JPH0118269B2 - - Google Patents

Info

Publication number
JPH0118269B2
JPH0118269B2 JP57082384A JP8238482A JPH0118269B2 JP H0118269 B2 JPH0118269 B2 JP H0118269B2 JP 57082384 A JP57082384 A JP 57082384A JP 8238482 A JP8238482 A JP 8238482A JP H0118269 B2 JPH0118269 B2 JP H0118269B2
Authority
JP
Japan
Prior art keywords
blade
wind
angle
attack
direction plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57082384A
Other languages
Japanese (ja)
Other versions
JPS58200083A (en
Inventor
Atsushi Ozaki
Takeshi Sakohata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP57082384A priority Critical patent/JPS58200083A/en
Publication of JPS58200083A publication Critical patent/JPS58200083A/en
Publication of JPH0118269B2 publication Critical patent/JPH0118269B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/74Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Description

【発明の詳細な説明】 この発明は風速変動によりプロペラピツチを自
動的に変える風向板付きプロペラ型風車に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a propeller-type wind turbine with a wind direction plate that automatically changes propeller pitch according to wind speed fluctuations.

近年省エネルギの見地から風車が見直されて各
種風車が建造されつつあるが、構造の簡易さ、効
率の良さ等からプロペラ型風車がその主流を占め
ている。
In recent years, wind turbines have been reconsidered from the standpoint of energy conservation, and various types of wind turbines are being built, but propeller-type wind turbines are the mainstream because of their simple structure and high efficiency.

このプロペラ型風車には周速比によつて効率が
最良となるピツチ角があり、この最良ピツチ角は
周速比によつて変化する。したがつて、プロペラ
型風車では周速比によつてブレードのピツチ角を
制御するピツチ可変型が好ましいが、小形風車で
は、一般に複雑なピツチ制御機構をさけてピツチ
固定型のものを使用するのが普通であり、その場
合、設計標準風速以外の風速のときは低効率状態
で使用されているのが実情である。一方大形風車
はその使用効果からピツチ制御機構を設けるのが
普通であり、ピツチ制御機構としては、大別して
遠心力等を利用した機械的調速機構を用いたもの
と、風速及び風車回転数を検知してサーボ機構に
よりピツチ角を変える電子的制御方式のものとが
ある。しかしながら、前者は構造が複雑で、風車
全体の慣性能率が大きいために調速機構と風車の
回転数との適合が難しく、そのため回転むらを生
じたり、甚しくは過回転をして事故を起す例も少
くないという欠点がある。また後者は種々の受感
素子や計算機等を必要とするため高価となる欠点
がある。
This propeller-type wind turbine has a pitch angle at which efficiency is best depending on the circumferential speed ratio, and this best pitch angle changes depending on the circumferential speed ratio. Therefore, for propeller-type wind turbines, a variable pitch type that controls the pitch angle of the blades by the circumferential speed ratio is preferable, but for small wind turbines, it is generally preferable to use a fixed pitch type to avoid a complicated pitch control mechanism. is common, and in that case, the actual situation is that it is used in a low efficiency state when the wind speed is other than the design standard wind speed. On the other hand, large wind turbines are usually equipped with a pitch control mechanism due to the effectiveness of their use.Pitch control mechanisms can be roughly divided into those that use a mechanical speed control mechanism that uses centrifugal force, etc., and those that use a mechanical speed control mechanism that uses centrifugal force etc. There is an electronically controlled type that detects the pitch angle and changes the pitch angle using a servo mechanism. However, the former has a complex structure and the inertia of the entire wind turbine is high, making it difficult to match the speed governing mechanism with the wind turbine's rotation speed, which can lead to uneven rotation or even excessive rotation, leading to accidents. The drawback is that there are not many examples. Furthermore, the latter method requires various sensing elements, computers, etc., and therefore has the drawback of being expensive.

本発明は上記現状を改善するためになされたも
ので、空力的原理によりピツチ角を制御し、或は
自動的に最良のピツチ角を与えうる風向板付きプ
ロペラ型風車を提供することを目的とする。
The present invention was made in order to improve the above-mentioned current situation, and an object of the present invention is to provide a propeller-type wind turbine with a wind direction plate that can control the pitch angle based on aerodynamic principles or automatically provide the best pitch angle. do.

