JPH01181232A - Finite field inverse element circuit - Google Patents

Finite field inverse element circuit

Info

Publication number
JPH01181232A
JPH01181232A JP63006103A JP610388A JPH01181232A JP H01181232 A JPH01181232 A JP H01181232A JP 63006103 A JP63006103 A JP 63006103A JP 610388 A JP610388 A JP 610388A JP H01181232 A JPH01181232 A JP H01181232A
Authority
JP
Japan
Prior art keywords
circuit
output
multiplication
input
inverse element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63006103A
Other languages
Japanese (ja)
Inventor
Masao Kasahara
正雄 笠原
Masakatsu Morii
昌克 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63006103A priority Critical patent/JPH01181232A/en
Publication of JPH01181232A publication Critical patent/JPH01181232A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/724Finite field arithmetic
    • G06F7/726Inversion; Reciprocal calculation; Division of elements of a finite field
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/72Indexing scheme relating to groups G06F7/72 - G06F7/729
    • G06F2207/7209Calculation via subfield, i.e. the subfield being GF(q) with q a prime power, e.g. GF ((2**m)**n) via GF(2**m)

Abstract

PURPOSE:To decrease the quantity of hardware constituting the circuit by constituting the finite field inverse element circuit of an arithmetic circuit applying addition, multiplication and inversion of a subfield GF(2<n>) of the order 2n of a GF(2<2n>). CONSTITUTION:An adder circuit 11 adds outputs of a multiplication circuits 7, 6 to output a result a0(a0+f1a1)+f0a, an inverse element circuit 12 calculates the inverse element to output 1/(a0(a0+f1a1)+f0a }. Finally, the output of the inverse element circuit 12 and the output of the adder circuit 10 are multiplied by a multiplication circuit 8 to output (a0+f1a1)/{a0(a0+f1a1)+f0a }, and the output of the inverse element circuit 12 and the value a1 are multiplied by a multiplication circuit 0 to output a1/{a0(a0+f1a1)+f0a }. Thus, the inverse element circuit of the GF(2<2n>) is obtained by an arithmetic circuit comprising combinations of adder circuits and inverse element circuits on the GF(2<n>).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、符号化器および復号化器において使用され
る有限体の送元回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to finite field source circuits used in encoders and decoders.

〔従来の技術〕[Conventional technology]

一般に、ベクトル表現されたガロア体の元を入力とし、
入力元の逆元をベクトル表現で出力する回路をゲート回
路として構成するとハードフェア量が多くなるので、従
来はROMを用いて構成していた。このROMを用いた
有限体送元回路として例えば吉田他“ガロア演算ユニッ
トを用いたR8符号の復号法に関する一検討”情報理論
とその応用学会第6回シンポジウム予稿@P 167〜
170.1986年に記載されたように第6図に示すも
のがあった。これは位数2のガロア体GF(2′)の場
合を示し、GF(2’)のGF (22n)上の原始多
項式としてXj十X’+X”十X2+1をとったもので
ある。ここでxo、xい・・・・・・、Xyは入力元で
あり、これはX’十X’十X’+X2+ l = Oの
根をαとした時、GF(2”)の元i xza’を意味
する。
In general, the input is a Galois field element expressed as a vector,
If a circuit that outputs the inverse of an input source in a vector representation is constructed as a gate circuit, the amount of hardware increases, so conventionally it has been constructed using a ROM. An example of a finite field source circuit using this ROM is Yoshida et al., "A study on the decoding method of R8 code using Galois arithmetic unit," Proceedings of the 6th Symposium of the Society for Information Theory and Its Applications @P 167-
170. As described in 1986, there was one shown in Figure 6. This shows the case of the Galois field GF(2') of order 2, where Xj 10X'+X''10X2+1 is taken as the primitive polynomial of GF(2') on GF(22n). xo, x..., Xy is the input source, which is means.

またyI、、yl、・・・・・・、y7は出力光であり
、これはGF(2B)の元L Yt ”’を意味する。
Further, yI,, yl, .

またこのROMには第7図に示すような内容が記憶され
ており、例えば(X、、x8、・・・・・・、xr) 
=(01000000)が入力されると、その逆元に対
応する(y、、yl、・・・・・・、y7)=(011
01001)が出力される。
Also, this ROM stores contents as shown in Fig. 7, for example (X,, x8, ..., xr).
When =(01000000) is input, its inverse element (y,,yl,...,y7)=(011
01001) is output.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このROMを用いた回路はゲート数に換算するとゲート
数が太き(、集積化が困難であるという課題があった。
A circuit using this ROM has a large number of gates (and is difficult to integrate).

この発明は上記のような課題を解消するためなされたも
ので、有限体の逆元を求める回路を構成するハードウェ
ア量を大幅に減少させることを目的とする。
This invention has been made to solve the above-mentioned problems, and aims to significantly reduce the amount of hardware that constitutes a circuit for calculating the inverse of a finite field.

