JPH01183403A - Production of compounded inorganic substance powder - Google Patents

Production of compounded inorganic substance powder

Info

Publication number
JPH01183403A
JPH01183403A JP384888A JP384888A JPH01183403A JP H01183403 A JPH01183403 A JP H01183403A JP 384888 A JP384888 A JP 384888A JP 384888 A JP384888 A JP 384888A JP H01183403 A JPH01183403 A JP H01183403A
Authority
JP
Japan
Prior art keywords
powder
solution
inorganic oxide
colloidal
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP384888A
Other languages
Japanese (ja)
Inventor
Yusaku Shimoda
下田 有作
Nobuo Tanaka
信夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP384888A priority Critical patent/JPH01183403A/en
Publication of JPH01183403A publication Critical patent/JPH01183403A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/34Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of sprayed or atomised solutions

Abstract

PURPOSE:To efficiently obtain a large amount of truly spherical compounded inorganic substance powder at a low cost, by mixing a specific colloidal solution or sol of an inorganic oxide solution with an aqueous solution of a metallic salt, flocculating colloidal particles and spray-drying the mixture containing the formed flocculates. CONSTITUTION:A colloidal solution or sol of an inorganic oxide is mixed with an aqueous solution of a metallic salt to flocculate colloidal particles. The mixture containing the resultant flocculates is then spray-dried to produce the aimed compounded inorganic substance powder. Furthermore, if colloidal particles are not directly flocculated in mixing the abovementioned colloidal solution or sol of the inorganic oxide with the aqueous solution of the metallic oxide, pH of the resultant mixture is adjusted to flocculate the colloidal particles. The mixture containing the flocculates is subsequently spray-dried to produce the compounded inorganic substance powder. A polar solvent, such as water or alcohol, can be used as a solvent and water is especially preferably used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複合化無機物粉末の製造方法に関し、詳しくは
ほぼ真球状の複合化無機物粉末を、大量かつ安価に効率
よく製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing composite inorganic powder, and more particularly to a method for efficiently producing substantially spherical composite inorganic powder in large quantities at low cost.

〔従来の技術および発明が解決しようとする課題〕一般
に、樹脂充填剤、研磨剤、触媒担体、コーティング原料
などとして用いられる無機物粉末は、できるだけ真球に
近いものが好ましい。
[Prior Art and Problems to be Solved by the Invention] Generally, inorganic powders used as resin fillers, abrasives, catalyst carriers, coating raw materials, etc. are preferably as close to true spheres as possible.

このような真球状あるいはこれに近い無機物粉末の製造
方法としては、無機酸化物ゾルを噴霧乾燥する方法が知
られている(特開昭61−270201号公報)。しか
し、この方法によって得られる粒子は、中空で一部に凹
みがあるなどの欠点があった。
As a method for producing such a perfectly spherical or nearly perfectly spherical inorganic powder, a method of spray drying an inorganic oxide sol is known (Japanese Unexamined Patent Publication No. 61-270201). However, the particles obtained by this method had drawbacks such as being hollow and having some dents.

ところで、無機物粒子の複合化には、メツキ法。By the way, the Metsuki method is used to compound inorganic particles.

含浸法あるいはCV D (Che+5ical Va
por Deposition)法等の化学的蒸着法な
どによる方法が知られている。しかし、メツキ法や含浸
法は、原料として用いる粉末が真球状でなければ、生成
する複合化無機物が真球状とならず、また反応にかなり
の時間を要するという欠点がある。一方、CVD法では
、原料の価格が高く、また大量生産には適していないと
いう問題がある。
Impregnation method or CV D (Che+5ical Va
Methods such as chemical vapor deposition methods such as por deposition methods are known. However, the plating method and the impregnation method have the drawback that unless the powder used as a raw material is perfectly spherical, the composite inorganic material produced will not be perfectly spherical, and the reaction requires a considerable amount of time. On the other hand, the CVD method has problems in that raw materials are expensive and it is not suitable for mass production.

近年に至って、上記方法を改良するものとして、無機物
粉末と無機物ゾルとの混合物を噴霧乾燥し1.必要に応
じて焼成および/または分級する方法が提案されている
(特開昭62−79841号公報)。
In recent years, as an improvement to the above method, a mixture of an inorganic powder and an inorganic sol has been spray-dried.1. A method of firing and/or classifying as necessary has been proposed (Japanese Unexamined Patent Publication No. 79841/1984).