本発明によれば、上記目的は、風車のブレード
の後方に飛行機の尾翼に相当する風向板を装着
し、風向板の空力により風と風車回転流との合成
速度に対するブレードの迎え角を制御し、或は風
向板のブレードに対する相対角度を風速もしくは
風車回転数に従い変化させて二次的にブレードの
迎え角を制御することにより達せられる。
According to the present invention, the above object is to install a wind direction plate, which corresponds to the tail of an airplane, behind the blades of a wind turbine, and to use the aerodynamic force of the wind direction plate to control the angle of attack of the blades with respect to the combined speed of the wind and the wind turbine rotation flow. Alternatively, this can be achieved by secondarily controlling the angle of attack of the blades by changing the relative angle of the wind direction plate to the blades according to the wind speed or wind turbine rotation speed.

以下本発明の実施例を図面に従つて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図において、風車回転軸1に結合するボス
部2に放射方向の軸受部3を設け、軸受部3に回
動自由に支持した軸4にブレード5を固定する。
これと反対に、軸4をボス部2に固定し、ブレー
ド5を軸4に対して回動自由に支持してもよい。
In FIG. 1, a radial bearing part 3 is provided on a boss part 2 coupled to a wind turbine rotating shaft 1, and a blade 5 is fixed to a shaft 4 rotatably supported by the bearing part 3.
On the other hand, the shaft 4 may be fixed to the boss portion 2 and the blade 5 may be freely rotatably supported with respect to the shaft 4.

ブレード5が矢印ωの方向に回転する場合、本
発明においては、各ブレード5に回転方向後方
で、且つ風下側へ支柱6を突設し、その先端に風
向板7を固定する。
When the blades 5 rotate in the direction of the arrow ω, in the present invention, a support 6 is provided on each blade 5 to protrude rearward in the direction of rotation and toward the leeward side, and a wind direction plate 7 is fixed to the tip of the support support 6.

風向板7の作用を第2図について説明する。ブ
レード5の回動軸心0はブレード5の翼型の空力
中心(通常の翼型では翼前縁より翼弦長の約25%
の位置)と、選定された迎え角αにおける風圧中
心との間に選定するのがよく、風向板7は回動軸
心0と平行する方向にある。
The action of the wind direction plate 7 will be explained with reference to FIG. The rotation axis 0 of the blade 5 is the aerodynamic center of the airfoil of the blade 5 (in a normal airfoil, it is approximately 25% of the chord length from the leading edge of the blade).
) and the center of wind pressure at the selected angle of attack α, and the wind direction plate 7 is located in a direction parallel to the rotation axis 0.

第2図において、ブレード5が左方から風速
Vwの風を受けて上方へ速度Uで動いているとす
ると、ブレード5は風速Uの風を上方からも受け
ていることになるから、結局ブレード5はVw
(1−a)とU(1+b)の合成速度Wの風を受け
ていることになる。ここにa、bはそれぞれ軸流
干渉係数、回転流干渉係数といわれるもので、プ
ロペラ理論より計算しうるものである。風向板7
はWの空気流の方向に対してあたかも飛行機の尾
翼と同様の作用をしてブレード5と風向板7との
組立体を一定姿勢に保つ作用をする。このときの
ブレード5の翼弦線とWとのなす角、即ち迎え角
αが翼型の揚抗比最大となる角αmになれば、風
車効率が最良になることが風車理論により知られ
ているので、迎え角αmとなるように風向板7の
形状、姿勢等を定めれば、風車がいかなる方向の
合速度Wを受けても、ブレード5は軸心0に対し
て常に最良効率となる回動位置に追従回動する。
すなわち、変化する風速に対し最良効率となるよ
うブレードピツチを自動的に変えることができ
る。
In Figure 2, blade 5 is moving from the left to
Assuming that the blade 5 is moving upward at a speed U while receiving the wind of Vw, the blade 5 is also receiving the wind of the wind speed U from above, so in the end, the blade 5 is moving upward at a speed of Vw.
This means that the wind has a combined velocity W of (1-a) and U(1+b). Here, a and b are called an axial flow interference coefficient and a rotational flow interference coefficient, respectively, and can be calculated from propeller theory. Wind direction board 7
acts in the direction of the airflow W in the same way as the tail of an airplane and maintains the assembly of the blade 5 and the wind direction plate 7 in a constant posture. It is known from wind turbine theory that if the angle between the chord line of the blade 5 and W at this time, that is, the angle of attack α, becomes the angle αm that maximizes the lift-drag ratio of the airfoil, the efficiency of the wind turbine will be the best. Therefore, if the shape, posture, etc. of the wind direction plate 7 are determined so that the angle of attack is αm, the blades 5 will always have the best efficiency with respect to the axis 0, no matter what direction the wind turbine receives the combined speed W. Rotates to follow the rotation position.
That is, the blade pitch can be automatically changed to provide the best efficiency for changing wind speeds.

