JPH01182736A - Method of analyzing flow fractionation in sedimentation field - Google Patents

Method of analyzing flow fractionation in sedimentation field

Info

Publication number
JPH01182736A
JPH01182736A JP718988A JP718988A JPH01182736A JP H01182736 A JPH01182736 A JP H01182736A JP 718988 A JP718988 A JP 718988A JP 718988 A JP718988 A JP 718988A JP H01182736 A JPH01182736 A JP H01182736A
Authority
JP
Japan
Prior art keywords
fractogram
developing solution
determined
particle
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP718988A
Other languages
Japanese (ja)
Inventor
Makoto Takeuchi
誠 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP718988A priority Critical patent/JPH01182736A/en
Publication of JPH01182736A publication Critical patent/JPH01182736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Centrifugal Separators (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

PURPOSE:To enable accurate measurement even in a region, where relative holding is small, by using a particle, whose diameter and density difference with a developing liquid are known as a standard sample, performing sedimentation-field flow fractionation analysis, and obtaining a fractogram. CONSTITUTION:A particle, whose diameter dp and density difference DELTArho with a developing liquid are known, is used as a standard sample. Sedimentation-field flow fractionation analysis is performed, and a fractogram is obtained. Constants A and phi in the expression are determined based on a relative holding R, which is obtained from the fractogram. In the expression, W is the channel width of a column, D is the diffusion coefficient of the developing liquid, (k) is Boltzmann's constant, T is absolute temperature and G is centrifugal acceleration. The diameter and the density of the particle of an unknown sample are obtained from the fractogram based on the expression by using the determined constants A and phi.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、沈降場流動分画の原理を用いた分析方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an analytical method using the principle of sedimentation field flow fractionation.

[従来技術] 流体中の微粒子は遠心力場に置かれるとその粒子の質量
に応じた力を受け、外壁に向かって沈降しようとする。
[Prior Art] When particles in a fluid are placed in a centrifugal force field, they receive a force corresponding to the mass of the particles and tend to settle toward the outer wall.

粒子がサブミクロン程度に小さいとブラウン連動が可能
で、沈降によって生じた濃度勾配に比例して自己拡散力
が増大し、遠心力と自己拡散力のつりあうところで粒子
雲を形成する。
When the particles are as small as submicrons, Brownian interlocking is possible, and the self-diffusion force increases in proportion to the concentration gradient created by sedimentation, forming a particle cloud where centrifugal force and self-diffusion force are balanced.

また、流体は、狭い空隙(チャネル)を流れる時、壁面
に接している部分の流速は中心部より遅くなり空隙の中
心に向かって放物線流速分布をとる。
Furthermore, when a fluid flows through a narrow gap (channel), the flow velocity in the portion that is in contact with the wall surface is slower than in the center, and takes on a parabolic flow velocity distribution toward the center of the gap.

この空隙に垂直に遠心力場を加えると、流体中の粒子は
、遠心力と自己拡散力のつりあう位置での固有の流速で
空隙中を移動することになる。このような性質を利用し
て流体中の微粒子を分離分画するのがS −F F F
 (S edlsentation  F 1eldF
 low F ractlonatlon)である。
When a centrifugal force field is applied perpendicularly to this gap, particles in the fluid will move through the gap at a specific flow velocity at a position where centrifugal force and self-diffusion force are balanced. S -F F F uses these properties to separate and fractionate fine particles in a fluid.
(S edlsentation F 1eldF
low F lactlonatlon).

第2図は従来の5−FFF用回転カラムの一例を示す図
である。このカラムは、第2図(a)に示すように注入
口23と流出口24を有し、両者の間で切断されたイン
ナー・リング21とアウター・リング22から構成され
る。インナー・リング21の外周面には、端から端まで
分離溝25が掘られ、更にこの分離溝25を包囲するよ
うにシール溝27が設けられている。このシール溝27
にシール材28を埋め込んだ後、インナー・リング21
は第2図(b)に断面図を示すようにアウター・リング
22内に挿入される。これにより、インナー・リング2
1とアウター・リング22で囲まれる分離溝25の部分
にチャネル29が形成される。楔30はインナー・リン
グ21を押し広げ、インナー・リング21とアウター・
リング22を一体化するために用いられる。
FIG. 2 is a diagram showing an example of a conventional rotating column for 5-FFF. This column has an inlet 23 and an outlet 24, as shown in FIG. 2(a), and is composed of an inner ring 21 and an outer ring 22 cut between the two. A separation groove 25 is dug from end to end on the outer peripheral surface of the inner ring 21, and a seal groove 27 is further provided so as to surround this separation groove 25. This seal groove 27
After embedding the sealing material 28 in the inner ring 21
is inserted into the outer ring 22 as shown in cross-section in FIG. 2(b). This allows inner ring 2
A channel 29 is formed in a portion of the separation groove 25 surrounded by the outer ring 22 and the outer ring 22 . The wedge 30 pushes the inner ring 21 apart and separates the inner ring 21 and the outer ring.
It is used to integrate the ring 22.

