JPH01181993A - Mixed type flux for submerged arc welding - Google Patents

Mixed type flux for submerged arc welding

Info

Publication number
JPH01181993A
JPH01181993A JP679688A JP679688A JPH01181993A JP H01181993 A JPH01181993 A JP H01181993A JP 679688 A JP679688 A JP 679688A JP 679688 A JP679688 A JP 679688A JP H01181993 A JPH01181993 A JP H01181993A
Authority
JP
Japan
Prior art keywords
flux
arc welding
particle size
submerged arc
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP679688A
Other languages
Japanese (ja)
Other versions
JPH059198B2 (en
Inventor
Toshihiro Miura
利宏 三浦
Masami Yamaguchi
山口 将美
Takashi Kato
隆司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP679688A priority Critical patent/JPH01181993A/en
Publication of JPH01181993A publication Critical patent/JPH01181993A/en
Publication of JPH059198B2 publication Critical patent/JPH059198B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To manufacture the mixed type flux for submerged arc welding obtaining an excellent bead shape and good pockmark resistance by specifying the grain size composition in case of manufacturing a flux by mechanically mixing a granular raw material. CONSTITUTION:In the flux manufacturing a granular raw material by mixing mechanically the grain size structure that those which are coarser than 850mu at its grain diameter are taken at <=30%, those which are smaller than 210mu at <=10% and those which are 500mu min. 800mu max. at <=30% is taken. The welding metal equipped with both an excellent bead shape and good pockmark resistance is obtd. by using the mixed flux for submerged arc welding thus prepd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は混合型フラックスの粒度構成を特定することに
より、鋼構造物の溶接において、優れたビード形状と共
に良好な耐ポツクマーク性の得られるサブマージアーク
溶接用フラックスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) By specifying the grain size composition of a mixed flux, the present invention provides a submerged flux that provides excellent bead shape and good potmark resistance in welding steel structures. This relates to flux for arc welding.

(従来の技術) サブマージアーク溶接に用いられるフラックスは製造方
法により、溶融型フラックス、焼成型フラックス(焼結
型フラックスも含む、以下同じ)および原料混合型フラ
ックスに大別される。溶融型フラックスは原料を電気炉
等の溶解炉で溶融し、冷却後適正粒度に粉砕し、フラッ
クスとしたものであり、焼成型フラックスは原料粉を水
ガラス等の固着剤で適正粒度に造粒した後、所定温度で
加熱脱水しフラックスとしたもの、原料混合型フラック
スは適正粒度の原料をそのまま機械的に混合して製造し
たものである。
(Prior Art) Fluxes used in submerged arc welding are broadly classified into molten fluxes, sintered fluxes (including sintered fluxes, the same applies hereinafter), and raw material mixed fluxes, depending on the manufacturing method. Melting type flux is made by melting the raw material in a melting furnace such as an electric furnace, cooling it and pulverizing it to the appropriate particle size, and baking type flux is made by granulating the raw material powder to the appropriate particle size with a fixing agent such as water glass. After that, the flux is heated and dehydrated at a predetermined temperature, and the raw material mixed type flux is manufactured by mechanically mixing the raw materials of appropriate particle size as they are.

以上のフラックスのうち、溶融型フラックスの粒度構成
については、例えば特公昭60−36875号公報に粗
粒物の間隙に微細物が充填されるような粒度構成にする
ことにより高品質の溶接金属が得られることが開示され
ているが、混合型フラックスの場合は、溶融型や焼成型
の場合とは異なり粒子形状や比重の異なった原料をその
まま機械混合することにより製造されるため、溶融池に
フラックスの均一な供給がおこなわれるように粒度を調
整しなければならない。
Among the above-mentioned fluxes, the particle size structure of the molten type flux is described in Japanese Patent Publication No. 60-36875, for example, by creating a particle size structure in which the gaps between coarse particles are filled with fine particles, high quality weld metal can be obtained. However, in the case of a mixed type flux, unlike in the case of a molten type or a sintered type, it is manufactured by mechanically mixing raw materials with different particle shapes and specific gravities as they are, so there is no problem in the molten pool. Particle size must be adjusted to ensure uniform flux distribution.

しかしながら、混合型フラックスについて、その粒度構
成が溶接品質に及ぼす影響について検討した例は見当た
らず、たとえば特願昭62−33197号のようにフラ
ックスの化学成分の影響についてのみ検討されている。
However, with respect to mixed fluxes, there has been no study on the influence of the grain size composition on welding quality, and only the influence of the chemical composition of the flux has been studied, for example, as in Japanese Patent Application No. 62-33197.

