JPH0118145B2 - - Google Patents

Info

Publication number
JPH0118145B2
JPH0118145B2 JP56070002A JP7000281A JPH0118145B2 JP H0118145 B2 JPH0118145 B2 JP H0118145B2 JP 56070002 A JP56070002 A JP 56070002A JP 7000281 A JP7000281 A JP 7000281A JP H0118145 B2 JPH0118145 B2 JP H0118145B2
Authority
JP
Japan
Prior art keywords
ceramic
sio
coating layer
layer
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56070002A
Other languages
Japanese (ja)
Other versions
JPS57183372A (en
Inventor
Koji Tanaka
Hiroshi Nakahira
Takashi Oka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP56070002A priority Critical patent/JPS57183372A/en
Publication of JPS57183372A publication Critical patent/JPS57183372A/en
Publication of JPH0118145B2 publication Critical patent/JPH0118145B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 本発明はセラミツク材料、とくに溶射法により
他の各種部材の表面を被覆して、耐侵食性、耐熱
衝撃性を具えた被覆層を与え、作業性および研削
性にすぐれたセラミツク材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a ceramic material, particularly a ceramic material, which is coated on the surface of various other members by a thermal spraying method to provide a coating layer with corrosion resistance and thermal shock resistance, and has excellent workability and grindability. related to ceramic materials.

連続溶融金属めつき法に使用する金属浴の浴
槽、ないしは該金属浴中に浸漬されるシンクロー
ル、コーテングロールのような部品あるいはそれ
らの軸受、フレームなどの各部材(以上、部材で
代表せしめる)は、周知のように溶融金属と直
接々触して劇しい侵食を受ける。とくに部材がロ
ールである場合には、その表面が侵食によつて凹
凸状の肌荒れを生ずると、通過するめつき鋼板の
表面に、それが押し疵となつて製品品質に致命的
欠陥を与える。これがため、従来前述した各種部
材の表面をアルミナ、ジルコニアまたは酸化クロ
ムなどで溶射被覆したこともあつたが、これら材
料の被覆層は、粒子間結合力が弱く、部材の材料
である金属材料との熱膨張係数との差と相まつ
て、溶融金属浴温度における部材の熱膨張に追随
できず、早期に亀裂ないし剥落の発生を見、所期
の防食効果が得られなかつた。また、ロールは通
常金属浴中から引き上げられたり、浸漬されたり
の繰返しが行われているので、それがための熱衝
撃をも受ける。したがつて、耐侵食性のみなら耐
熱衝撃性が要求される。また、上述従来の材料
は、被覆作業性および研削性がよくないので、加
工にかゝるコストが高く、その改善も望まれてい
る。
The metal bath tub used in the continuous molten metal plating method, parts such as sink rolls and coating rolls immersed in the metal bath, and their bearings, frames, and other parts (represented by the above parts) As is well known, metals are subject to severe erosion when they come into direct contact with molten metal. In particular, when the member is a roll, if the surface of the roll becomes rough due to erosion, this will cause flaws on the surface of the plated steel plate passing through it, resulting in a fatal defect in product quality. For this reason, the surfaces of the various components mentioned above have been coated by thermal spraying with alumina, zirconia, chromium oxide, etc., but the coating layer of these materials has a weak interparticle bonding force and does not bond well with the metal material of the component. Coupled with the difference in the thermal expansion coefficient of the material, it was not possible to follow the thermal expansion of the member at the temperature of the molten metal bath, and cracking or flaking occurred early, making it impossible to obtain the desired corrosion protection effect. Furthermore, since the roll is usually repeatedly lifted out of the metal bath and immersed, it is also subjected to thermal shock. Therefore, thermal shock resistance is required in addition to erosion resistance. Further, the above-mentioned conventional materials have poor coating workability and grindability, resulting in high processing costs, and improvements in these are desired.

本発明は如上要望に応え、耐侵食性、耐熱衝撃
性を有し、すぐれた溶射被覆の作業性および研削
性を具備した被覆層を提供することを目的とす
る。
In response to the above-mentioned needs, the present invention aims to provide a coating layer having corrosion resistance, thermal shock resistance, and excellent thermal spray coating workability and grindability.