この方法によれば、複合化無機物粉末を得ることができ
るが、原料として用いられる無機物粉末は、金属酸化物
や不溶性金属塩などに限定されるため、限られた種類の
複合化無機物粉末しか製造することができない。また、
噴霧乾燥の温度が0〜100℃と低いため作業効率が悪
く、更にまた、得られる複合化無機物粉末も真球度が充
分でなく、なお−層の改善が望まれていた。
According to this method, composite inorganic powder can be obtained, but since the inorganic powder used as a raw material is limited to metal oxides and insoluble metal salts, only a limited number of types of composite inorganic powder can be produced. Can not do it. Also,
Since the spray drying temperature is as low as 0 to 100°C, the work efficiency is poor, and furthermore, the composite inorganic powder obtained does not have sufficient sphericity, and an improvement in the layer quality has been desired.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記の如き課題を解決して、多種多様で
しかも真球度の高い複合化無機物粉末を効率よく製造す
る方法を開発すべく鋭意研究を重ねた。その結果、無機
酸化物コロイド溶液または無機酸化物ゾルを金属塩水溶
液と混合して、コロイド粒子を一旦凝集させ、次いで得
られる凝集体含有混合物を噴霧乾燥させることにより、
上記課題が解決できることを見出した。
The present inventors have conducted extensive research in order to solve the above-mentioned problems and to develop a method for efficiently producing a wide variety of composite inorganic powders with high sphericity. As a result, by mixing an inorganic oxide colloidal solution or an inorganic oxide sol with an aqueous metal salt solution to once aggregate colloidal particles, and then spray-drying the resulting aggregate-containing mixture,
We have found that the above problems can be solved.

本発明は、このような知見に基づいて完成したものであ
る。
The present invention was completed based on such knowledge.

すなわち本発明は、無機酸化物コロイド溶液または無機
酸化物ゾルと金属塩水溶液を混合してコロイド粒子を凝
集せしめ、得られた凝集体含有混合物を噴霧乾燥するこ
とを特徴とする複合化無機物粉末の製造方法を提供する
とともに、上記無機酸化物コロイド溶液または無機酸化
物ゾルと金属塩水溶液を混合したときに、そのままでは
コロイド粒子が凝集しない場合には、得られた混合物の
DHを調整してコロイド粒子を凝集せしめ、しかる後に
得られた凝集体台を混合物を噴霧乾燥することによって
、複合化無機物粉末を製造する方法をも提供するもので
ある。
That is, the present invention provides a composite inorganic powder characterized by mixing an inorganic oxide colloidal solution or an inorganic oxide sol with an aqueous metal salt solution to aggregate colloidal particles, and spray-drying the resulting aggregate-containing mixture. In addition to providing a manufacturing method, if the colloidal particles do not aggregate when the inorganic oxide colloidal solution or inorganic oxide sol and metal salt aqueous solution are mixed as is, the DH of the resulting mixture is adjusted to form the colloid. There is also provided a method for producing a composite inorganic powder by agglomerating the particles and then spray drying the mixture from the resulting agglomerate platform.

本発明で使用する無機酸化物コロイド溶液または無機酸
化物ゾルとしては、Si0g含量が好ましくは1〜50
重量%重量%子リカゾル(コロイタlLt ’yシリカ
 、Aj!zOs含量が好ましくは1〜50重量%重量
%子ルミナゾル、Ti0z含1が好ましくは1〜50重
量%重量%子タニアゾル、Zr0z含量が好ましくは1
〜50重量%重量%子ルコニアク゛ルなどを挙げること
ができる。溶媒としては、水、アルコールなどの極性溶
媒が使用可能であるが、特に水を用いることが好ましい
The inorganic oxide colloidal solution or inorganic oxide sol used in the present invention preferably has a Si0g content of 1 to 50
wt % wt % wt % silicate sol (Coloyta lLt'y silica, Aj!zOs content is preferably 1 to 50 wt % wt % s lumina sol, Ti0z content is preferably 1 to 50 wt % wt % wt % sebum tania sol, ZrOz content is preferably is 1
-50% by weight of laconic acid. Although polar solvents such as water and alcohol can be used as the solvent, it is particularly preferable to use water.

上記無機酸化物コロイド溶液または無機酸化物ゾルと混
合する金属塩水溶液の金属塩としては、様々なものが使
用可能であるが、例えば、Cr、M。
Various metal salts can be used as the metal salt in the metal salt aqueous solution to be mixed with the inorganic oxide colloidal solution or inorganic oxide sol, and examples include Cr and M.