なお、風向板7の横断面の形状は、風向板7に
よる回転抵抗の増加を少なくするために翼型とす
るのがよい。
Note that the shape of the cross section of the wind direction plate 7 is preferably an airfoil shape in order to reduce the increase in rotational resistance due to the wind direction plate 7.

上記説明から明らかなように、ブレード5に対
する風向板7の相対角度βはブレード5の迎え角
αを左右するから、相対角度βを可変ならしめれ
ば迎え角αを制御することが可能である。
As is clear from the above explanation, the relative angle β of the wind direction plate 7 with respect to the blade 5 influences the angle of attack α of the blade 5, so it is possible to control the angle of attack α by making the relative angle β variable. .

一般に、風力エネルギ変換装置である発電機や
熱発生機等はその能力に限界がある上に、構造、
強度上からも最高制限回転数を定めておくのが普
通である。第3図、第4図に示す実施例は風車が
かかる最高制限回転数を超えないように風向板7
の回動位置を遠心力によつて制御する過回転防止
装置を示す。第3図は第2図と同様の、ブレード
5及び風向板7の組立体の断面形状を示し、風向
板7をブレード5に固定した支柱6の先端にP点
において傾動自由に枢支すると共に、風向板7に
突設したアーム8とブレード5から突出するロツ
ド9とをQ点にて連結する。
In general, wind energy conversion devices such as generators and heat generators have limited capacity, and their structure and
From the viewpoint of strength, it is common to set a maximum rotation speed limit. In the embodiment shown in FIGS. 3 and 4, the wind direction plate 7 is
This figure shows an over-rotation prevention device that controls the rotational position of the motor using centrifugal force. FIG. 3 shows the cross-sectional shape of an assembly of the blade 5 and the wind deflector 7, which is similar to FIG. , an arm 8 protruding from the wind direction plate 7 and a rod 9 protruding from the blade 5 are connected at point Q.

各ブレード5内にはロツド9を進退させて風向
板7をブレード5に対して回動させる風向板回動
制御装置として遠心力式過回転防止装置10を設
ける。即ち、ブレード5に固定したブラケツト1
1a,11bにロツド12を軸方向に摺動可能に
案内支持し、ロツド12の外端に重錘13を取付
け、ロツド12の内端をベルクランク14を介し
てロツド9に連結し、ロツド12に固定したスト
ツパ15aとブラケツト11aとの間に圧縮ばね
16を介装して、常時はストツパ15aをブラケ
ツト11bの上面に当接せしめておく。しかると
き、風車回転数が上昇し、重錘13の生ずる遠心
力がばね16の初期圧縮力Fに達するまではロツ
ド12は不動であるから、ロツド9、したがつて
風向板7の回動位置は不変であり、このときのブ
レード5の迎え角を例えばαmに定めておく。重
錘13の遠心力が前記初期圧縮力Fに等しくなる
風車回転数を制限開始回転数とすれば、該回転数
を超えたときロツド12はストツパ15aがばね
16を圧縮しつつ上動し、ロツド9を左方に移動
させる。これにより風向板7はブレード5の迎え
角αが小となる方向に回動する。
A centrifugal force type over-rotation prevention device 10 is provided in each blade 5 as a wind direction plate rotation control device for moving the rod 9 forward and backward to rotate the wind direction plate 7 with respect to the blade 5. That is, the bracket 1 fixed to the blade 5
A rod 12 is slidably guided and supported in the axial direction by 1a and 11b, a weight 13 is attached to the outer end of the rod 12, and an inner end of the rod 12 is connected to the rod 9 via a bell crank 14. A compression spring 16 is interposed between the stopper 15a fixed to the bracket 11a and the stopper 15a, so that the stopper 15a is normally brought into contact with the upper surface of the bracket 11b. At this time, the rotational speed of the wind turbine increases and the rod 12 remains stationary until the centrifugal force generated by the weight 13 reaches the initial compressive force F of the spring 16. is unchanged, and the angle of attack of the blade 5 at this time is set to αm, for example. If the windmill rotation speed at which the centrifugal force of the weight 13 is equal to the initial compression force F is defined as the limit start rotation speed, when the rotation speed is exceeded, the rod 12 moves upward while the stopper 15a compresses the spring 16. Move Rod 9 to the left. As a result, the wind direction plate 7 rotates in the direction in which the angle of attack α of the blade 5 becomes smaller.