上記チャネル29は、幅W(250μm程度)と高さB
 (25mm程度)が全周(周長例えば58es程度)
にわたり一様である。このチャネル29の両端で非常に
接近した位置には、流体をチャネルに注入するための注
入口23及び流体をチャネルから取出すための流出口2
4がある。第2図(c)は、注入口23.流出口249
分離溝25及びシール溝27の配置を示している。
The channel 29 has a width W (approximately 250 μm) and a height B
(about 25mm) is the entire circumference (for example, the circumference is about 58es)
It is uniform throughout. Located in close proximity at each end of this channel 29 are an inlet 23 for injecting fluid into the channel and an outlet 2 for removing fluid from the channel.
There are 4. FIG. 2(c) shows the injection port 23. Outlet 249
The arrangement of the separation groove 25 and the seal groove 27 is shown.

第3図はこの回転カラムを含む装置全体の構成図である
。第3図において1は第2図に示した回転カラムで、図
示しない駆動機構により、高速回転される。その回転軸
の部分には1、固定流路と接続するためのロータリージ
ヨイント2が設置されている。ポンプ3によって加圧さ
れた展開液は、4方バルブ4.サンプリングバルブ5及
びロータリージヨイント2を介してカラム1内へ注入さ
れる。そして、カラム1から流出した展開液は、ロータ
リージヨイント2及び4方バルブ4を介してUV検出器
のような検出器6へ送られる。
FIG. 3 is a block diagram of the entire apparatus including this rotating column. In FIG. 3, reference numeral 1 denotes the rotating column shown in FIG. 2, which is rotated at high speed by a drive mechanism (not shown). A rotary joint 1 and a rotary joint 2 for connecting to a fixed flow path are installed on the rotating shaft portion. The developing liquid pressurized by the pump 3 is passed through the four-way valve 4. It is injected into the column 1 via the sampling valve 5 and the rotary joint 2. The developing solution flowing out of the column 1 is sent to a detector 6 such as a UV detector via a rotary joint 2 and a four-way valve 4.

先に述べたように、カラムのチャネル内を流れる展開液
は、中央が最大で両壁面に向かって減衰する放物線流速
分布をとり、このチャネル内で遠心力を受ける展開液内
微粒子は、その粒子径や密度によって決まる固有の濃度
分布を示し、固有のチャネル内移動速度をもって注入口
から流出口へ移動する。このため、相対密度(展開液と
粒子の密度差)Δρと粒子径dpの3乗の積(相対質量
)が小さいものから順にカラム外へ流れ出て分離され、
これをUV検出器で検出することにより、例えば第4図
に示すようなフラクトグラムが得られる。
As mentioned earlier, the developing solution flowing through the channel of the column has a parabolic flow velocity distribution that is maximum at the center and attenuates toward both walls, and the microparticles in the developing solution that are subjected to centrifugal force in this channel are It exhibits a unique concentration distribution determined by its diameter and density, and moves from the inlet to the outlet with a unique movement speed within the channel. Therefore, those with the lowest relative density (difference in density between the developing solution and the particles) Δρ and the cube of the particle diameter dp (relative mass) flow out of the column and are separated.
By detecting this with a UV detector, a fractogram as shown in FIG. 4, for example, can be obtained.

相対保持Rを粒子の保持容量Vrに対する非保持容量v
oの比と定義したとき、G iddings等はRを次
式で表わした(Anal、  Cheap、 46.1
917(1974))。
The relative retention R is defined as the non-retention capacity v with respect to the particle retention capacity Vr.
When defined as the ratio of o, Giddings et al. expressed R as the following formula (Anal, Cheap, 46.1
917 (1974)).