などの周期律表VIa族金属、Mnなどの■a族金属、
Fe、Co、Niなどの■族金属、CuなどのIb族金
属およびZnなどのnb族金属の硝酸塩、硫酸塩、塩化
物などを挙げることができる。具体的には、硝酸ニッケ
ル、硝酸鉄、硝酸コバルト、硝酸銅、硝酸クロム、硫酸
銅、硫酸鉄、塩化鉄などを挙げることができる。これら
の金属塩のなかでも、■族金属塩が好ましく、特に硝酸
ニッケル。
Group VIa metals of the periodic table, such as group VIa metals such as Mn, group IIa metals such as Mn,
Examples include nitrates, sulfates, and chlorides of group I metals such as Fe, Co, and Ni, group Ib metals such as Cu, and group Nb metals such as Zn. Specific examples include nickel nitrate, iron nitrate, cobalt nitrate, copper nitrate, chromium nitrate, copper sulfate, iron sulfate, and iron chloride. Among these metal salts, Group (1) metal salts are preferred, particularly nickel nitrate.

硝酸鉄、硝酸コバルト、硫酸鉄、塩化鉄などが好ましく
使用される。
Iron nitrate, cobalt nitrate, iron sulfate, iron chloride, etc. are preferably used.

上記金属塩水溶液中の金属塩濃度は、飽和濃度以下であ
れば特に制限はないが、一般には、0.1モル/2以上
で飽和濃度以下の範囲が好ましい。
The metal salt concentration in the metal salt aqueous solution is not particularly limited as long as it is below the saturation concentration, but generally it is preferably in the range of 0.1 mol/2 or more and below the saturation concentration.

本発明の方法によれば、上記無機酸化物コロイド溶液ま
たは無機酸化物ゾルと金属塩水溶液を混合して、コロイ
ド粒子を凝集させる。無機酸化物コロイド溶液や無機酸
化物ゾルと金属塩水溶液との混合比は特に制限はないが
、通常は得られる複合化無機物粉末中の金属含量が0.
1〜50重量%重量%子囲になるように混合すればよい
According to the method of the present invention, the inorganic oxide colloidal solution or inorganic oxide sol and the metal salt aqueous solution are mixed to aggregate colloidal particles. There is no particular restriction on the mixing ratio of the inorganic oxide colloidal solution or inorganic oxide sol to the metal salt aqueous solution, but usually the metal content in the resulting composite inorganic powder is 0.
What is necessary is just to mix so that it may be 1-50 weight% of weight%.

なお、無機酸化物コロイド溶液あるいは無機酸化物ゾル
と金属塩水溶液とを混合するだけでコロイド粒子が凝集
する場合もあるが、凝集しない場合には水酸化ナトリウ
ム水溶液などの水酸化アルカリ金属水溶液、アンモニア
水、塩基性緩衝溶液などのpo調節剤を添加してptt
を調整し、金属の水酸化物を生成させ、この金属水酸化
物の凝集効果によってコロイド粒子を凝集化することが
できる。
Note that colloidal particles may coagulate simply by mixing an inorganic oxide colloidal solution or an inorganic oxide sol with a metal salt aqueous solution, but if they do not coagulate, an alkali metal hydroxide aqueous solution such as a sodium hydroxide aqueous solution, ammonia PTT by adding po regulators such as water, basic buffer solution, etc.
is adjusted to produce a metal hydroxide, and colloidal particles can be agglomerated by the aggregation effect of this metal hydroxide.

また、逆に、凝集化が進みすぎて凝集体含有混合物の粘
度が高くなりすぎる場合には、この混合物を噴霧乾燥装
置に供給できなくなるので、溶媒、好ましくは無機酸化
物コロイド溶液あるいは無機酸化物ゾルと同一の溶媒、
例えば水を添加して凝集体を分散させ、粘度を室温で2
00cp(センチボイズ)以下、特に100cp以下に
下げると供給操作等が容易になり好ましい。
Conversely, if the agglomeration progresses too much and the viscosity of the aggregate-containing mixture becomes too high, this mixture cannot be fed to the spray dryer, so a solvent, preferably an inorganic oxide colloidal solution or an inorganic oxide colloid solution, the same solvent as the sol,
For example, add water to disperse the aggregates and reduce the viscosity to 2 at room temperature.
It is preferable to lower the amount to 00 cp (centivoise) or less, particularly 100 cp or less, because supply operations etc. become easier.