(発明が解決しようとする課題) 本発明は、混合型フラックスの粒度構成が溶接品質に及
ぼす影響を調査検討した結果得られた知見に基づきその
粒度構成を特定することにより溶接品質、特にピット、
ポックマーク等の溶接欠陥の無いサブマージアーク溶接
用混合型フラックスを提供することを目的としたもので
ある。
(Problems to be Solved by the Invention) The present invention aims to improve welding quality, especially pits, by specifying the particle size structure based on the findings obtained as a result of investigating the influence of the particle size structure of mixed flux on welding quality.
The object of the present invention is to provide a mixed flux for submerged arc welding that is free from welding defects such as pockmarks.

(課題を解決するための手段) 本発明の要旨とするところは、粉粒状の原料を機械混合
して製造するフラックスであって、その粒子径が850
μmより粗いものが30%以下、210μmより細かい
ものが10%以下、500μm超800μm以下のもの
が30%以上の粒度構成を有することを特徴とするサブ
マージアーク溶接用混合型フラックスにある。
(Means for Solving the Problems) The gist of the present invention is to provide a flux manufactured by mechanically mixing powdery raw materials, the particle size of which is 850.
A mixed type flux for submerged arc welding characterized by having a particle size composition of 30% or less of particles coarser than μm, 10% or less of particles finer than 210 μm, and 30% or more of particles of more than 500 μm and 800 μm or less.

以下本発明フラックスの構成並びに作用について説明す
る。
The structure and function of the flux of the present invention will be explained below.

(作 用) まず、本発明フラックスの形態は原料を機械的に混合し
て製造されたものである事が必要である。
(Function) First, the flux of the present invention must be manufactured by mechanically mixing raw materials.

これは混合型フラックスの場合、原料を溶融して製造す
る場合のように通常の製造設備で溶解可能な組成の原料
を選択する必要が無く、比較的自由なフラックス設計が
でき、また、水ガラス等の固着剤により造粒されている
焼成型フラックスのように、吸湿や溶接による粉化の問
題が無いことによる。
This is because, in the case of mixed flux, there is no need to select raw materials with a composition that can be melted in normal manufacturing equipment, unlike when manufacturing raw materials by melting, and it is possible to design the flux relatively freely. This is because there is no problem of moisture absorption or powdering due to welding, unlike sintered fluxes that are granulated with a fixing agent such as.

さらに、原料の粒度管理さえ良(出来ていれば製造は混
合工程のみで済み安価に製造することができるのも大き
な特徴である。
Another major feature is that if the particle size of the raw materials is well controlled, the manufacturing process only requires a mixing process and can be manufactured at low cost.

ここで、混合型フラックスの原料の一部分として、処理
し易い原料のみを溶融・粉砕し、溶融型フラックスとし
た後混合するのも勿論本発明の範囲である。
Here, it is of course within the scope of the present invention to melt and crush only easily processed raw materials as part of the raw materials for the mixed type flux to form a molten type flux and then mix it.

次に本発明フラックスの粒度構成の限定理由であるが、
粒子径850μm超の粗粒分が30%を越える場合、溶
融池に加わるガス圧が不安定となり、ビード波目が荒れ
良好なと一ド形状が得られ無いと言う不都合を生ずる。
Next, the reason for limiting the particle size structure of the flux of the present invention is as follows.
If the proportion of coarse particles with a particle diameter of more than 850 μm exceeds 30%, the gas pressure applied to the molten pool becomes unstable, resulting in the inconvenience that a single bead shape cannot be obtained if the bead undulations are rough.

一方粒子径210μm以下の細粒分が10%を越える場
合、溶融池上方のスラグ層が過大となることによって溶
融池からのガス抜けが不良となり、ポックマークの発生
、アーク不安定およびビード形状不良の原因、となる。
On the other hand, if the content of fine particles with a particle size of 210 μm or less exceeds 10%, the slag layer above the molten pool becomes too large, resulting in poor gas release from the molten pool, causing pock marks, arc instability, and poor bead shape. The cause of

又フラックス比表面積の増加によりフラックスの付着水
分が増え、ピット、ポックマーク等のガス欠陥も生ずる
Furthermore, as the specific surface area of the flux increases, the amount of moisture attached to the flux increases, causing gas defects such as pits and pockmarks.