R−Vo/Vr −6λ (Coth(2λ)−1−2
λ)−6λ−12λ +12λ(eλ−1)−1・・・
(1) λ−6kT/πΔρ・dp3 ・G−W  ・・・(2
)ここで、kはボルツマン定数、Tは絶対温度、Δρは
展開液と粒子の密度差、Gは遠心加速度、Wはチャネル
幅である。
R-Vo/Vr -6λ (Coth(2λ)-1-2
λ)-6λ-12λ +12λ(eλ-1)-1...
(1) λ-6kT/πΔρ・dp3・GW...(2
) Here, k is the Boltzmann constant, T is the absolute temperature, Δρ is the density difference between the developing solution and the particles, G is the centrifugal acceleration, and W is the channel width.

通常、実際の分析は、W−250μmのカラムを使用し
、界面活性剤を0.1%程度含む水を展開液として用い
る。そして、サンプリングバルブ5から未知サンプルを
注入してフラクトグラムを求め、このフラクトグラムか
ら着目したピークのVo/Vr  (= R)を求め、
このRの値から(1)。
Usually, in actual analysis, a W-250 μm column is used, and water containing about 0.1% of a surfactant is used as a developing solution. Then, an unknown sample is injected from the sampling valve 5 to obtain a fractogram, and Vo/Vr (= R) of the peak of interest is determined from this fractogram.
From this value of R (1).

(2)式に基づいて、着目したピークに対応する粒子の
相対質量Δρ・dp3を求める。未知試料の密度が既知
であれば、この相対質量から粒子径が求められるし、粒
子径が既知であれば、密度が求められる。又、展開液の
種類を変えて測定を2回行えば、未知試料の密度と粒子
径の両方が求められる。
Based on equation (2), the relative mass Δρ·dp3 of the particle corresponding to the peak of interest is determined. If the density of the unknown sample is known, the particle diameter can be determined from this relative mass, and if the particle diameter is known, the density can be determined. Furthermore, by performing the measurement twice with different types of developing solution, both the density and particle size of the unknown sample can be determined.

[発明が解決しようとする問題点] 上記(1)、(2)式を用いた解析は、Rが比較的大き
い領域では実験結果と理論式が非常に良く一致するが、
Rの小さい領域では両者の間に大きな単離が発生してし
まう。従って、その領域では求めた粒子の密度や径に大
きな誤差が出てしまうことは避けられなかった。
[Problems to be solved by the invention] In the analysis using the above equations (1) and (2), the experimental results and the theoretical equation agree very well in the region where R is relatively large, but
In a region where R is small, a large separation occurs between the two. Therefore, it was inevitable that there would be large errors in the density and diameter of the particles determined in that region.

更に、本発明者は先に、フラクトグラムの分離能を高め
しかも短時間で取得するためには、チャネル幅Wを小さ
くすること、及び界面活性剤を含まない純水を展開液と
して使用することが有利であることを見出しているが、
Wを小さくし、純水を使用すると上述した実験結果と理
論式との単離が更に拡大してしまい、定量的な解析が不
可能であった。そのため、実質的に高速高分離能の測定
は出来なかった。
Furthermore, the present inventors have previously discovered that in order to increase the resolution of fractograms and obtain them in a short time, the channel width W should be made small and pure water containing no surfactant should be used as a developing solution. has been found to be advantageous, but
If W was made smaller and pure water was used, the separation between the experimental results and the theoretical formula described above would further expand, making quantitative analysis impossible. Therefore, high-speed, high-resolution measurements were practically impossible.

本発明は上述した点に鑑みてなさ゛れたものであり、新
たな理論式を導入することにより、上述した問題点を除
くことのできる沈降場流動分画分析方法を提供するもの
である。
The present invention has been developed in view of the above-mentioned points, and aims to provide a sedimentation field flow fraction analysis method that can eliminate the above-mentioned problems by introducing a new theoretical formula.