更に回転数が上昇し、ストツパ15bがブラケ
ツト11bの下面に当接するとロツド12の上動
は止み、迎え角は最小となる。この最小迎え角を
ブレードの揚力が零となる値αoに設定すれば、
風車はこれ以上増速することはなく、この回転数
が最高制限回転数となる。
When the rotational speed further increases and the stopper 15b comes into contact with the lower surface of the bracket 11b, the upward movement of the rod 12 stops and the angle of attack becomes minimum. If this minimum angle of attack is set to the value αo at which the lift force of the blade becomes zero, then
The wind turbine will not speed up any further, and this rotation speed will be the maximum rotation speed limit.

通常の翼型においては、揚力が零になる迎え角
αoと揚抗比最大の迎え角αmとの差は数度である
から、この間のロツド12の移動量は僅かであつ
て、制限開始回転数と最高制限回転数との差は比
較的小さく設定され得るのである。このことは風
車回転数の上限を実質的に一定ならしめるに好都
合である。
In a normal airfoil, the difference between the angle of attack αo at which the lift force is zero and the angle of attack αm at which the lift-drag ratio is maximum is several degrees, so the amount of movement of the rod 12 during this period is small, and the limit starting rotation is The difference between the number and the maximum rotational speed limit can be set relatively small. This is advantageous in keeping the upper limit of the wind turbine rotation speed substantially constant.

一般に、台風を含めて風速変動時の最大風速を
予知し得る場合には、該最大風速により増大する
風車回転数が風力エネルギ変換装置等から定まる
許容最高回転数以下となるように最小迎え角を選
定してもよく、この場合、ブレード5の揚力は一
般に零ではないが、最大風速の予知は困難な場合
が多いから、上記の如く揚力が零となる迎え角
αoに設定しておけば無難である。
In general, when the maximum wind speed during wind speed fluctuations, including typhoons, can be predicted, the minimum angle of attack is set so that the wind turbine rotation speed that increases due to the maximum wind speed is less than the maximum allowable rotation speed determined by the wind energy conversion device etc. In this case, the lift force of the blade 5 is generally not zero, but since it is often difficult to predict the maximum wind speed, it is safe to set the angle of attack αo at which the lift force is zero as described above. It is.

なお、応答を早くする意味で最小迎え角を揚力
が負となる値に設定することも可能であるが、そ
の場合はハンテイングを生じ易いので好ましくな
い。
Although it is possible to set the minimum angle of attack to a value at which the lift is negative in order to speed up the response, this is not preferable because hunting tends to occur.

第4図のように、過回転防止装置10を各ブレ
ード5に設けた場合は、重錘13の自重が遠心力
に重畳してブレードの上下位置により迎え角が変
動すること、ストツパ15a,15bの位置調
整、ばね16の特性のばらつき等から、各ブレー
ド5の迎え角αが不揃いになつて、有害な振動を
発生するおそれがある。このような事態を防止す
るためには、各ブレード5に対し迎え角連動機構
を設けるのがよい。
As shown in FIG. 4, when the over-rotation prevention device 10 is provided on each blade 5, the dead weight of the weight 13 is superimposed on the centrifugal force, and the angle of attack changes depending on the vertical position of the blade. Due to positional adjustment, variations in the characteristics of the springs 16, etc., the attack angles α of the blades 5 may become uneven, which may cause harmful vibrations. In order to prevent such a situation, it is preferable to provide each blade 5 with an attack angle interlocking mechanism.