本発明は、金属材料から成る基材上に、サーメ
ツト中間層を設け、このサーメツト中間層上に、
SiO215〜45重量%、MgO5〜40重量%、残部
ZrO2から成るセラミツク材料を溶射被覆し、サ
ーメツト中間層の熱膨張係数は、基材とセラミツ
ク層の各熱膨張係数の中間の値に選ぶことを特徴
とする耐侵食性、耐熱衝撃性を有する被覆層であ
る。
The present invention provides a cermet intermediate layer on a base material made of a metal material, and on this cermet intermediate layer,
SiO 2 15-45% by weight, MgO 5-40% by weight, balance
A ceramic material consisting of ZrO 2 is coated by thermal spraying, and the thermal expansion coefficient of the cermet intermediate layer is selected to be an intermediate value between the respective thermal expansion coefficients of the base material and the ceramic layer.It has corrosion resistance and thermal shock resistance. It is a covering layer.

以下、上記セラミツク成分の組成限定理由につ
き、本発明者らが実験に基いて作成した第1〜4
図に従つて説明する。
Hereinafter, the reasons for limiting the composition of the ceramic components described above are as follows:
This will be explained according to the diagram.

SiO2は粒子間結合力を高める。第1図はSiO2
−MgO−ZrO2系セラミツクの溶射被覆層の500
℃における粒子間結合力とSiO2量との関係を示
すもので、図示のとおり、該結合力はSiO2量と
ともに増加し、約10〜20重量%の範囲で急増し、
その後は漸増傾向に移行する。一方SiO2量は、
第2図に示したように、被覆層形成の際の溶射歩
留り、すなわち被覆作業性に影響を与え、SiO2
約30〜45重量%で最大値となり、その後はSiO2
量の増加と共に急激に低下する。したがつて、溶
射の歩留まりを損わずに高い粒子間結合力を得る
ため、SiO2含有量は約15〜45重量%とする。
SiO 2 increases the bonding force between particles. Figure 1 shows SiO 2
-MgO-ZrO 2 ceramic sprayed coating layer 500
It shows the relationship between the interparticle bonding force and the amount of SiO2 at °C.As shown in the figure, the bonding force increases with the amount of SiO2 , rapidly increasing in the range of about 10 to 20% by weight,
After that, it shifts to a gradual increasing trend. On the other hand, the amount of SiO2 is
As shown in Figure 2, SiO 2
The maximum value is reached at about 30-45 wt%, after which SiO 2
It decreases rapidly as the amount increases. Therefore, in order to obtain high interparticle bonding strength without impairing the yield of thermal spraying, the SiO 2 content is approximately 15 to 45% by weight.

MgOは、SiO2とZrO2との融合を確実なものと
するための安定剤としての役割を有し、得られる
セラミツク被覆層の耐熱衝撃性と研削性を左右す
る。第3図にMgO量と耐熱衝撃性(溶射被覆層
を、500℃から20℃に水冷する熱衝撃を繰返した
ときの、剥離に到るまでの熱衝撃回数)との関係
を示すものであるが、この図から、MgO含有量
約5〜40重量%の範囲で安定剤としてよく働き、
良好な耐熱衝撃性が得られることが判る。また第
4図にはMgO量と体積除去率(溶射被覆層を、
平面研削盤を用いて1回の設定切込みを20μmと
し、25回研削後の研削量を平均したものを、一回
の研削時間で割つた値であつて、研削性の指標と
した)の関係を示す。この図からMgO含有量約
5〜40重量%の範囲で、耐衝撃性と同様に、すぐ
れた体積除去率、即ち良好な研削性が得られるこ
とがわかる。
MgO has a role as a stabilizer to ensure the fusion of SiO 2 and ZrO 2 and influences the thermal shock resistance and grindability of the resulting ceramic coating layer. Figure 3 shows the relationship between the amount of MgO and thermal shock resistance (the number of thermal shocks until peeling occurs when the sprayed coating layer is repeatedly subjected to water cooling from 500°C to 20°C). However, from this figure, MgO works well as a stabilizer in the range of about 5 to 40% by weight,
It can be seen that good thermal shock resistance can be obtained. Figure 4 also shows the amount of MgO and the volume removal rate (sprayed coating layer,
Using a surface grinder, the set depth of cut for one run was 20 μm, and the average amount of grinding after 25 grindings was divided by the time for one grinding, which was used as an index of grindability). shows. It can be seen from this figure that when the MgO content is in the range of about 5 to 40% by weight, excellent volume removal rate, ie, good grindability, as well as impact resistance, can be obtained.