C問題点を解決するための手段] 上記目的を達成するため、本発明の沈降場流動分画分析
方法は、粒子径dp及び展開液との密度差Δρが既知の
粒子を標準試料として沈降場流動分画分析を行ってフラ
クトグラムを得、該フラクトグラムから求めた相対保持
Rに基づいて下式における定数A及びφを決定し、該決
定したA及びφを用い下式に基づいて未知試料のフラク
トグラムからその粒子径又は密度を求めることを特徴と
し+ (A/v)D114(1+φλ) exp(−λ
2 v21〜1)λ−6kT/πΔρ・dp3  ・G
−W(ここで、Wはカラムのチャネル幅、Dは展開液の
拡散係数、kはボルツマン定数、Tは絶対温度、Gは遠
心加速度である。) 以下、図面を用いて本発明を詳説する。
Means for Solving Problem C] In order to achieve the above object, the sedimentation field flow fraction analysis method of the present invention uses particles whose particle diameter dp and density difference Δρ from the developing solution are known as standard samples to be analyzed in a sedimentation field. Perform flow fraction analysis to obtain a fractogram, determine the constants A and φ in the following formula based on the relative retention R determined from the fractogram, and use the determined A and φ to calculate the unknown sample based on the following formula. + (A/v)D114(1+φλ) exp(-λ
2 v21~1) λ-6kT/πΔρ・dp3・G
-W (where, W is the channel width of the column, D is the diffusion coefficient of the developing solution, k is the Boltzmann constant, T is the absolute temperature, and G is the centrifugal acceleration.) The present invention will be explained in detail below using the drawings. .

[実施例] 本発明者は、上述したような理論式からの単離が何に起
因しているか、そして、実験結果をよく記述できる式は
(1)、(2)式にどの様な補正を施すことによって得
られるかを追及すべく、信頼のおける標準試料を用いて
、カラム温度、流速。
[Example] The present inventor has determined what is the cause of the isolation from the above-mentioned theoretical formula, and what corrections should be made to formulas (1) and (2) to ensure that the formula can well describe the experimental results. In order to investigate what can be obtained by applying the column temperature and flow rate, we used reliable standard samples.

回転数などの測定条件に十分な注意を払い実験を重ねた
We conducted repeated experiments paying careful attention to measurement conditions such as rotation speed.

先ず、チャネル幅W−125μm1チャネル壁面の材質
がテフロンであるカラムを用い、■純水、■0.1%エ
マルゲンap150  [花王] (オキシエチレン−
オキシプロピレン共重合体)水溶液、■0.01%ドデ
シルベンゼンスルフオン酸ソーダ水溶液、■0.01%
アンヒトール20BS [花王コ (ラウリルベダイン
)水溶液の4種類の展開液で、流速、カラム回転数をそ
れぞれ1.5+al/min 、 200 Orpmに
保ち、下表に示す密度及び径を持つA−Hの5種類の標
準試料(日本合成ゴム社製ポリスチレンラテックス(S
TADEX旧X 029))について測定した。
First, using a column with a channel width W of 125 μm and a channel wall made of Teflon, 1) pure water, 2) 0.1% Emulgen AP150 [Kao] (oxyethylene-
Oxypropylene copolymer) aqueous solution, ■ 0.01% sodium dodecylbenzenesulfonate aqueous solution, ■ 0.01%
Amphitol 20BS [Kao Co (Lauryl Bedine)] Using four types of developing solution (laurylbedine), the flow rate and column rotation speed were maintained at 1.5 + al/min and 200 Orpm, respectively, and A-H with the density and diameter shown in the table below was prepared. Five types of standard samples (polystyrene latex (S) manufactured by Japan Synthetic Rubber Co., Ltd.
TADEX former X 029)) was measured.

表    1 得られたフラクトグラムから、相対保持Rを保持容量V
rに対する非保持容量Voの比として求め、その対数を
横軸に、そして展開液の密度を0゜9982g/cm”
とし、各粒子径及び密度を用いて相対質量Δρ・dp3
を求め、この相対質量の対数を縦軸にとって実験結果を
プロットしたのが第5図である。第5図中、破線は、先
にのべたG 1dd1ngSd与えた(1)、(2)の
理論式に基づく曲線である。
Table 1 From the obtained fractogram, relative retention R is expressed as retention capacity V
It is determined as the ratio of the non-retentive capacity Vo to r, and the horizontal axis is the logarithm, and the density of the developing solution is 0°9982 g/cm.
Then, using each particle size and density, the relative mass Δρ・dp3
Figure 5 shows the experimental results plotted with the logarithm of this relative mass as the vertical axis. In FIG. 5, the broken line is a curve based on the theoretical formulas (1) and (2) given above for G1dd1ngSd.

この第5図から明らかなように、実験結果は、Rが大き
いところで展開液の種類に関係な゛く理論式とほぼ一致
するが、Rの小さいところで理論式からの単離が生じ、
特に純水の場合最も単離が大きくなっていることが再確
認された。また、界面活性剤の種類と濃度により、分離
挙動が変わることが分かる。
As is clear from FIG. 5, the experimental results almost agree with the theoretical formula when R is large, regardless of the type of developing solution, but when R is small, isolation from the theoretical formula occurs.
In particular, it was reconfirmed that the isolation was greatest in the case of pure water. It can also be seen that the separation behavior changes depending on the type and concentration of the surfactant.