さらに上記粗粒分、細粒分以外の粒度構成としては良好
なフラックスの流動性とガス抜は性が得られるためには
、500μm超850μm以下の粒子径を有するものが
上記粒度構成との兼ね合いから30%以上が必要である
。ここで500μm〜850μmの粒子径が100%で
あるようなフラックスであっても勿論良く、粒子径が揃
っていることにより良好な溶接作業性が得られる。
Furthermore, in order to obtain good flux fluidity and degassing properties other than the above-mentioned coarse particles and fine particles, it is necessary to have a particle size of more than 500 μm and 850 μm or less. 30% or more is required. Of course, a flux having 100% particle diameters of 500 μm to 850 μm may also be used, and good welding workability can be obtained by having uniform particle diameters.

尚、本発明に用いられる原料であるが、適正な粒度を有
する原料であれば何れでもよ(、例えばCab、 Mg
o、  A R2031MnO,TlO2等の金属酸化
物、CaCO5+ Mgco3. NazCCIsのよ
うな金属炭酸塩、CaFz+Na5A 1. Fbのよ
うな金属弗化物等の無機物を単独に又は複合的に含有す
る鉱物、合成物あるいは鉱滓類、Ca、 Mg、  A
1. St、 Mnのような脱酸剤およびそれらの合金
、Ni、 Cr、 Moのような合金剤等およびそれら
の合金を混合する事が可能である。
The raw materials used in the present invention may be any raw materials as long as they have an appropriate particle size (e.g., Cab, Mg, etc.).
o, A R2031 Metal oxides such as MnO and TlO2, CaCO5+ Mgco3. Metal carbonates such as NazCCIs, CaFz+Na5A 1. Minerals, composites, or slags containing inorganic substances such as metal fluorides such as Fb, singly or in combination, Ca, Mg, A
1. It is possible to mix deoxidizing agents such as St and Mn and alloys thereof, alloying agents such as Ni, Cr, Mo, and alloys thereof.

(実施例) 種々の粒度を有する原料を単純機械混合することにより
、第1表に示すようなFlからFlまでの7種類のフラ
ックスを試作した。FlからF4は本発明のフラックス
で、第2表の記号AからDで示されるような粒度構成に
調整したものである。
(Example) Seven types of fluxes from Fl to Fl as shown in Table 1 were experimentally produced by simply mechanically mixing raw materials having various particle sizes. Fl to F4 are fluxes of the present invention, which have been adjusted to have particle size configurations as shown by symbols A to D in Table 2.

また第1表のF5からFlは本発明の効果を明確にする
ための比較例であり、それぞれ第2表の記号EからGで
示されるような粒度構成に調整したものである。
Further, F5 to Fl in Table 1 are comparative examples for clarifying the effects of the present invention, and the particle size structure was adjusted to be as shown by symbols E to G in Table 2, respectively.

ここで用いた原料のうち、ニッケルスラグとはフェロニ
ッケル製錬により発生したスラグのことである。
Among the raw materials used here, nickel slag is slag generated by ferronickel smelting.

次に本フラックスを用いて下向きV溝溶接および水平す
み自溶接を実施し、溶接作業性を調査した結果を第3表
に示す。この溶接に使用した供試ワイヤの化学成分を第
4表に、供試鋼板の化学成分を第5表に、又溶接条件を
第6表に示す。尚第1図は第6表のWl及びW2の開先
形状を示す図である。
Next, downward V-groove welding and horizontal corner welding were performed using this flux, and the welding workability was investigated. The results are shown in Table 3. The chemical composition of the test wire used in this welding is shown in Table 4, the chemical composition of the test steel plate is shown in Table 5, and the welding conditions are shown in Table 6. Incidentally, FIG. 1 is a diagram showing the groove shapes of Wl and W2 in Table 6.

本発明例である第3表阻1からN[15のフラックスに
ついてはアーク安定性、ビート外観および耐ポツクマー
ク性のいずれについても良好な結果が得られたが、粗粒
分の多い隘6についてはアークが不安定となりビード形
状も粗いものとなった。
Good results were obtained in terms of arc stability, beat appearance, and anti-pockmark properties for the fluxes No. 1 to No. 15 in Table 3, which are examples of the present invention. The arc became unstable and the bead shape became rough.