第5図は迎え角連動機構の一例を示す。ブレー
ド5はボス部2に固着した管軸4に軸受17によ
つて回動自在に支持され、ブレード5内には第4
図におけると同様にブラケツト11a,11b、
ストツパ15a,15b及びばね16が設けられ
る。ロツド12Aは外端がブラケツト11a又は
11bに軸方向摺動可能に案内支持され、内端は
ボス部2内に設けたリンク18に連結される。
FIG. 5 shows an example of an angle of attack interlocking mechanism. The blade 5 is rotatably supported by a bearing 17 on a tube shaft 4 fixed to the boss portion 2.
As in the figure, brackets 11a, 11b,
Stoppers 15a, 15b and a spring 16 are provided. The outer end of the rod 12A is guided and supported by the bracket 11a or 11b so as to be able to slide in the axial direction, and the inner end is connected to a link 18 provided within the boss portion 2.

ボス部2内には、ボス部基板19に回転軸1と
同心に固定した円筒20に短軸21が滑動自由に
嵌入し、短軸21の先端部とボス部2内の先端に
設けた円形連結座22との間に、各ブレードごと
にリンク機構23が設けられており、また各ブレ
ードごとに先端がボス部2の外面に連結し、後端
に重錘24を取付けたレバー25が設けられる。
リンク機構23とレバー25とはロツド12Aと
同一面内に設けられる。リンク機構23は、先端
が円形連結座22に連結し中間部がロツド12A
の内端と連結するリンク18と、ボス部2を貫通
し外縁がレバー25に、また中間部がリンク18
の後端と連結するリンク26と、リンク26の内
端を短軸21の先端外周部に連結するリンク27
とからなる。リンク26は回転軸1とほぼ直交す
る方向にあり、リンク27は回転軸1とほぼ平行
する方向にある。
Inside the boss part 2, a short shaft 21 is slidably fitted into a cylinder 20 fixed to a boss part base plate 19 concentrically with the rotating shaft 1, and a circular shape is provided at the tip of the short shaft 21 and the tip inside the boss part 2. A link mechanism 23 is provided for each blade between the connecting seat 22, and a lever 25 is provided for each blade, the tip of which is connected to the outer surface of the boss portion 2, and a weight 24 attached to the rear end. It will be done.
The link mechanism 23 and lever 25 are provided in the same plane as the rod 12A. The link mechanism 23 has a tip connected to the circular connecting seat 22 and a middle portion connected to the rod 12A.
A link 18 that passes through the boss portion 2 and connects to the inner end of the
A link 26 that connects to the rear end, and a link 27 that connects the inner end of the link 26 to the outer circumference of the tip of the short shaft 21.
It consists of. The link 26 is in a direction substantially perpendicular to the rotation axis 1, and the link 27 is in a direction substantially parallel to the rotation axis 1.

重錘24が遠心力により矢印方向に移動する
と、リンク26,18を介してロツド12Aが上
動され、ロツド9を左方に引きつけ、ブレード5
の迎え角αを小ならしめるが、この場合、リンク
26の内端がリンク27を介して短軸21を矢印
方向に移動させる。短軸21は他のブレード5の
リンク機構23とも連結しているので、各ブレー
ド5は短軸21の前記移動の長さに相当する角度
だけ迎え角が一斉に変化し、迎え角の不揃いは起
らない。
When the weight 24 moves in the direction of the arrow due to centrifugal force, the rod 12A is moved upward via the links 26 and 18, pulling the rod 9 to the left and pulling the blade 5.
In this case, the inner end of the link 26 moves the short axis 21 in the direction of the arrow via the link 27. Since the short shaft 21 is also connected to the link mechanism 23 of the other blades 5, the angle of attack of each blade 5 changes simultaneously by an angle corresponding to the length of the movement of the short shaft 21, and the unevenness of the attack angles is eliminated. It doesn't happen.

