when these sintering aids are applied to alumina powder with a particle size of approximately 2 μm or less, the alumina purity of the composition is 92% by weight or less. If it is applied to a composition with an alumina purity of 96% by weight or more, densification is inhibited and blistering occurs in the fired product, depending on the composition and viscosity of the liquid phase and the firing temperature. Although it is possible to obtain a fired product having the following properties, the metallizability thereof is extremely low, and a product that can withstand use cannot be obtained.

そこで、本発明は上記問題点に鑑みて成されたものであ
り、その目的とするところは、アルミナセラミックであ
って高強度、高表面平滑性を有するとともに、優れたメ
タライズ性を有するセラミック組成物を提供するにある
Therefore, the present invention has been made in view of the above problems, and its object is to provide an alumina ceramic composition having high strength, high surface smoothness, and excellent metallization properties. is to provide.

(問題点を解決するための手段) 本発明は上記目的を達成するため次の構成をそなえる。(Means for solving problems) The present invention has the following configuration to achieve the above object.

すなわち、アルミナ粉末とムライト粉末との原料混合物
にたいして、アルカリ土類元素化合物または希土類元素
化合物のうちの少なくとも1種を0.1−10.0重量
%添加されて成る原料混合物であって、該原料混合物中
の前記ムライト粉末中のアルミナ成分を含む全アルミナ
成分が88.0〜99.0重量%である原料混合物を焼
成して成ることを特徴とする。
That is, it is a raw material mixture in which 0.1-10.0% by weight of at least one of an alkaline earth element compound or a rare earth element compound is added to a raw material mixture of alumina powder and mullite powder, It is characterized in that it is made by firing a raw material mixture in which the total alumina component including the alumina component in the mullite powder in the mixture is 88.0 to 99.0% by weight.

また、さらに前記原料混合物に酸化ニオブを0.1〜3
.0重量%添加して焼成して成ることを特徴とする。
Furthermore, 0.1 to 3 niobium oxide is added to the raw material mixture.
.. It is characterized by being made by adding 0% by weight and firing.

(発明の概要) 前述したように、従来より焼成中の液相生成のために用
いられている無機成分として主流をなしているのはCa
O−MgO−3iOzの三成分系であり、本発明者らは
粒径2μm以下、アルミナ純度94重量パーセント以下
の組成物中での液相の粘度および生成時期(温度)を制
御すべく、三成分系相図をもとに実験を行ったが、原料
の粉砕混合処理条件を変えることによりやや緻密な焼成
体が得られたものの製造工程上安定に製造することが困
難であり、相対密度も94%以下と低いものであった。
(Summary of the invention) As mentioned above, Ca has been the main inorganic component conventionally used to generate a liquid phase during firing.
It is a three-component system of O-MgO-3iOz, and the present inventors aimed to control the viscosity and generation timing (temperature) of the liquid phase in a composition with a particle size of 2 μm or less and an alumina purity of 94 weight percent or less. We conducted experiments based on the component system phase diagram, but although we were able to obtain a somewhat dense fired product by changing the pulverization and mixing treatment conditions of the raw materials, it was difficult to produce stably due to the manufacturing process, and the relative density was also low. It was low at 94% or less.

一方、これまでに知られているムライトセラミックは原
料組成中に3重量パーセント以下の焼結助剤を加えるだ
けで十分に緻密化し、かつ良好なメタライズ性が得られ
ている0本発明者らは、これに着目し、これらの系で生
成する液相をアルミナ純度94重量%以下のアルミナセ
ラミックに応用したところ、微細なアルミナ粉末を用い
た場合でも十分な緻密化(相対密度約98%)が得られ
、さらに、アルミナ純度が96重量%を越えるアルミナ
セラミックにおいても十分な緻密化とともに良好なメタ
ライズ性が得られることを見出した。
On the other hand, the mullite ceramics known so far can be sufficiently densified by adding 3% by weight or less of a sintering aid to the raw material composition, and have good metallizability. When we focused on this and applied the liquid phase generated in these systems to alumina ceramics with alumina purity of 94% by weight or less, we found that sufficient densification (relative density of approximately 98%) was achieved even when using fine alumina powder. Furthermore, it has been found that sufficient densification and good metallizability can be obtained even in an alumina ceramic having an alumina purity of more than 96% by weight.