〔課題を解決するための手段〕− この発明に係わる有限体逆元回路は位数225ガロア体
GF(22fL)の元を入力とし、GF(2”)に含ま
れ、その位数2FLの部分体GF(2yL)に含まれな
い元α、およびGF(2”)の元a0、”Is usf
lによりa = f、十f、α、および入力元をa。十
a、αと表す時入力元から出発して加算、乗算、逆元の
演算をしくao+ f+ at) / (ao (aa
+f、at) 十La”、)” および”+’ (”a
 (a、十f、 at) 十f。aZ)を出力するGF
(2”)の演算回路を備えたものである。
[Means for Solving the Problems] - The finite field inverse element circuit according to the present invention receives as input an element of an order 225 Galois field GF (22fL), and a part of the order 2FL that is included in GF (2''). The element α not included in the field GF(2yL), and the element a0 of GF(2”), “Is usf
By l, a = f, ten f, α, and the input source is a. When expressed as 10a and α, start from the input source and perform addition, multiplication, and inverse element operations. ao + f + at) / (ao (aa
+f, at) 10La",)" and "+'("a
(a, tenf, at) tenf. GF that outputs aZ)
(2”) of arithmetic circuits.

〔作用〕[Effect]

この発明におけろ有限体逆元回路は、GF(2”)の元
を予め固定されたGF (22n)上のGF(22n)
の基底に関して表現して入力したのち、GF(2’)上
の加算、乗算および逆元の演算をして入力元の逆元を出
力する。
In this invention, the finite field inverse element circuit converts the element of GF(2'') into GF(22n) on GF(22n) which is fixed in advance.
After inputting the expression in terms of the basis of , addition, multiplication, and inverse element operations are performed on GF(2'), and the inverse element of the input element is output.

〔実施例〕〔Example〕

第1図はこの発明による有限体逆元回路の一実施例のロ
ジック回路図である。(1)は入力されるGF(22n
)のルであり、p、、pH1・・・・・・、RN−1は
それぞれOまたは1を表す。これは入力元を、予め固定
されたGF(22yL)の元αおよびGF(2”)の2
1個の元βいβ2、・・・・・・、β21−5をもって
、GF(22n)上のGF(22n)の基底(βo1β
6、・・・・・、β、t−1 、β1α、β、lL+l
α、・・・・・・、βz*−1ff)に関して表現した
ものであり、入力元がΣ(欣βメ十へイβヤita a)なることを意味している。(22n)、(3)はC
2をf、十f、aと表したときのGF(2n)の元fa
、  f+を、それぞれGF (22n)上のGF(2
’)の適当な基底に関して表現した入力元であり、F、
、Fい・・・・・、F、。
FIG. 1 is a logic circuit diagram of an embodiment of a finite field inverse element circuit according to the present invention. (1) is the input GF (22n
), and p, , pH1..., RN-1 each represent O or 1. This changes the input sources to the pre-fixed elements α of GF(22yL) and 2 of GF(2”).
With one element β, β2, ..., β21-5, the basis (βo1β) of GF(22n) on GF(22n)
6,..., β, t-1, β1α, β, lL+l
It is expressed in terms of α, . (22n), (3) is C
Element fa of GF(2n) when 2 is expressed as f, 10f, and a
, f+ on GF (22n), respectively.
') is an input source expressed in terms of an appropriate basis of F,
, F..., F.

およびGos GIi−’、Gn−11よそれぞれ0ま
たζよ1を表す。
and Gos GIi-' and Gn-11 represent 0 and ζ represent 1, respectively.