本発明の方法では、上記凝集化処理によって得られた凝
集体含有混合物を、噴霧乾燥装置に導入するなどの手法
で噴霧乾燥させる。この噴霧乾燥処理に使用する装置と
しては、噴霧乾燥に一般に使用されている装置が使用可
能である。噴霧乾燥処理条件には、特に制限はなく、従
来一般に用いられている条件下に実施する°ことができ
る。熱風入口温度は、70〜500°Cの範囲で選定す
ることができるが、作業効率の点から100 ”C以上
、特に150°C以上とするのが好ましい。混合物供給
速度は3kg/時間(水分量)以下にするのが好ましい
。また、ノズルの回転数は、5万rps以下、好ましく
は1万〜3万rpa+である。5万rps+を超えると
乾燥粉末が乾燥室内の壁に激突するため真球状をとどめ
にくい。
In the method of the present invention, the aggregate-containing mixture obtained by the above-mentioned agglomeration treatment is spray-dried by a method such as introducing it into a spray drying device. As an apparatus used for this spray drying process, an apparatus generally used for spray drying can be used. Spray drying treatment conditions are not particularly limited and can be carried out under conditions commonly used in the past. The hot air inlet temperature can be selected within the range of 70 to 500°C, but from the point of view of work efficiency it is preferably set to 100"C or higher, especially 150"C or higher.The mixture supply rate is 3kg/hour (moisture content The rotation speed of the nozzle is preferably 50,000 rps or less, preferably 10,000 to 30,000 rpa+.If it exceeds 50,000 rps+, the dry powder will collide with the wall of the drying chamber. It is difficult to maintain a true spherical shape.

なお、本発明の方法によって得られる複合化無機物粉末
の平均粒子径は、ノズルの回転数を変更することによっ
て調整可能であり、例えば、ノズルの回転数を1000
rp−とすると平均粒子径は100μm程度となり、ま
た50000rpmとすると平均粒子径は5μm程度と
なる。
Note that the average particle diameter of the composite inorganic powder obtained by the method of the present invention can be adjusted by changing the number of rotations of the nozzle.
When the rotation speed is set to rp-, the average particle diameter is approximately 100 μm, and when the rotation speed is set to 50,000 rpm, the average particle diameter is approximately 5 μm.

本発明の如き凝集化処理を実施することによって、真球
状あるいはそれに近い形状の複合化無機物粉末が効率よ
く得られるメカニズムは必ずしも明らかではないが、次
の如く推察される。
The mechanism by which composite inorganic powder having a true spherical shape or a shape close to it can be efficiently obtained by carrying out the agglomeration treatment as in the present invention is not necessarily clear, but it is speculated as follows.

一般に、コロイド溶液の噴霧乾燥においては、乾燥初期
の段階で水分の移動とともにコロイド粒子のうち微細な
粒子はど液滴表面に移動して、第6図(イ)に模式的に
示すように、微細粒子の表面層が形成される。この表面
層は、粗大な粒子からなる液滴内部に比較して迅速に乾
燥される傾向にあり、乾燥によって固化すると内部の水
分が表面に移動しに((なる、このため、内部の水分の
蒸発速度が表面層を通って外部に放出される速度より大
きくなると、表面固体層の弱い部分を破って蒸気が逃げ
、第6図(ロ)に示すように、くぼみをもった中空状の
粒子が生成することになる。
Generally, in the spray drying of a colloidal solution, in the early stage of drying, along with the movement of water, fine particles among the colloidal particles move to the surface of the droplet, as schematically shown in Figure 6 (a). A surface layer of fine particles is formed. This surface layer tends to dry quickly compared to the inside of the droplet, which is made up of coarse particles, and when it solidifies by drying, the internal moisture moves to the surface. When the evaporation rate becomes greater than the rate at which it is released to the outside through the surface layer, the vapor breaks through the weak part of the surface solid layer and escapes, forming hollow particles with dents, as shown in Figure 6 (b). will be generated.

これに対し、本発明のように凝集化処理を施すと、生成
した凝集体においては粒子間力が強いため、水分の移動
とともに微細な粒子が表面に移動することはまれであり
、コロイド溶液におけるような表面層は形成されない。
On the other hand, when agglomeration treatment is applied as in the present invention, the interparticle forces in the generated aggregates are strong, so it is rare for fine particles to move to the surface with the movement of water. No such surface layer is formed.

液滴も高分子状の網目構造をとっ−ていると考えられ、
水分が表面に移動する速度も速(、邪魔されることもな
い。従って、表面固体層を破って内部の水分が蒸発する
ことがないのは勿論のこと、内部の水分が乾燥後期まで
残ることもなく、その結果、中実の真球状あるいはそれ
に近い形状の粉末が得られるものと考えられる。
The droplets are also thought to have a polymer-like network structure,
The speed at which moisture moves to the surface is also fast (and unobstructed).Therefore, not only does the surface solid layer not break through and the internal moisture evaporates, but the internal moisture remains until the late stage of drying. As a result, it is thought that a powder having a solid, true spherical shape or a shape close to it can be obtained.