このような溶射材料は、粉末状で、粒度約10〜
125ミクロン程度の各成分が所定割合に混合され
たものである組成物として、酸素、アセチレン炎
溶射ないしは、プラズマによる溶射法によつて被
覆さるべき部材表面に被覆層を形成させることが
できる。また、該組成物を直径数ミリ程度の棒状
に焼結して用いるいわゆるノートン社のローカイ
ド溶射法も適用できる。
Such thermal spray materials are in powder form and have a particle size of approximately 10 to
A coating layer can be formed on the surface of a member to be coated using a composition in which each component having a diameter of about 125 microns is mixed in a predetermined ratio by oxygen, acetylene flame spraying, or plasma spraying. Also applicable is the so-called Norton Rocaid thermal spraying method in which the composition is sintered into a rod shape of several millimeters in diameter.

上述したように、本発明セラミツク材料によつ
て被覆さるべき部材の表面は、部材をなす金属材
料基材の表面に設けられた中間層表面である。即
ち、被覆されるべき基材の材質は、銅、ステンレ
スなどの金属材料であり、その上に、サーメツト
中間層を含む。例えば、溶融亜鉛めつき浴中のシ
ンクロールやコーテングロールは、通常25Cr−
12Ni鋼や13Cr鋼が汎用されているが、これらロ
ール表面に、一旦サーメツトの中間層を設けてお
き、その上に本発明セラミツク材料を溶射被覆す
る。
As mentioned above, the surface of the member to be coated with the ceramic material of the present invention is the surface of the intermediate layer provided on the surface of the metal material base material forming the member. That is, the material of the base material to be coated is a metal material such as copper or stainless steel, and includes a cermet intermediate layer thereon. For example, sink rolls and coating rolls in hot-dip galvanizing baths are typically 25Cr−
12Ni steel and 13Cr steel are commonly used, and a cermet intermediate layer is first provided on the surface of these rolls, and then the ceramic material of the present invention is thermally sprayed on top of the cermet intermediate layer.

このような、基材と本発明セラミツク材料によ
る被覆層との間に、中間層を介在させるのは、基
材とセラミツク被覆層との熱膨張係数に大きな差
違があつて、セラミツク被覆層が基材の熱膨張に
追随し切れず、それがためにセラミツク被覆層に
亀裂や剥落の生ずるおそれのある場合である。こ
れがため中間層の材料としては、熱膨張係数にお
いて、基材ならびにセラミツク層の中間の熱膨張
係数、例えば8×10-6ないし14×10-13程度の熱
膨張係数をもつサーメツト層を中間層として介在
させる。
The reason why the intermediate layer is interposed between the base material and the coating layer made of the ceramic material of the present invention is because there is a large difference in coefficient of thermal expansion between the base material and the ceramic coating layer, and the ceramic coating layer is made of the ceramic material of the present invention. This is the case when the ceramic coating cannot keep up with the thermal expansion of the material, which may cause cracks or peeling of the ceramic coating layer. Therefore, the material for the intermediate layer should be a cermet layer with a thermal expansion coefficient between that of the base material and the ceramic layer, for example, about 8×10 -6 to 14×10 -13 . to intervene as

以下、本発明に従う前記組成物を用いて、か
つ、サーメツト層を中間層として介在させること
なしに、実際の部材に溶射して用いた使用例を、
参考のために挙げる。
Hereinafter, an example of use in which the composition according to the present invention was thermally sprayed onto an actual member without intervening a cermet layer as an intermediate layer will be described.
Listed for reference.