本発明のセラミック組成物は、アルミナ粉末とムライト
粉末とに0.1〜io、 o重量%の無機成分添加物を
添加した原料混合物を焼成して得られるものである。
The ceramic composition of the present invention is obtained by firing a raw material mixture of alumina powder and mullite powder to which 0.1 to io,0% by weight of an inorganic additive is added.

無機成分添加物としては、アルカリ土類元素化合物また
は希土類元素化合物が用いられ、これらは焼成中の液相
の生成に関与し、それぞれ単独で添加しても十分な緻密
体が得られる。アルカリ土類元素化合物の中ではMgO
やMgFa等のマグネシウム化合物が最もその効果が大
きく、CaO1CaCOz 、BaC0z等では同じ効
果を得るのに添加量をやや多くする必要がある。希土類
元素化合物の中ではY203 、YF3 、 Cent
等でほぼMgOと同じ程度の緻密化が得られ、Law 
O−ではCaCO3と同じ程度の緻密化が得られるが、
 Ce以上の質量数の元素化合物では電子材料で問題と
なるアルファ線発生量が高まるので好ましくない。
As the inorganic component additive, an alkaline earth element compound or a rare earth element compound is used, and these are involved in the generation of a liquid phase during firing, and a sufficiently dense body can be obtained even if each is added alone. Among alkaline earth element compounds, MgO
Magnesium compounds such as and MgFa have the greatest effect, and with CaO1CaCOz, BaC0z, etc., it is necessary to add a slightly larger amount to obtain the same effect. Among rare earth element compounds, Y203, YF3, Cent
etc., the densification is almost the same as that of MgO, and Law
With O-, the same degree of densification as with CaCO3 can be obtained, but
Elemental compounds having a mass number greater than or equal to Ce are not preferred because they increase the amount of alpha rays generated, which is a problem in electronic materials.

゛また、酸化ニオブは焼成体組織の均一性を制御するの
に効果を発揮する。すなわち、焼成体はアルミナ含有量
が90重量%以下の場合や、アルミナ粉末とムライト粉
末の各粒径に大きな差がある場合または焼成条件により
しばしば不均一な組織を示し、染みや斑点状の変色部を
呈するが、酸化ニオブの添加により組織を均一に保つこ
とができる。
``Also, niobium oxide is effective in controlling the uniformity of the structure of the fired body. In other words, the fired product often exhibits a non-uniform structure when the alumina content is less than 90% by weight, when there is a large difference in particle size between the alumina powder and the mullite powder, or depending on the firing conditions, resulting in stains and spot-like discoloration. However, by adding niobium oxide, the structure can be kept uniform.

このときの添加量はアルミナ純度や焼成条件にもよるが
0.1〜3.0重量%程度で十分な効果が得られる。
The amount added at this time depends on the alumina purity and firing conditions, but a sufficient effect can be obtained with about 0.1 to 3.0% by weight.

なお、とくに焼成体を着色し遮光性をもたせたい場合に
は酸化クロムやモリブデン化合物を添加するが、これら
の添加による電気特性への影響を考慮すると、酸化クロ
ム、モリブデン化合物を合わせても1重量%以内に抑え
ることが望ましく、一般にはアルカリ土類元素化合物や
希土類元素化合物と同時に添加して効果が認められる。
Note that chromium oxide and molybdenum compounds are added especially when the fired product is desired to be colored and have light-shielding properties, but considering the effect of these additions on electrical properties, the total weight of chromium oxide and molybdenum compounds is 1. It is desirable to suppress the amount within %, and the effect is generally recognized when added at the same time as alkaline earth element compounds and rare earth element compounds.

(実施例) 以下本発明の実施例について詳細に説明する。(Example) Examples of the present invention will be described in detail below.

〔実施例1〕 平均粒径的2μmのアルミナ粉末77.3重量部。[Example 1] 77.3 parts by weight of alumina powder with an average particle size of 2 μm.

平均粒径的2μmのムライト粉末(アルミナ含有量約7
2重量%)17.7重量部、無機成分添加物として酸化
イツトリウム粉末5重量部からなる原料粉末をn−ブタ
ノール−トルエン混合溶液を分散媒体として24時間ボ
ールミル混合した後、これにフタル酸−ジーn−ブチル
3重景部とポリビニルブチラール8重量部を加え、さら
に24時間のボールミル混合を行った。得られた混合物
を真空脱泡した後、ドクターブレード法によってシート
に成形した。焼成は1570℃、大気圧、弱還元性雰囲
気中にて4時間行った。
Mullite powder with an average particle size of 2 μm (alumina content approximately 7
A raw material powder consisting of 17.7 parts by weight (2% by weight) and 5 parts by weight of yttrium oxide powder as an inorganic additive was mixed in a ball mill for 24 hours using a mixed solution of n-butanol and toluene as a dispersion medium. Three parts of n-butyl and 8 parts by weight of polyvinyl butyral were added, and the mixture was further mixed in a ball mill for 24 hours. The resulting mixture was defoamed under vacuum and then formed into a sheet by a doctor blade method. Firing was performed at 1570° C., atmospheric pressure, and a weakly reducing atmosphere for 4 hours.