又、粗粒分の多いN17と粒子径500μm〜850μ
mの範囲の粒が少ない隘8については、ポックマークが
多く発生し良好な溶接結果が得られなかった。
In addition, N17 with a large coarse particle content and particle size of 500 μm to 850 μm
Regarding No. 8, in which there were few grains in the m range, many pockmarks occurred and good welding results could not be obtained.

(発明の効果) 以上本発明のフラックスにおいては、混合型フラックス
の粒度構成を特定することにより、優れ第   1  
 表 *5iOz: 45%、 MnO:2S%、 MgO:
10%、  Aj!zOs:5%、 CaFz:10%
等第   2   表 第   4   表 第   5   表 1ま たビード形状と共に良好な耐ポツクマーク性を兼ね備え
た溶接金属を得ることができる。
(Effects of the Invention) As described above, in the flux of the present invention, by specifying the particle size structure of the mixed flux,
Table *5 iOz: 45%, MnO: 2S%, MgO:
10%, Aj! zOs: 5%, CaFz: 10%
Table 2 Table 4 Table 5 Table 1 Also, it is possible to obtain a weld metal that has both a good bead shape and good pock mark resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)は本発明実施例に用いた開先形
状の図である。 1.1a・・・母材。 特許出願人  新日本製鐵株式会社
FIGS. 1(a) and 1(b) are diagrams of groove shapes used in examples of the present invention. 1.1a...Base material. Patent applicant Nippon Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] 粉粒状の原料を機械混合して製造するフラックスであっ
て、その粒子径が850μmより粗いものが30wt%
(以下%と言う)以下、210μmより細かいものが1
0%以下、500μm超850μm以下のものが30%
以上の粒度構成を有することを特徴とするサブマージア
ーク溶接用混合型フラックス。
30wt% of flux manufactured by mechanically mixing powdery raw materials with a particle size coarser than 850μm
(hereinafter referred to as %) Below, those finer than 210 μm are 1
0% or less, 30% over 500 μm and 850 μm or less
A mixed flux for submerged arc welding characterized by having the above particle size structure.
JP679688A 1988-01-18 1988-01-18 Mixed type flux for submerged arc welding Granted JPH01181993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP679688A JPH01181993A (en) 1988-01-18 1988-01-18 Mixed type flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP679688A JPH01181993A (en) 1988-01-18 1988-01-18 Mixed type flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JPH01181993A true JPH01181993A (en) 1989-07-19
JPH059198B2 JPH059198B2 (en) 1993-02-04

Family

ID=11648140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP679688A Granted JPH01181993A (en) 1988-01-18 1988-01-18 Mixed type flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPH01181993A (en)

Also Published As

Publication number Publication date
JPH059198B2 (en) 1993-02-04

Similar Documents

Publication Publication Date Title
US5300754A (en) Submerged arc flux and method of making same
US2474787A (en) Arc welding composition and method of making same
US4017339A (en) Flux for use in submerged arc welding of steel
JPH11188496A (en) Burning type flux for submerged arc welding, and manufacture
US3511646A (en) Filler metal for the electric arc welding,and method for its manufacture
JP3433681B2 (en) Sintered flux for submerged arc welding and method for producing the same
US3329798A (en) Welding flux and method of welding
JPH01181993A (en) Mixed type flux for submerged arc welding
EP0521518A1 (en) Submerged arc flux and method of making same
JP3148055B2 (en) Single-sided submerged arc welding method
KR100466205B1 (en) A flux composition for submerged arc welding
JP2907794B2 (en) Ceramic backing material for carbon dioxide arc welding
JPS5841694A (en) Calcined flux for submerged arc welding
JPS6017637B2 (en) Manufacturing method of flux-cored wire for welding
JPS605396B2 (en) Melting type flux for submerged mark welding
JPS61212500A (en) Production of flux cored wire for welding stainless steel
JPS5843197B2 (en) taisuisokouenkiseisenkoyousetsuyouflux
JPH04288992A (en) Wire with welding flux
JP2001239394A (en) Raw material for sub-merged arc welding material
JP2022065865A (en) Fused flux, and welded joint manufacturing method
KR20020075260A (en) Mixed flux for submerged arc welding and manufacturing method thereof
JPS646875B2 (en)
US3413163A (en) Arc welding flux and method of manufacturing the same
JPS6349397A (en) Production of seamless flux cored wire for welding stainless steel
JPH082513B2 (en) High heat input submerged arc welding firing type flux