使用例 1 SiO220重量%、MgO10重量%およびZrO270重
量%からなる粒度10〜75μのセラミツク材料をプ
ラズマ法により溶射して、研削加工後の被覆厚が
0.6mmの被覆層を形成したコーテイングロールを
溶融亜鉛めつき装置に取り付けて使用したとこ
ろ、30日経過後にも浸食を全くうけることがな
く、また被覆層の亀裂、剥離等も皆無であり、従
来の被覆しない25Cr−12Niステンレス鋼ロール
に比し、5倍以上の耐用寿命が得られた。
Application example 1 A ceramic material with a particle size of 10 to 75μ consisting of 20% by weight of SiO 2 , 10% by weight of MgO and 70% by weight of ZrO 2 is thermally sprayed using a plasma method, and the coating thickness after grinding is
When a coating roll with a 0.6 mm coating layer was attached to a hot-dip galvanizing machine and used, there was no corrosion at all even after 30 days, and there was no cracking or peeling of the coating layer, compared to conventional galvanizing equipment. The service life was more than five times that of the uncoated 25Cr-12Ni stainless steel roll.

使用例 2 SiO235重量%、MgO30重量%およびZrO235重
量%からなる粒度10〜75μのセラミツク材料をプ
ラズマ法により溶射して、研削加工後の被覆厚が
0.6mmの被覆層を形成したシンクロールを溶融亜
鉛めつき装置に取付けて使用した結果、30日経過
後にも、何ら侵食は認められず、被覆層の亀裂、
剥離等も全くなく、従来の被覆しない25Cr−
12Niステンレス鋼ロールにくらべて5倍以上の
耐用寿命が得られた。
Application example 2 Ceramic material with a particle size of 10 to 75μ consisting of 35% by weight of SiO 2 , 30% by weight of MgO and 35% by weight of ZrO 2 is thermally sprayed using a plasma method, and the coating thickness after grinding is
As a result of using a sink roll with a coating layer of 0.6 mm attached to a hot-dip galvanizing machine, no corrosion was observed even after 30 days had passed, and no cracks or cracks in the coating layer were observed.
No peeling etc., compared to conventional uncoated 25Cr−
The service life was more than 5 times longer than that of 12Ni stainless steel rolls.

なお、本発明のセラミツク材料の被覆作業性及
び研削性は良好であつた。
Note that the coating workability and grindability of the ceramic material of the present invention were good.

本発明は上記の通り構成せられるから、該材料
によつて被覆した物品、部材など、長期間剥離脱
落することなく安定して使用可能となつたのであ
る。
Since the present invention is configured as described above, articles and members coated with the material can be used stably for a long period of time without peeling off or falling off.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSiO2−MgO−ZrO2系セラミツクの溶
射被覆層におけるSiO2含有量と粒子間結合力と
の関係を示すグラフ、第2図はSiO2−MgO−
ZrO2系セラミツクのSiO2含有量と溶射歩留りと
の関係を示すグラフ、第3図はSiO2−MgO−
ZrO2系セラミツク溶射被覆層のMgO含有量と、
耐熱衝撃性の関係を示すグラフ、第4図はSiO2
−MgO−Zro2系セラミツク溶射被覆層のMgO含
有量と体積除去率との関係を示すグラフである。
Figure 1 is a graph showing the relationship between SiO 2 content and interparticle bonding force in a thermally sprayed coating layer of SiO 2 -MgO-ZrO 2 ceramic, and Figure 2 is a graph showing the relationship between SiO 2 content and interparticle bonding strength in a thermally sprayed coating layer of SiO 2 -MgO-ZrO 2 ceramic.
A graph showing the relationship between SiO 2 content and thermal spraying yield of ZrO 2 ceramics, Figure 3 is SiO 2 −MgO−
MgO content of ZrO 2 ceramic spray coating layer,
A graph showing the relationship between thermal shock resistance, Figure 4 is SiO 2
-MgO-Zro It is a graph showing the relationship between the MgO content and the volume removal rate of the Zro 2 ceramic spray coating layer.