界面活性剤の種類と濃度による分離挙動の変化は、チャ
ネルの粒子蓄積壁面と展開液間の界面張力に依存する現
象と思われたため、表面張力が水の約3分の1の22 
、 5 dyne/c++のメタノールを展開液とし、
臨界表面張力が18 dyne/ca+のテフロンと、
約40 dyne/cmのポリイミドを粒子蓄積壁面の
材質に選んで実験を行った。その結果、粒子蓄積壁面の
材質が展開液(メタノール)によって濡れる場合(ポリ
イミド)も、濡れない場合(テフロン)も、分離挙動は
(1)、(2)の理論式からやはり単離することか分り
、その単離と界面張力との直接的因果関係は否定された
The change in separation behavior depending on the type and concentration of surfactant was thought to be a phenomenon dependent on the interfacial tension between the particle accumulation wall of the channel and the developing solution.
, 5 dyne/c++ methanol as a developing solution,
Teflon with a critical surface tension of 18 dyne/ca+,
The experiment was conducted by selecting polyimide of about 40 dyne/cm as the material for the particle accumulation wall. As a result, whether the material of the particle accumulation wall is wetted by the developing solution (methanol) (polyimide) or not (Teflon), the separation behavior will still result in isolation based on the theoretical equations (1) and (2). As a result, a direct causal relationship between its isolation and interfacial tension was denied.

そこで、(1)、(2)式の導出過程にたちかえって検
討を加えた。即ち、(1)、(2)式は、第6図(a)
に示すように流速分布が壁面に至るまで放物線分布を保
ち、壁面上で流速がゼロになるという仮定に基づいて導
出されている。この仮定は、多くの場合不都合を生じな
い。しかしながら、沈降場流動分画における保持が顕著
に現れるのは、粒子雲が壁面近傍に留まるときである。
Therefore, we revisited the process of deriving equations (1) and (2) and added further consideration. That is, equations (1) and (2) are shown in FIG. 6(a).
It is derived based on the assumption that the flow velocity distribution maintains a parabolic distribution up to the wall surface, as shown in , and the flow velocity becomes zero on the wall surface. This assumption does not cause any disadvantage in many cases. However, retention in the sedimentation field flow fraction becomes noticeable when the particle cloud remains near the wall surface.

例えば、W−125μmでR−0,1では、粒子雲は平
均圧Mlのところに留まる。流速1500μl/l1l
Inで実験するとき、壁面から2μmの位置の粒子の線
速度は約97μm/seeである。一方、展開液の拡散
による移動速度は、純水の場合で86μmとなる。従っ
て、壁面のご(近傍では、拡散の寄与を無視できず、拡
散を考慮すると、実際の流速分布は第6図(b)に示す
ようなものとなり、壁面での流速はゼロではないとしな
ければならないことが分った。
For example, at W-125 μm and R-0,1, the particle cloud remains at the mean pressure Ml. Flow rate 1500μl/l1l
When experimenting with In, the linear velocity of particles at a position 2 μm from the wall surface is about 97 μm/see. On the other hand, the moving speed due to diffusion of the developing solution is 86 μm in the case of pure water. Therefore, near the wall surface, the contribution of diffusion cannot be ignored, and if diffusion is taken into account, the actual flow velocity distribution will be as shown in Figure 6(b), and it must be assumed that the flow velocity at the wall surface is not zero. I found out that this is not the case.

そこで、拡散係数りが、25℃においてp−0゜512
 X 10−0−5a/seeと2.32X10−5c
霞2/seeと大きく異なるnプロパツールとメタノー
ルを展開液とし、上記試料A−EについてW−250μ
mと125μmの2種類のカラムで実験を行った。
Therefore, the diffusion coefficient is p-0°512 at 25°C.
X 10-0-5a/see and 2.32X10-5c
Using n-proper tool and methanol, which are significantly different from Kasumi 2/see, as the developing solution, W-250 μ
Experiments were conducted using two types of columns: m and 125 μm.

その結果をプロットしたのが第7図で、0(250μm
)と・(125μm)がメタノール、Δ(250μm)
とム(125μm)がnブロノくノールを夫々示す。こ
の図から、相対保持RがWとDに顕著に依存しているこ
とが確認された。
The results are plotted in Figure 7, which shows 0 (250 μm
) and · (125 μm) are methanol, Δ (250 μm)
The size (125 μm) indicates n-brono, respectively. From this figure, it was confirmed that the relative retention R was significantly dependent on W and D.