〔実施例2〕 実施例1の原料組成中の無機成分添加物を酸化イツトリ
ウム4.5重量部、酸化ニオブ0.5重量部とし、これ
を実施例1と同様な手順によりシート成形し焼成体を得
た。
[Example 2] The inorganic component additives in the raw material composition of Example 1 were 4.5 parts by weight of yttrium oxide and 0.5 parts by weight of niobium oxide, and this was formed into a sheet by the same procedure as in Example 1 to obtain a fired product. I got it.

〔実施例3〜6.8〕 実施例1で用いたと同じアルミナ粉末およびムライト粉
末を用い、原料組成としてアルミナ粉末84.4重量部
、ムライト粉末1O16重量部、酸化イツトリウム5重
量部としたもの(実施例3)、アルミナ粉末91.5重
量部、ムライト粉末3.5重量部、酸化イツトリウム5
重量部としたもの(実施例4)、アルミナ粉末86.4
重量部、ムライト粉末10.6重量部、酸化イツトリウ
ム3重量部としたもの(実施例5)、アルミナ粉末86
.4重量部、ムライト粉末10.6重量部、酸化マグネ
シウム3重量部としたもの(実施例6)、アルミナ粉末
90.9重量部、ムライト粉末7.1重量部、酸化イツ
トリウム2重量部としたもの(実施例8)を、それぞれ
実施例1と同じ手順によりシート成形し、焼成体を得た
[Examples 3 to 6.8] Using the same alumina powder and mullite powder as used in Example 1, the raw material composition was 84.4 parts by weight of alumina powder, 16 parts by weight of mullite powder, and 5 parts by weight of yttrium oxide ( Example 3), 91.5 parts by weight of alumina powder, 3.5 parts by weight of mullite powder, 5 parts by weight of yttrium oxide
Parts by weight (Example 4), alumina powder 86.4
Parts by weight, 10.6 parts by weight of mullite powder, 3 parts by weight of yttrium oxide (Example 5), 86 parts by weight of alumina powder
.. 4 parts by weight, 10.6 parts by weight of mullite powder, 3 parts by weight of magnesium oxide (Example 6), 90.9 parts by weight of alumina powder, 7.1 parts by weight of mullite powder, 2 parts by weight of yttrium oxide. (Example 8) was formed into a sheet according to the same procedure as in Example 1 to obtain a fired body.

〔実施例7,9〕 実施例8の組成において、酸化イツトリウムを同一重量
部の酸化マグネシウムまたは酸化ランタンと置き換えた
ものをそれぞれ実施例1と同様な手順によりシート成形
し、焼成体を得た。
[Examples 7 and 9] The composition of Example 8 except that yttrium oxide was replaced with the same weight part of magnesium oxide or lanthanum oxide was formed into a sheet in the same manner as in Example 1 to obtain a fired body.

【比較例1〕 平均粒径的4μmのアルミナ粉末92.0重量部、二酸
化ケイ素粉末5.4重量部、酸化マグネシウム2.1重
量部、炭酸カルシウム049重量部を原料組成として実
施例1と同様な手順によりシートを成形し焼成体を得た
[Comparative Example 1] Same as Example 1 using raw material composition of 92.0 parts by weight of alumina powder with an average particle size of 4 μm, 5.4 parts by weight of silicon dioxide powder, 2.1 parts by weight of magnesium oxide, and 049 parts by weight of calcium carbonate. A sheet was molded using the same procedure to obtain a fired body.

〔比較例2〕 平均粒径2μmのアルミナ粉末を用い、比較例1と同じ
組成および手順によって焼成体を得た。
[Comparative Example 2] A fired body was obtained using the same composition and procedure as Comparative Example 1 using alumina powder with an average particle size of 2 μm.