Claims (1)

【特許請求の範囲】[Claims] 1 金属材料から成る基材上に、サーメツト中間
層を設け、このサーメツト中間層上に、SiO215
〜45重量%、MgO5〜40重量%、残部ZrO2から
成るセラミツク材料を溶射被覆し、サーメツト中
間層の熱膨張係数は、基材とセラミツク層の各熱
膨張係数の中間の値に選ぶことを特徴とする耐侵
食性、耐熱衝撃性を有する被覆層。
1 A cermet intermediate layer is provided on a base material made of a metal material, and SiO 2 15
A ceramic material consisting of ~45% by weight MgO, 5~40% by weight MgO, and the balance ZrO2 was spray coated, and the thermal expansion coefficient of the cermet intermediate layer was chosen to be an intermediate value between the respective thermal expansion coefficients of the base material and the ceramic layer. A coating layer with characteristics of corrosion resistance and thermal shock resistance.
JP56070002A 1981-05-08 1981-05-08 Ceramic material for flame spray coating Granted JPS57183372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56070002A JPS57183372A (en) 1981-05-08 1981-05-08 Ceramic material for flame spray coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56070002A JPS57183372A (en) 1981-05-08 1981-05-08 Ceramic material for flame spray coating

Publications (2)

Publication Number Publication Date
JPS57183372A JPS57183372A (en) 1982-11-11
JPH0118145B2 true JPH0118145B2 (en) 1989-04-04

Family

ID=13418961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56070002A Granted JPS57183372A (en) 1981-05-08 1981-05-08 Ceramic material for flame spray coating

Country Status (1)

Country Link
JP (1) JPS57183372A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564700U (en) * 1992-02-04 1993-08-27 大同特殊鋼株式会社 Slag flow monitoring device at the outlet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726188B2 (en) * 1986-03-31 1995-03-22 三菱重工業株式会社 Single-Face Stage Roller and Method for Manufacturing the Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564700U (en) * 1992-02-04 1993-08-27 大同特殊鋼株式会社 Slag flow monitoring device at the outlet

Also Published As

Publication number Publication date
JPS57183372A (en) 1982-11-11

Similar Documents

Publication Publication Date Title
CA1097024A (en) Molds for continuous casting of metals
US8507105B2 (en) Thermal spray coated rolls for molten metal baths
US8070894B2 (en) Highly active liquid melts used to form coatings
US5437933A (en) Coated ceramic article
JP6180427B2 (en) Metal powder for HVOF spraying and method for coating the surface thereby
US4175611A (en) Plasma flame spray coated graphite dies
Fankhänel et al. Interaction of AlSi7Mg with oxide ceramics
JPS643942B2 (en)
EP0569585B1 (en) Process for producing immersion member of molten metal bath
JPS6117912B2 (en)
JPH0118145B2 (en)
US6214483B1 (en) Member for molten metal bath, provided with composite sprayed coating having excellent corrosion resistance and peeling resistance against molten metal
US2900276A (en) Cermet composition and method of coating therewith
JP3092820B2 (en) Float glass manufacturing roll
US2542043A (en) Method of producing a corrosion resistant coating on steel
JP3092818B2 (en) Float glass manufacturing roll
US6648207B2 (en) Method for applying self-fluxing coatings to non-cylindrical ferritic objects
JP2955625B2 (en) Material for molten metal bath
JP2000273614A (en) Roll for molten glass manufacturing equipment, and its manufacture
EP0144769B1 (en) Matrix coating flexible casting belts, method & apparatus for making matrix coatings
JPH0337454B2 (en)
JPH04254541A (en) Cobalt-base alloy having corrosion resistance and wear resistance
JP3224463B2 (en) Cermet spray material containing high thermal expansion hard oxide and hearth roll with spray coating
JPH05209259A (en) Member for molten metal bath with coating film excellent in corrosion resistance to molten metal and exfoliation resistance and its production
JP4523142B2 (en) Molten salt bath roller