以上の実験結果に基づき、本発明者は、従来の理論式(
1)に補正項Rdを加えた次式により、これまでの実験
結果を矛盾なく説・明できることを見出した。
Based on the above experimental results, the present inventor has developed the conventional theoretical formula (
It has been found that the experimental results up to now can be explained without contradiction by the following equation, which is obtained by adding the correction term Rd to 1).

R−Ro +Rd            −(3)R
d関 (A/V)D114(1+φλ) exp(−λ  w
  /2(U>・・・(4) ここで、ROは従来からの項、λも従来通りで、下式で
表わされる。
R-Ro +Rd-(3)R
d function (A/V) D114 (1+φλ) exp(-λ w
/2(U>...(4) Here, RO is the conventional term, and λ is also the conventional term, and is expressed by the following formula.

Ro−6λ−12λ +12λ(eλ−1)−1λ−6
kT/πΔρ・dp3 ・G−W上記(4)式において
、A、φは実験条件で決まる定数である。本発明者が用
いた装置では、純水、メタノール、nプロパツールの系
では K −1、φ−3であった。
Ro-6λ-12λ +12λ(eλ-1)-1λ-6
kT/πΔρ·dp3 ·GW In the above equation (4), A and φ are constants determined by experimental conditions. In the apparatus used by the present inventor, the values were K-1 and φ-3 in the system of pure water, methanol, and n-propertool.

第7図における実線と破線は、20℃におけるメタノー
ルおよびnプロパツールの拡散係数りを夫’r2120
μm2/see、420μm2/seeとし、W=12
5μmとW−250μ’mのカラムについて(3)、(
4)式による計算結果をプロットしたもので、実線はW
−125μm1破線はW〜250μmの場合を夫々示す
。ドツト(0゜・:メタノール、Δ、ム;nプロパツー
ル)で示した実験結果と、W−125μmの場合も25
0μmの場合も良く一致していることが分る。
The solid and dashed lines in Figure 7 represent the diffusion coefficients of methanol and n-propyl alcohol at 20°C.
μm2/see, 420μm2/see, W=12
For 5μm and W-250μ'm columns (3), (
4) The results of calculation using formula are plotted, and the solid line is W
-125 μm 1 broken line indicates the case of W to 250 μm, respectively. The experimental results shown as dots (0°.: methanol, Δ, m; n property tool) and the case of W-125 μm are also 25
It can be seen that there is good agreement even in the case of 0 μm.

第1図は、このような新しい式を用いた本発明の沈降場
流動分画分析方法を実施するための流れ図の一例を示す
。以下、この流れ図にしたがって一実施例を説明する。
FIG. 1 shows an example of a flowchart for carrying out the sedimentation field flow fraction analysis method of the present invention using such a new formula. Hereinafter, one embodiment will be described according to this flowchart.

■先ず、粒子径、密度既知の標準試料を複数種類用意す
る。
■First, prepare multiple types of standard samples with known particle sizes and densities.

■この標準試料及び未知試料の分散に適した展開液(例
えば純水)を用意する。
■Prepare a developing solution (eg, pure water) suitable for dispersing the standard sample and unknown sample.

■複数種類の標準試料を混合し、所定回転数でフラクト
グラムを測定する。
■Mix multiple types of standard samples and measure the fractogram at a predetermined rotation speed.

■得られたフラクトグラムに基づき、少なくとも2つの
試料ピークについて相対保持Rを求め、R1、R2を得
る。
(2) Based on the obtained fractogram, determine the relative retention R for at least two sample peaks to obtain R1 and R2.

■このR1,R2と、(3)、(4)、(1)。■These R1, R2, (3), (4), (1).

(2)式から定数A及びφを決定し、(3)。(2) Determine constants A and φ from equation (3).

(4)式を確定させる。(4) Confirm the formula.

■未知の試料についてフラクトグラムを求める。■ Obtain a fractogram for an unknown sample.

■未知試料のピークについて相対保持Rxを求める。(2) Determine the relative retention Rx for the peak of the unknown sample.

■Rxを用いて(3)、(4)、(1)、(2)式から
未知試料の相対質量Δp−dp3を求める。
(2) Using Rx, calculate the relative mass Δp-dp3 of the unknown sample from equations (3), (4), (1), and (2).