第6図は風速を直接検知する迎え角連動式過回
転防止装置の他の実施例を示す。ブレード5は第
5図におけると同様に管軸4に回動自在に支持さ
れており、管軸4内を挿通するロツド12Bは、
外端がブレード5内のブラケツトに支持され、且
つベルクランク14を介してロツド9と連結す
る。ボス部2に支持された中心軸方向の摺動軸2
8の先端に抵抗円板29を固着し、摺動軸28と
ロツド12Bの内端とを軸28に対し斜め方向を
もつリンク30にて連結すると共に、ロツド12
Bの後面をローラ31にて案内支持する。摺動軸
28にはボス部2に固定した円筒32内のばね3
3に当接するストツパ34aと、ばね33に初期
圧縮力Fを与えるよう摺動軸28の前進位置を定
めるストツパ34bとを固着する。
FIG. 6 shows another embodiment of the angle-of-attack-linked over-rotation prevention device that directly detects wind speed. The blade 5 is rotatably supported on the tube shaft 4 as in FIG. 5, and the rod 12B inserted through the tube shaft 4 is
The outer end is supported by a bracket within the blade 5 and is connected to the rod 9 via a bell crank 14. A sliding shaft 2 in the central axis direction supported by the boss part 2
A resistance disk 29 is fixed to the tip of the rod 12B, and the sliding shaft 28 and the inner end of the rod 12B are connected by a link 30 that is diagonal to the shaft 28.
The rear surface of B is guided and supported by rollers 31. A spring 3 in a cylinder 32 fixed to the boss portion 2 is attached to the sliding shaft 28.
3, and a stopper 34b that determines the forward position of the sliding shaft 28 so as to apply an initial compressive force F to the spring 33 are fixed.

抵抗円板29に作用する風圧が前記初期圧縮力
Fに達するまでは摺動軸28は不動であり、この
ときのブレード迎え角をαmに定めておく。風速
が増大して抵抗円板29の風圧が初期圧縮力Fを
超えると摺動軸28は後退し、リンク30を介し
てロツド12Bを上動させ、迎え角を小ならしめ
る。更に風速が増大し、ストツパ34aが円筒3
2に当接したとき、ブレード5は揚力零の迎え角
αo又はこれに近い設定迎え角となり、風車回転
数を設定上限値に制限する。
The sliding shaft 28 remains stationary until the wind pressure acting on the resistance disk 29 reaches the initial compressive force F, and the blade angle of attack at this time is set to αm. When the wind speed increases and the wind pressure on the resistance disk 29 exceeds the initial compressive force F, the sliding shaft 28 retreats and moves the rod 12B upward via the link 30, thereby reducing the angle of attack. The wind speed further increases and the stopper 34a closes to the cylinder 3.
2, the blade 5 becomes the angle of attack αo with zero lift or a set angle of attack close to this, and limits the wind turbine rotation speed to the set upper limit value.

なお各ブレードの迎え角連動機構としては、上
記実施例のほか、摺動軸28の移動をカムにより
親歯車の回転に変え、各ロツド12A,12B等
に取付けた子歯車を親歯車に噛合させて、全ブレ
ードの迎え角を一括制御することもできる(特願
昭55−158185)。
In addition to the above-mentioned embodiment, the angle of attack interlocking mechanism for each blade may include a mechanism in which the movement of the sliding shaft 28 is changed to the rotation of the main gear by a cam, and the child gears attached to each rod 12A, 12B, etc. are meshed with the main gear. It is also possible to collectively control the angle of attack of all blades (Japanese Patent Application No. 55-158185).