〔比較例3.4〕 比較例2と同一のアルミナ粉末を用い、二酸化ケイ素、
酸化マグネシウム、炭酸カルシウム(CaO換算)をそ
れぞれ3.7.1.9.2.4重量部または3.9.3
.7 、0.5重量部加えた組成物を用いて、実施例1
と同様な手順によって焼成体を得た。
[Comparative Example 3.4] Using the same alumina powder as Comparative Example 2, silicon dioxide,
Magnesium oxide, calcium carbonate (CaO equivalent) 3.7.1.9.2.4 parts by weight or 3.9.3 parts by weight, respectively
.. Example 1 using a composition containing 0.5 parts by weight of
A fired body was obtained by the same procedure as above.

〔比較例5〕 比較例2と同一のアルミナ粉末94重量部に、二酸化ケ
イ素2.4重量部、酸化マグネシウム1.2重量部、炭
酸カルシウム0.6重量部、酸化クロム1.0重量部、
酸化モリブデン1.0重量部を加え。
[Comparative Example 5] 94 parts by weight of the same alumina powder as in Comparative Example 2, 2.4 parts by weight of silicon dioxide, 1.2 parts by weight of magnesium oxide, 0.6 parts by weight of calcium carbonate, 1.0 parts by weight of chromium oxide,
Add 1.0 parts by weight of molybdenum oxide.

実施例1と同様な手順によって焼成体を得た。A fired body was obtained by the same procedure as in Example 1.

〔比較例6〕 比較例5の原料組成中、酸化クロム、酸化モリブデンを
除いたものを用い、他はまったく同一として焼成体を得
た。
[Comparative Example 6] A fired body was obtained using the same raw material composition as in Comparative Example 5 except that chromium oxide and molybdenum oxide were excluded.

上記各実施例および比較例の焼成体の密度、抗折強度、
リードろう付は強度の測定結果を第1表に示す。
The density and bending strength of the fired bodies of each of the above examples and comparative examples,
The strength measurement results for lead brazing are shown in Table 1.

第1表 なお、第1表に示す各実施例および比較例で使用した原
料アルミナの粒径と使用された添加物を第2表に示す。
Table 1 Table 2 shows the particle size of the raw material alumina used in each of the Examples and Comparative Examples shown in Table 1 and the additives used.

第2表 第1表、第2表かられかるように、従来法では、92重
量%の同一組成のアルミナセラミック焼成体でもアルミ
ナ原料粉末の粒径が4μmから2μmになることにより
緻密化が困難になりCaO−MgO3ins系の組成を
変えてもあまり緻密性は向上しない、一方、アルミナ純
度を94〜96重量%に上げると、緻密化は容易になり
、抗折強度の向上は認められるものの、リードろう付は
強度は著しく低く、この場合、剥離はすべてセラミック
ーメタライズ界面で起こっていた。
Table 2 As can be seen from Tables 1 and 2, in the conventional method, it is difficult to densify even an alumina ceramic fired body with the same composition of 92% by weight because the particle size of the alumina raw powder changes from 4 μm to 2 μm. Even if the composition of the CaO-MgO3ins system is changed, the densification does not improve much. On the other hand, when the alumina purity is increased to 94 to 96% by weight, the densification becomes easier and the bending strength is improved, but The strength of lead brazing is extremely low, and in this case, all the peeling occurred at the ceramic-metallic interface.

これに対し、本発明による焼成体では、アルミナ純度が
92重量%以下でも十分な緻密化が得られるばかりでな
く、アルミナ純度が94重量%以上の焼成体においても
十分なり−ドろう付は強度が得られた。
On the other hand, in the fired body of the present invention, sufficient densification is not only obtained even when the alumina purity is 92% by weight or less, but also sufficient densification is obtained even when the alumina purity is 94% by weight or more. was gotten.

(発明の効果) 本発明によるセラミック組成物によれば、上述したよう
に、アルミナにムライトと無機成分添加物を所定量含有
させることにより、十分に大きな抗折強度と、高表面平
滑性と、高メタライズ接着強度とを合わせもっという条
件をすべて満たすことのできるアルミナセラミックを提
供することができ、電子部品用セラミックとして好適に
使用することができる。また、酸化ニオブを原料混合物
に添加することにより、焼成体組織の均一性を向上させ
ることができる等の著効を奏する。
(Effects of the Invention) According to the ceramic composition of the present invention, as described above, by containing a predetermined amount of mullite and inorganic component additives in alumina, a sufficiently large flexural strength, high surface smoothness, and It is possible to provide an alumina ceramic that satisfies all of the above conditions in addition to high metallization adhesive strength, and can be suitably used as a ceramic for electronic components. Further, by adding niobium oxide to the raw material mixture, significant effects such as improving the uniformity of the structure of the fired body can be achieved.