■Δρが既知であれば、この相対質量からdpを求め、
dpが既知であれば、相対質量からΔρを求める。
■If Δρ is known, calculate dp from this relative mass,
If dp is known, Δρ is determined from the relative mass.

尚、定数A及びφの確度を向上させるためには、標準試
料の数を多くしたり、回転数を幾種類かに変えて測定を
したりしてデータ数を増すことが好ましい。
In order to improve the accuracy of the constants A and φ, it is preferable to increase the number of data by increasing the number of standard samples or by changing the number of rotations to several types.

[効果] 以上詳述した如く、本発明によれば、Rの小さな領域に
おいても正確な測定を行うことのできる沈降場流動分画
分析方法が提供される。
[Effects] As described in detail above, the present invention provides a sedimentation field flow fraction analysis method that allows accurate measurements even in a small R region.

又、界面活性剤を使用せず、純水を用い、Wを従来から
の250μmよりも小さくしても、実験結果と理論式が
合致し正確な測定結果が得られるため、高速且つ高分離
能の測定が可能となる。
In addition, even if pure water is used without using a surfactant, and W is smaller than the conventional 250 μm, the experimental results and the theoretical formula match and accurate measurement results can be obtained, resulting in high speed and high resolution. measurement becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる方法を実施するための流れ図の
一例を示す図、第2図は従来の5−FFF用回転カラム
の一例を示す図、第3図はこの回転カラムを含む装置全
体の構成図、第4図はフラクトグラムの一例を示す図、
第5図は従来の理論式に基づく曲線と、4種類の展開液
を使用し5種類の標準試料について求めたフラクトグラ
ムに基づく曲線との単離を示す図、第6図はチャネル内
を流れる展開液の流速分布を示す図、第7図は拡散係数
りの異なるnプロパツールとメタノールを展開液とし、
試料A−HについてW−250μmと125μmの2種
類のカラムで実験を行った結果と、本発明で新たに導入
された理論式に基づく曲線との比較図である。
Fig. 1 is a diagram showing an example of a flowchart for implementing the method according to the present invention, Fig. 2 is a diagram showing an example of a conventional rotating column for 5-FFF, and Fig. 3 is a diagram showing the entire apparatus including this rotating column. Fig. 4 is a diagram showing an example of a fractogram.
Figure 5 shows the separation of the curve based on the conventional theoretical formula and the curve based on the fractograms obtained for five types of standard samples using four types of developing solutions. Figure 7 is a diagram showing the flow velocity distribution of the developing solution.
It is a comparison diagram between the results of experiments conducted on samples A-H using two types of columns, W-250 μm and 125 μm, and a curve based on a theoretical formula newly introduced in the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)粒子径dp及び展開液との密度差Δρが既知の粒
子を標準試料として沈降場流動分画分析を行ってフラク
トグラムを得、該フラクトグラムから求めた相対保持R
に基づいて下式における定数A及びφを決定し、該決定
したA及びφを用い下式に基づいて未知試料のフラクト
グラムからその粒子径又は密度を求めることを特徴とす
る沈降場流動分画分析方法。 R=6λ−12λ^2+12λ(e^λ−1)^−^1
+(A/W)D^1^/^4(1+φλ)exp(−λ
^2W^2/2√D)λ=6kT/πΔρ・dp^3・
G・W (ここで、Wはカラムのチャネル幅、Dは展開液の拡散
係数、kはボルツマン定数、Tは絶対温度、Gは遠心加
速度である。)
(1) Perform sedimentation field flow fraction analysis using particles with known particle diameter dp and density difference Δρ from the developing solution as a standard sample to obtain a fractogram, and obtain relative retention R from the fractogram.
A sedimentation field flow fractionation characterized in that the constants A and φ in the formula below are determined based on the equation below, and the particle diameter or density of the unknown sample is determined from the fractogram of the unknown sample based on the formula below using the determined A and φ. Analysis method. R=6λ-12λ^2+12λ(e^λ-1)^-^1
+(A/W)D^1^/^4(1+φλ)exp(-λ
^2W^2/2√D)λ=6kT/πΔρ・dp^3・
G・W (Here, W is the channel width of the column, D is the diffusion coefficient of the developing solution, k is Boltzmann's constant, T is the absolute temperature, and G is the centrifugal acceleration.)
JP718988A 1988-01-16 1988-01-16 Method of analyzing flow fractionation in sedimentation field Pending JPH01182736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP718988A JPH01182736A (en) 1988-01-16 1988-01-16 Method of analyzing flow fractionation in sedimentation field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP718988A JPH01182736A (en) 1988-01-16 1988-01-16 Method of analyzing flow fractionation in sedimentation field