上記のようにして得られた真球状複合化無機物粉末は、
さらに焼成して、粉末の不純物、塩素イオン、硝酸イオ
ン、硫酸イオンなどの陰イオンを除去するのが好ましい
。この焼成処理は200〜600°Cで行うことができ
るが、特に450〜600″Cの範囲で行うのが好まし
い。また、この焼成処理に続いて粉末を分級し、粒子径
のそろった粉末を得ることもできる。
The true spherical composite inorganic powder obtained as described above is
It is preferable to further calcinate the powder to remove impurities and anions such as chloride ions, nitrate ions, and sulfate ions. This firing process can be carried out at a temperature of 200 to 600°C, but is preferably carried out at a temperature of 450 to 600''C.Furthermore, following this baking process, the powder is classified to obtain powder with uniform particle sizes. You can also get it.

なお、本発明の方法によって得られる粉末が複合化無機
物粉末であることは、得られた粉末をE P MA (
Electron Probe Micro−Anal
ysis)で表面観察することによって確認した。例え
ば、シリカゾルと硝酸ニッケルとの混合物から、本発明
の方法によって最終的に得られた粉末をEPMAで表面
観察したところ、各粉末中にSiとNiが存在し、S 
i OzとNiOの複合体が一つの粉末として得られる
ことが確認された。
In addition, the fact that the powder obtained by the method of the present invention is a composite inorganic powder means that the obtained powder is E P MA (
Electron Probe Micro-Anal
This was confirmed by surface observation using a microcomputer (ysis). For example, when the surface of powder finally obtained from a mixture of silica sol and nickel nitrate by the method of the present invention was observed using EPMA, it was found that Si and Ni were present in each powder, and S
It was confirmed that a composite of iOz and NiO could be obtained as a single powder.

また、本発明においては、得られた粉末を走査型電子顕
微鏡(SEM)にて1000倍に拡大した写真から、各
粒子の最長径と最短径とを測定し、次の式に従って真球
度を求めた。
In addition, in the present invention, the longest diameter and shortest diameter of each particle are measured from a photograph of the obtained powder magnified 1000 times with a scanning electron microscope (SEM), and the sphericity is determined according to the following formula. I asked for it.

真球度−最短径/最長径 本発明の方法によれば、真球度が0.9〜1.0の範囲
にはいる粒子を少なくとも90%含む粉末を得ることが
可能であり、本発明における真球状の粉末とは、このよ
うな真球度分布を有する粉末を意味するものである。
Sphericity - Shortest diameter/Longest diameter According to the method of the present invention, it is possible to obtain a powder containing at least 90% of particles having a sphericity of 0.9 to 1.0. The term "perfectly spherical powder" as used herein means a powder having such a sphericity distribution.

なお、粒子同士が付着したものや、陥没のあるものは、
真球状であったとしても、あまり好ましいものではない
In addition, items with particles attached to each other or items with depressions,
Even if it is perfectly spherical, it is not very desirable.

〔実施例〕〔Example〕

次に、本発明を実施例及び比較例によりさらに詳しく説
明する。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 コロイドシリカ水溶液(Sift 17wt%)1.0
6kgと硝酸ニッケル水溶液(1,34モル/1)20
0dを混合した。この混合物はすぐに凝集し、粘性が高
いため水を1!加えて均質化した。このときの粘度は2
5°Cで100cpであった。
Example 1 Colloidal silica aqueous solution (Sift 17wt%) 1.0
6 kg and nickel nitrate aqueous solution (1.34 mol/1) 20
0d was mixed. This mixture coagulates quickly and is highly viscous, so add 1! In addition, it was homogenized. The viscosity at this time is 2
It was 100 cp at 5°C.

この混合物を噴霧乾燥装置(大河原化工機■製L−8型
スプレードライヤ、回転ディスク径50閣、乾燥壁80
0s(内径)×1200111m(長さ)。
This mixture was dried using a spray dryer (L-8 type spray dryer manufactured by Okawara Kakoki ■, rotating disk diameter 50 mm, drying wall 80 mm).
0s (inner diameter) x 1200111m (length).