本発明は上記のように、プロペラ型風車のボス
部にブレードを回動可能に支持し、各ブレードの
後方に取付けた風向板の空力によりブレードピツ
チ角を変えて風車の効率的運転を可能にしたの
で、風車のピツチ角制御に複雑高価な機械的調速
機構やサーボ機構を有する電子的制御装置が不要
で、安価にピツチ角を制御することができ、しか
も変化する風速に対して風車を最良の効率をもつ
て運転することができるので、風車を経済的に利
用し得る効果がある。また風向板を回動して風車
回転数を制御する場合でも、風向板の回動を風速
もしくは風車回転数に応動する風向板回動制御装
置により行うことができるから、制御装置を構造
簡易且つ安価に構成しうる効果がある。風向板回
動にサーボ機構を用いてもよいが、その場合もブ
レードピツチ角は風向板の空力が行うから、サー
ボ機構は風向板を回動させるだけの小容量で足
り、ブレードピツチ角を直接サーボ機構にて制御
する場合に比すればサーボ機構の容量は著るしく
小となる。したがつて本発明によれば小形風車を
広範囲の用途に経済的且つ簡易に適合させる上に
甚だ有益である。
As described above, the present invention rotatably supports the blades on the boss part of a propeller-type wind turbine, and changes the blade pitch angle using the aerodynamic force of the wind direction plate attached to the rear of each blade, thereby enabling efficient operation of the wind turbine. As a result, pitch angle control of wind turbines does not require complicated and expensive mechanical governor mechanisms or electronic control devices with servo mechanisms, making it possible to control pitch angles at low cost. Since wind turbines can be operated with maximum efficiency, wind turbines can be used economically. Furthermore, even when the wind turbine rotation speed is controlled by rotating the wind direction plate, the rotation of the wind direction plate can be performed by a wind direction plate rotation control device that responds to the wind speed or the wind turbine rotation speed. It has the effect of being able to be constructed at low cost. A servo mechanism may be used to rotate the wind direction plate, but in that case, the blade pitch angle is determined by the aerodynamic force of the wind direction plate, so the servo mechanism only needs to have a small capacity to rotate the wind direction plate, and the blade pitch angle cannot be directly adjusted. Compared to the case where control is performed using a servo mechanism, the capacity of the servo mechanism is significantly smaller. Therefore, the present invention is of great benefit in adapting small wind turbines to a wide range of applications economically and easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の立面図、第2図は
第1図のA−A線断面図、第3図は風向板の回動
機構の概略を示す側面図、第4図はブレードに設
けた遠心力式過回転防止装置の立面図、第5図は
迎え角連動機構の一実施例の縦断面図、第6図は
迎え角連動機構の他の実施例の部分縦断面図であ
る。 1……風車回転軸、2……ボス部、4……放射
方向軸、5……ブレード、7……風向板、10…
…風向板回動制御装置。
Fig. 1 is an elevational view of an embodiment of the present invention, Fig. 2 is a sectional view taken along line A-A in Fig. 1, Fig. 3 is a side view schematically showing the rotating mechanism of the wind direction plate, and Fig. 4. is an elevational view of a centrifugal over-rotation prevention device provided on the blade, FIG. 5 is a longitudinal sectional view of one embodiment of the angle-of-attack interlocking mechanism, and FIG. 6 is a partial longitudinal sectional view of another embodiment of the angle-of-attack interlocking mechanism. It is a front view. DESCRIPTION OF SYMBOLS 1... Wind turbine rotating shaft, 2... Boss part, 4... Radial axis, 5... Blade, 7... Wind direction plate, 10...
...Wind direction plate rotation control device.

Claims (1)