Publications (1)

Publication Number Publication Date
JPH01182736A true JPH01182736A (en) 1989-07-20

Family

ID=11659098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP718988A Pending JPH01182736A (en) 1988-01-16 1988-01-16 Method of analyzing flow fractionation in sedimentation field

Country Status (1)

Country Link
JP (1) JPH01182736A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111295578A (en) * 2017-08-15 2020-06-16 华盛顿大学 Particle separation system and method
JPWO2021140935A1 (en) * 2020-01-09 2021-07-15
JP2021169055A (en) * 2020-04-14 2021-10-28 株式会社島津製作所 Centrifugal flow field fractionation system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111295578A (en) * 2017-08-15 2020-06-16 华盛顿大学 Particle separation system and method
JP2020531863A (en) * 2017-08-15 2020-11-05 ユニバーシティ オブ ワシントンUniversity of Washington Particle separation system and method
JP2023025234A (en) * 2017-08-15 2023-02-21 ユニバーシティ オブ ワシントン Particle separation systems and methods
JP2023025233A (en) * 2017-08-15 2023-02-21 ユニバーシティ オブ ワシントン Particle separation systems and methods
US11648560B2 (en) 2017-08-15 2023-05-16 University of Washnington Particle separation systems and methods
CN111295578B (en) * 2017-08-15 2023-12-22 华盛顿大学 Particle separation system and method
JPWO2021140935A1 (en) * 2020-01-09 2021-07-15
WO2021140935A1 (en) * 2020-01-09 2021-07-15 株式会社島津製作所 Centrifugal field-flow fractionation device
JP2021169055A (en) * 2020-04-14 2021-10-28 株式会社島津製作所 Centrifugal flow field fractionation system

Similar Documents

Publication Publication Date Title
Osoba et al. Laboratory measurements of relative permeability
Secuianu et al. Phase behavior for carbon dioxide+ ethanol system: Experimental measurements and modeling with a cubic equation of state
Litzen et al. Separation and quantitation of monoclonal antibody aggregates by asymmetrical flow field-flow fractionation and comparison to gel permeation chromatography
Giddings et al. Particle size distribution by sedimentation/steric field-flow fractionation: development of a calibration procedure based on density compensation
Mudalige et al. Capillary electrophoresis and asymmetric flow field-flow fractionation for size-based separation of engineered metallic nanoparticles: A critical comparative review
Aureli et al. Quantitative characterization of silica nanoparticles by asymmetric flow field flow fractionation coupled with online multiangle light scattering and ICP-MS/MS detection
Deml et al. Electric sample splitter for capillary zone electrophoresis
JP6367172B2 (en) Packing in a chromatographic column
De Malsche et al. Integration of porous layers in ordered pillar arrays for liquid chromatography
Fuh Peer Reviewed: Split-Flow Thin Fractionation.
Rácz et al. Establishing column batch repeatability according to Quality by Design (QbD) principles using modeling software
Dana et al. Experimental study of two-phase flow in three sandstones. I. Measuring relative permeabilities during two-phase steady-state experiments
Kipping et al. Application of a Wire‐Mesh Sensor for the Study of Chemical Species Conversion in a Bubble Column
JPH01182736A (en) Method of analyzing flow fractionation in sedimentation field
CA1047111A (en) Apparatus and method for measurement of total volume of particles in a liquid sample
Yau Steric exclusion and lateral diffusion in gel‐permeation chromatography
JP6243287B2 (en) Diffusion coefficient measuring method and diffusion coefficient measuring apparatus
MacInnes et al. Hydrodynamic characteristics of a rotating spiral fluid-phase contactor
Antonietti et al. Chromatographic characterization of complex polymer systems with thermal field‐flow fractionation
Wilding et al. Finite-size scaling and particle-size cutoff effects in phase-separating polydisperse fluids
Deelder et al. A potentiometric membrane cell as a detector in liquid chromatography
Wichterle et al. Semimicromethod for determination of partial pressures of solutions
Hannon et al. Influence of supersaturation on surface structure
Jones et al. Colloid characterization by sedimentation field-flow fractionation: V. Split outlet system for complex colloids of mixed density
Liu et al. Assessing and improving asymmetric flow field-flow fractionation of therapeutic proteins