ノズル回転数15.OOOrpm、温度250°C1供
給速度2.5kg/時間)で乾燥した。得られた粉末を
450℃で2時間焼成し、その後走査型電子顕微鏡(S
EM)で観察したところ、中実真球状であることが判っ
た。この粒子構造(形状)の52M写真を第1図に示す
Nozzle rotation speed 15. OOOrpm, temperature 250° C., feed rate 2.5 kg/hour). The obtained powder was calcined at 450°C for 2 hours, and then subjected to scanning electron microscopy (S
When observed by EM), it was found to be solid and truly spherical. A 52M photograph of this particle structure (shape) is shown in FIG.

さらに、この粉末をレーザー回折粒度分析計での測定し
た七ころ、平均粒径は2.5μmであった。またその組
成は、S i Ozが90賀t%、NiOが10−t%
であった。
Further, this powder was measured with a laser diffraction particle size analyzer and the average particle size was 2.5 μm. Its composition is 90t% SiOz and 10-t% NiO.
Met.

実施例2 コロイドシリカ水溶液(Sift  17wt%)17
5gと硝酸鉄水溶液(0,67モルA010dを混合し
た。この混合物に5%アンモニア水を15II11加え
溶液を凝集させた。これに水を100d加え、粘度を7
0cp(25”C)にして、実施例1と同様の方法で噴
霧乾燥をした。
Example 2 Colloidal silica aqueous solution (Sift 17wt%) 17
5 g of iron nitrate aqueous solution (0.67 mol A010d) were mixed. 15II11 of 5% ammonia water was added to this mixture to coagulate the solution. 100d of water was added to this, and the viscosity was reduced to 7.
Spray drying was carried out in the same manner as in Example 1 at 0 cp (25''C).

得られた粉末を450℃で1時間焼成した。この粉末を
SEMで観察したところ、中実真球状であることが判っ
た。この粒子構造(形状)の52M写真を第2図に示す
、また、この粉末の平均粒径は20μm、組成はSin
g 99wt%、FezO31wt%であった。
The obtained powder was calcined at 450°C for 1 hour. When this powder was observed with a SEM, it was found to be solid and truly spherical. A 52M photograph of this particle structure (shape) is shown in Figure 2. The average particle size of this powder is 20 μm, and the composition is Sin.
g 99 wt% and FezO 31 wt%.

実施例3 コロイドシリカ水tri (SiCh 17wt%)1
00gと硝酸ニッケル水溶液(1,95モル/f)50
mを混合した。この混合物はかなり凝集するが、粘度が
100cp(25°C)と低いため、そのまま、実施例
1と同様の方法で噴霧乾燥した。
Example 3 Colloidal silica water tri (SiCh 17wt%) 1
00g and nickel nitrate aqueous solution (1.95 mol/f) 50
m was mixed. This mixture was quite agglomerated, but since its viscosity was as low as 100 cp (25°C), it was directly spray-dried in the same manner as in Example 1.

得られた粉末を450℃で1時間焼成しSEMで観察し
たところ、中実真球状であることが判った。
When the obtained powder was fired at 450° C. for 1 hour and observed with SEM, it was found to be solid and perfectly spherical.

この粒子構造(形状)の52M写真を第3図に示す。ま
た、この粉末の平均粒径は30μm2組成はSing 
70wt%、NiO30wt%であった。
A 52M photograph of this particle structure (shape) is shown in FIG. In addition, the average particle size of this powder is 30 μm2 The composition is Sing
70 wt% and NiO 30 wt%.

比較例 コロイドシリカ水溶液(S!Ox 17wt%)530
gと硝酸鉄水溶液(0,63モル/l1)200−を混
合した。この混合液は凝集せず、このまま、実施例1と
同様の方法で噴霧乾燥した。得られた粉末を450°C
で2時間焼成し、SEMで観察したところ、形状はへこ
みの多い球状のものであることが判った。この粒子構造
(形状)の52M写真を第4図に示す。また、この粉末
の平均粒径は34μm、組成はSiOz90wt%、F
eze310wt%であった。
Comparative example Colloidal silica aqueous solution (S!Ox 17wt%) 530
g and 200 - of iron nitrate aqueous solution (0.63 mol/l1) were mixed. This liquid mixture did not coagulate and was spray-dried in the same manner as in Example 1. The obtained powder was heated to 450°C.
After firing for 2 hours and observing with SEM, it was found that the shape was spherical with many depressions. A 52M photograph of this particle structure (shape) is shown in FIG. In addition, the average particle size of this powder is 34 μm, and the composition is SiOz 90 wt%, F
Eze310wt%.