【特許請求の範囲】 1 風車回転軸に固着したボス部にブレードを放
射方向軸のまわりに回動自在に支持したプロペラ
型風車において、各ブレードにその回転方向後方
に位置する風向板を前記放射方向軸と平行する軸
のまわりに回動可能に設けるとともに、ブレード
もしくは風車回転ボス部に、風圧もしくは重錘の
遠心力により夫々のブレード内を放射方向に摺動
するロツドを介して風向板を回動させる風向板回
動制御装置を設け、風向板は前記回動に伴う空力
により風と回転流との合速度方向に対するブレー
ドの迎え角を制御するものであることを特徴とす
る風向板付きプロペラ型風車。 2 ブレードの迎え角がブレードの揚抗比最大と
なる迎え角である特許請求の範囲第1項記載の風
向板付きプロペラ型風車。 3 風向板回動制御装置が、ブレードの迎え角を
所定回数以下ではブレードの揚抗比最大となる値
に保持し、前記所定回転数を超えたときはブレー
ド揚力が減少するよう迎え角を制御する過回転防
止装置である特許請求の範囲第1項記載の風向板
付きプロペラ型風車。
[Scope of Claims] 1. In a propeller-type wind turbine in which the blades are rotatably supported around a radial direction axis on a boss portion fixed to the wind turbine rotating shaft, each blade is provided with a wind direction plate located at the rear in the rotational direction of the blade. In addition to being rotatable around an axis parallel to the direction axis, a wind direction plate is attached to the blade or wind turbine rotating boss via a rod that slides in the radial direction within each blade due to wind pressure or centrifugal force of a weight. A wind direction plate is provided with a rotation control device for rotating the wind direction plate, and the wind direction plate controls the angle of attack of the blade with respect to the direction of the combined velocity of the wind and the rotational flow by the aerodynamic force accompanying the rotation. Propeller type windmill. 2. The propeller-type wind turbine with a wind direction plate according to claim 1, wherein the angle of attack of the blade is an angle of attack at which the lift-drag ratio of the blade is maximized. 3. The wind direction plate rotation control device maintains the angle of attack of the blade at a value that maximizes the lift-drag ratio of the blade when the number of rotations is below a predetermined number, and controls the angle of attack so that the lift force of the blade decreases when the number of rotations exceeds the predetermined number of rotations. A propeller-type wind turbine with a wind direction plate according to claim 1, which is an over-rotation prevention device.
JP57082384A 1982-05-18 1982-05-18 Propeller type wind turbine with air stabilizing vane Granted JPS58200083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57082384A JPS58200083A (en) 1982-05-18 1982-05-18 Propeller type wind turbine with air stabilizing vane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57082384A JPS58200083A (en) 1982-05-18 1982-05-18 Propeller type wind turbine with air stabilizing vane

Publications (2)

Publication Number Publication Date
JPS58200083A JPS58200083A (en) 1983-11-21
JPH0118269B2 true JPH0118269B2 (en) 1989-04-05

Family

ID=13773082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57082384A Granted JPS58200083A (en) 1982-05-18 1982-05-18 Propeller type wind turbine with air stabilizing vane

Country Status (1)

Country Link
JP (1) JPS58200083A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004007487A1 (en) * 2004-02-13 2005-09-01 Aloys Wobben Rotor blade of a wind turbine
JP5248285B2 (en) * 2008-03-21 2013-07-31 国立大学法人室蘭工業大学 Propeller type turbine equipment for wind power generation
GB2459453B (en) * 2008-04-21 2011-06-08 Barry Robert Marshall Energy output limiter for wind turbine rotor(s)
KR101272165B1 (en) 2011-09-21 2013-06-07 오영록 Horizontal axis aerogenerator using same width and thickness airfoil blade and its pitch angle control method

Also Published As

Publication number Publication date
JPS58200083A (en) 1983-11-21

Similar Documents

Publication Publication Date Title
US4310284A (en) Automatically controlled wind propeller and tower shadow eliminator
US4710101A (en) Wind turbine
US4105363A (en) Overspeed control arrangement for vertical axis wind turbines
CA1201982A (en) Horizontal axis wind energy conversion system with aerodynamic blade pitch control
JP5043830B2 (en) Vertical axis wind turbine
US4299537A (en) Interlinked variable-pitch blades for windmills and turbines
US4430044A (en) Vertical axis wind turbine
JP4690776B2 (en) Horizontal axis windmill
EP0713008B1 (en) Ram air turbine with secondary governor
JP4982733B2 (en) Vertical-axis linear blade wind turbine with aerodynamic speed control mechanism
US4257736A (en) Governed propeller type wind motor arrangement
WO2005068833A2 (en) Wind turbine with variable pitch blades
US4474531A (en) Windmill with direction-controlled feathering
US4218184A (en) Windmill construction
US4652206A (en) Wind turbine
US4443154A (en) Windmill tower shadow eliminator
JP2006152922A (en) Windmill
JPH0380988B2 (en)
US4748339A (en) Wind turbine operated electrical generator system
JPH0118269B2 (en)
EP3649341A1 (en) Wind turbine
JP4690800B2 (en) Horizontal axis windmill
RU2589569C2 (en) Method for conversion of kinetic flow energy into rotation of wing and apparatus for realising said method
US3518022A (en) Propeller control mechanism
AU631500B2 (en) Improved variable pitch vertical axis wind turbine