以上、本発明について好適な実施例を挙げて種々説明し
たが、本発明はこの実施例に限定されるものではなく1
発明の精神を逸脱しない範囲内で多くの改変を施し得る
のはもちろんのことである。
The present invention has been variously explained above using preferred embodiments, but the present invention is not limited to these embodiments.
Of course, many modifications can be made without departing from the spirit of the invention.

Claims (2)

【特許請求の範囲】[Claims] 1.アルミナ粉末とムライト粉末との原料混合物にたい
して、アルカリ土類元素化合物または希土類元素化合物
のうちの少なくとも1種を0.1〜10.0重量%添加
されて成る原料混合物であって、該原料混合物中の前記
ムライト粉末中のアルミナ成分を含む全アルミナ成分が
88.0〜99.0重量%である原料混合物を焼成して
成るセラミック組成物。
1. A raw material mixture comprising 0.1 to 10.0% by weight of at least one of an alkaline earth element compound and a rare earth element compound added to a raw material mixture of alumina powder and mullite powder, the raw material mixture comprising: A ceramic composition obtained by firing a raw material mixture in which the total alumina component including the alumina component in the mullite powder is 88.0 to 99.0% by weight.
2.前記原料混合物に酸化ニオブを0.1〜3.0重量
%添加して焼成して成る請求項1記載のセラミック組成
物。
2. 2. The ceramic composition according to claim 1, which is obtained by adding 0.1 to 3.0% by weight of niobium oxide to the raw material mixture and firing the mixture.
JP63005375A 1988-01-13 1988-01-13 Ceramic composition Expired - Lifetime JP2579333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63005375A JP2579333B2 (en) 1988-01-13 1988-01-13 Ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63005375A JP2579333B2 (en) 1988-01-13 1988-01-13 Ceramic composition

Publications (2)

Publication Number Publication Date
JPH01183457A true JPH01183457A (en) 1989-07-21
JP2579333B2 JP2579333B2 (en) 1997-02-05

Family

ID=11609424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63005375A Expired - Lifetime JP2579333B2 (en) 1988-01-13 1988-01-13 Ceramic composition

Country Status (1)

Country Link
JP (1) JP2579333B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111777409A (en) * 2020-07-10 2020-10-16 首钢集团有限公司 Brick for molten iron ladle with high slag corrosion resistance and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111777409A (en) * 2020-07-10 2020-10-16 首钢集团有限公司 Brick for molten iron ladle with high slag corrosion resistance and preparation method thereof

Also Published As

Publication number Publication date
JP2579333B2 (en) 1997-02-05

Similar Documents

Publication Publication Date Title
KR100496115B1 (en) Sputtering target of dielectrics with high strength and a method for manufacturing the same
JPS649266B2 (en)
JP2512474B2 (en) Colored mullite ceramic composition
US4806160A (en) Metallizing composition
JPH01183457A (en) Ceramic composition
JP2001002464A (en) High-voltage-withstanding aluminous sintered compact and its production
JPH02225339A (en) Calcined body of glass ceramics
JPS63285175A (en) Production of ceramic sintered material
JP2760541B2 (en) Ceramic composition
JP2021138581A (en) Ceramic sintered compact and manufacturing method thereof
JPS6049149B2 (en) Manufacturing method of white alumina/ceramic for electronic parts
JP3117535B2 (en) Manufacturing method of alumina substrate
JP3413146B2 (en) Materials for firing electronic components
JP2710311B2 (en) Ceramic insulation material
JP2005170729A (en) Container for firing
JP3644015B2 (en) Electronic component firing jig
JP4047050B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board using the same
JPS6251913B2 (en)
TWI761821B (en) A high-strength zirconium-alumina composite ceramic substrate for semiconductor devices and the method of manufacturing of the same
JP4221006B2 (en) Silicon nitride ceramic circuit board
JPS62283860A (en) Alumina ceramics
JPH01183461A (en) Mullite ceramic composition
JPH01320263A (en) Production of alumina-series ceramic
JPH05178658A (en) Production of mullite-based sintered body
JPH0523921A (en) Silicone nitride basis sintered body for cutting tool