実施例4 コロイドシリカ水溶液(SiO□ 17wt%)106
gと硝酸ニッケル水溶液(1,34モル/i)20mを
混合した。この混合物はすぐに凝集し、水をtooy加
え均質化した。粘度は25℃で100cpであった。こ
の混合物を噴霧乾燥装置(ノズル回転数20.00 O
rpm 、温度110℃。
Example 4 Colloidal silica aqueous solution (SiO□ 17 wt%) 106
g and 20 ml of an aqueous nickel nitrate solution (1.34 mol/i) were mixed. The mixture immediately coagulated and was homogenized by adding too much water. The viscosity was 100 cp at 25°C. This mixture was dried in a spray dryer (nozzle rotation speed 20.00 O
rpm, temperature 110°C.

供給速度1.2kg/時間)で乾燥した。得られた粉末
を450℃で1時間焼成した。この粉末をSEMで観察
したところ、中実真球状であることが判った。この粒子
構造(形状)の52M写真を第5図に示す。また、この
粉末の平均粒径は20μm、組成は5fOz 90wt
%、 Ni0 1011℃%であった。
Drying was carried out at a feed rate of 1.2 kg/hour). The obtained powder was calcined at 450°C for 1 hour. When this powder was observed with a SEM, it was found to be solid and truly spherical. A 52M photograph of this particle structure (shape) is shown in FIG. In addition, the average particle size of this powder is 20μm, and the composition is 5fOz 90wt.
%, Ni0 1011°C%.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、真球状あるいはこれに極めて近
い形状の複合化無機物粉末を効率よく得ることができる
。しかも、噴霧乾燥処理における噴霧乾燥機のノズル回
転数を調節することによって、粉末の平均粒子径を5〜
100μmの範囲内で容易にコントロールすることがで
き、その上噴霧乾燥処理における温度を100°C以上
に設定できるので作業効率が高く、大量且つ安価に真球
状複合化無機物粉末を得ることができる。また、原料と
して水溶性金属塩を使用することができるので、多種多
様の複合化無機物粉末を得ることができる。
According to the method of the present invention, composite inorganic powder having a true spherical shape or a shape extremely close to this can be efficiently obtained. Moreover, by adjusting the nozzle rotation speed of the spray dryer in the spray drying process, the average particle size of the powder can be adjusted to
It can be easily controlled within a range of 100 μm, and the temperature in the spray drying process can be set at 100° C. or higher, so the work efficiency is high and true spherical composite inorganic powder can be obtained in large quantities and at low cost. Furthermore, since a water-soluble metal salt can be used as a raw material, a wide variety of composite inorganic powders can be obtained.

したがって、本発明によって得られる複合化無機物粉末
は、その高い真球状および平滑な表面を有するため、樹
脂充填剤、研磨剤、触媒担体、コーティング原料などに
好適に使用することができる。
Therefore, since the composite inorganic powder obtained by the present invention has a highly spherical shape and a smooth surface, it can be suitably used as a resin filler, an abrasive, a catalyst carrier, a coating raw material, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜5図は、それぞれ実施例1.実施例2゜実施例3
.比較例および実施例4で得られた粉末の粒子構造の走
査型電子顕微鏡(SEM)写真である。 第6図(イ)および(ロ)は、それぞれ、通常のコロイ
ド溶液における液滴の構成およびこれを噴霧乾燥して得
られる、くぼみを有する粒子の構成を模式的に示したも
のである。 第11図 ’ 2 F・:C ::?3コl゛〈; り・N 、、IIA 第6図 (イ) C口)
1 to 5 show Example 1. Example 2゜Example 3
.. 3 is a scanning electron microscope (SEM) photograph of the particle structure of powders obtained in Comparative Example and Example 4. FIGS. 6(a) and 6(b) schematically show the structure of droplets in a normal colloidal solution and the structure of particles having depressions obtained by spray-drying the droplets, respectively. Figure 11' 2 F・:C::? 3.

Claims (2)

【特許請求の範囲】[Claims] (1)無機酸化物コロイド溶液または無機酸化物ゾルと
金属塩水溶液を混合してコロイド粒子を凝集せしめ、得
られた凝集体含有混合物を噴霧乾燥することを特徴とす
る複合化無機物粉末の製造方法。
(1) A method for producing a composite inorganic powder, which comprises mixing an inorganic oxide colloidal solution or an inorganic oxide sol with an aqueous metal salt solution to aggregate colloidal particles, and spray-drying the resulting aggregate-containing mixture. .
(2)無機酸化物コロイド溶液まには無機酸化物ゾルを
金属塩水溶液と混合し、次いで得られた混合物のpHを
調整してコロイド粒子を凝集せしめ、しかる後に得られ
た凝集体含有混合物を噴霧乾燥することを特徴とする複
合化無機物粉末の製造方法。
(2) In the inorganic oxide colloidal solution or inorganic oxide sol, the inorganic oxide sol is mixed with an aqueous metal salt solution, and then the pH of the resulting mixture is adjusted to aggregate the colloid particles, and then the resulting aggregate-containing mixture is mixed. A method for producing a composite inorganic powder, the method comprising spray drying.
JP384888A 1988-01-13 1988-01-13 Production of compounded inorganic substance powder Pending JPH01183403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP384888A JPH01183403A (en) 1988-01-13 1988-01-13 Production of compounded inorganic substance powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP384888A JPH01183403A (en) 1988-01-13 1988-01-13 Production of compounded inorganic substance powder

Publications (1)

Publication Number Publication Date
JPH01183403A true JPH01183403A (en) 1989-07-21

Family

ID=11568604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP384888A Pending JPH01183403A (en) 1988-01-13 1988-01-13 Production of compounded inorganic substance powder

Country Status (1)

Country Link
JP (1) JPH01183403A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009543A1 (en) * 1990-12-03 1992-06-11 Manville Corporation Method of preparing ceramic hollow particles
FR2715399A1 (en) * 1994-01-24 1995-07-28 Nof Corp A method of manufacturing a granular ignition manner, and material obtained by this method.
JPH0867505A (en) * 1994-08-26 1996-03-12 Catalysts & Chem Ind Co Ltd Inorganic oxide particle
EP0735013A1 (en) * 1995-03-21 1996-10-02 Imperial Chemical Industries Plc Process for the preparation of gas-generating compositions
CN103935961A (en) * 2014-04-21 2014-07-23 华侨大学 Metallic oxide nano-powder preparation method capable of achieving large-scale production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009543A1 (en) * 1990-12-03 1992-06-11 Manville Corporation Method of preparing ceramic hollow particles
FR2715399A1 (en) * 1994-01-24 1995-07-28 Nof Corp A method of manufacturing a granular ignition manner, and material obtained by this method.
JPH0867505A (en) * 1994-08-26 1996-03-12 Catalysts & Chem Ind Co Ltd Inorganic oxide particle
EP0735013A1 (en) * 1995-03-21 1996-10-02 Imperial Chemical Industries Plc Process for the preparation of gas-generating compositions
CN103935961A (en) * 2014-04-21 2014-07-23 华侨大学 Metallic oxide nano-powder preparation method capable of achieving large-scale production
CN103935961B (en) * 2014-04-21 2017-01-25 华侨大学 Metallic oxide nano-powder preparation method capable of achieving large-scale production

Similar Documents

Publication Publication Date Title
JP5066090B2 (en) Method of coating metal (M2) oxide ultrafine particles on the surface of metal (M1) oxide particles
JPH0193406A (en) Manufacture of ceramic powder by emulsion sedimentation and product thereof
JPH0387301A (en) Material processing and manufacture
JP2002146232A (en) Surface modification method for fine silica powder
JPH01183403A (en) Production of compounded inorganic substance powder
Okitsu et al. Catalytic behavior of Au core/Pd shell bimetallic nanoparticles on silica prepared by sonochemical and sol–gel processes
JPH05254830A (en) Finely divided particles of rare earth oxides excellent in dispersibility and production process thereof
CN112811450A (en) Preparation method of spherical nano-micron alumina
JPH0343201B2 (en)
JP2003034523A (en) Method for manufacturing coated magnesium oxide powder
JPS63274647A (en) Production of ceramics granules
CN114920293A (en) Preparation method of monoclinic scheelite type spherical bismuth vanadate and bismuth vanadate pigment
JP4596111B2 (en) Method for producing spherical oxide powder and apparatus for producing spherical powder
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
JPH06122955A (en) Production of spherical thermally sprayed powder
KR100424799B1 (en) Method for the production of complex fluoroaluminate, the fluoroaluminate produced thereby and the utilization of spray drying and polyalkyleneglycols for controlling the structure of fluoroaluminates
JPH03170327A (en) Preparation of spherical calcium carbonate
JPH01172221A (en) Synthesis of starting material comprising fine oxide particle
US3725036A (en) Process for making small particles
JPH0380118A (en) Chromium spinel and its production
JP2000007309A (en) Production of porous oxide powder
JPH01226724A (en) Method for synthesizing fine oxide particles as starting material
JPH1095620A (en) Uniformly granulated chromium oxide
JPS62235220A (en) Production of ferromagnetic fine powder for magnetic recording
JP3282264B2 (en) Method for producing magnetic oxide powder