(41、(5)、(6)、(7)、(8)、(9)はG
F(2’)上の乗算回路であり、ベクトル表現されたG
F(2”)の2つの元5l)N S1% ”’ ”’、
5vt−+およびtos  t1’i ”’・・・、t
%−Iを入力とし、2元の積をGF (22n)上のG
F(2”)の適当な基底に関して表現し、”(1% ”
j、・・・・・・LIK−1として出力するものである
。(101、(11)はGF (2大)上の加算回路で
あり、ベクトル表現されたGF(2”)(7)2つ、7
)元x0、x、、 ・−・−1x机−lおよびyo、y
ll  ・・・・・・・、yヤ、を入力とし、2元の和
をGF(22n)上のGF(2”)の適当な基底に関し
て表現し、Zolzい・・・・・、z、L−1として出
力するものである。(122n)はGF(2”)上の送
元回路であり、ベクトル表現されたGF(2’ンの元v
、、 v、、・・・・・・、v6−1を入力とし、入力
元の逆元をGF (22n)上のGF(2”)の適当な
基底に関して表現し、w、、町、・・・・・、W?L−
1として出力するものである。(13)は出力されるG
F(22n)のルであり、QOSQl、・・・・・・ 
、Q zn−+はそれぞれ0または1を表す。これは、
乗算回1 (81の出力光が表現されているGF(22
n)上の基底を(δ。、δい・・・・・、δ、−1)と
し、乗算回路(9)の出力光が表現されているGF(2
2n)上の基底を(ε。、C5、−−−−一−−・・・
・・・、C5−22n) とするとき、出力光(13)
がΣ(Q、:δj+Q、a、εtα)なることを意味し
ている。
(41, (5), (6), (7), (8), (9) are G
It is a multiplication circuit on F(2'), and G expressed as a vector
Two elements of F(2”) 5l)N S1% ”’ ”’,
5vt-+ and tos t1'i ''..., t
With %-I as input, the product of two elements is G on GF (22n)
Expressed in terms of an appropriate basis of F(2”), “(1%”
j, . . . are output as LIK-1. (101, (11) are adder circuits on GF (2 large), and vector representations of GF (2”) (7) two, 7
) elements x0, x, ・−・−1x machine−l and yo, y
Take ll ......, y ya, as input, express the sum of the two elements in terms of an appropriate base of GF (2'') on GF (22n), and Zolz ......, z, (122n) is the source circuit on GF(2''), which outputs the element v of GF(2') expressed as a vector.
,, v, , ..., v6-1 is input, and the inverse of the input source is expressed in terms of an appropriate base of GF (2'') on GF (22n), w,, town, . ..., W?L-
It is output as 1. (13) is the output G
F(22n), QOSQl,...
, Q zn-+ represent 0 or 1, respectively. this is,
Multiplication 1 (GF (22) where the output light of 81 is expressed
Let the basis on GF(2
2n) the basis on (ε., C5, -----1---...
..., C5-22n), the output light (13)
This means that Σ(Q,: δj+Q, a, εtα).

次に、出力される元(13)が入力された元(1)の逆
元であることを示す。GF(22n)の入力元Σll0 (P4:β7+ p、14.+β引j (22n)に対
しGF(2yL)の元a0およびalを、a、 = ?
、 P7βi% ”l=孔PfLhj k+lとおくこ
とにすると入力元はa6+”tαと書けることになる。
Next, it will be shown that the output element (13) is the inverse element of the input element (1). Input source Σll0 (P4: β7 + p, 14. + β subtraction j of GF (22n)) For (22n), input elements a0 and al of GF (2yL), a, = ?
, P7βi% "l=hole PfLhj k+l, the input source can be written as a6+"tα.

a、は乗算回路(4)においてf、を乗じられてf、 
atを出力する。加算回路−はこれに、ioを加えてa
、+ tla、を出力し、乗算回路(7)はこれにa。
a is multiplied by f in the multiplication circuit (4) and becomes f,
Output at. The adder circuit adds io to this and a
, +tla, and the multiplier circuit (7) outputs a.

を乗じてa。Multiply by a.

(aa+ f、 a、)を出力する。またalは乗算回
#(51で2乗され、更に乗算回# (8)でf、が乗
じられ1g 71〒を出力する。加算回#(11)では
乗算回路(7)の出力と乗算回路(6)の出力を加えて
io (ao十fI &+) 十fo ”?を出力し、
送元回路(122n)で逆元がとられて1/(aa (
a、−1−t、 al) + f。a? )を出力する
。最後に送元回路(122n)の出力と加算回路−の出
力が乗算回路(8)で乗じられ(io十Lat)  /
  (ao(ao+f、a、) 十f0m”、lを出力
し、逆元回# (122n)の出力とa、が乗算回路(
9)で乗じられa、 /  (io (ao+fl a
t) 十foシ)を出力する。この結果、出力(13)
ではGF(2”)の元[(aa+ f+”+) /  
(1o(ao+f1ad) + r、a?))十[al
ff / (ao(a、十Lad) +foa?))が
得られることになるが、ここでこの出力元と入力元ao
十a、αを乗じれば1になることが容易に計算でき、出
力元が入力元の逆元を与えることが示される。
Outputs (aa+f, a,). In addition, al is squared by multiplication # (51), and further multiplied by f in multiplication # (8) to output 1g71〒. In addition # (11), the output of multiplication circuit (7) and the multiplication circuit Add the output of (6) and output io (ao ten f I & +) ten fo ”?
The inverse element is taken in the source circuit (122n) and becomes 1/(aa (
a, -1-t, al) + f. a? ) is output. Finally, the output of the source circuit (122n) and the output of the adder circuit - are multiplied by the multiplier circuit (8) (io + Lat) /
(ao(ao+f, a,) 10f0m", l is output, and the output of the inverse element # (122n) and a are the multiplication circuit (
9) multiplied by a, / (io (ao+fl a
t) Output 10fosi). As a result, output (13)
Then, the element of GF (2”) [(aa+ f+”+) /
(1o(ao+f1ad) + r, a?)) ten [al
ff / (ao(a, 10 Lad) + foa?)) will be obtained, but here this output source and input source ao
It can be easily calculated that it becomes 1 by multiplying by 10a and α, which shows that the output source gives the inverse of the input source.

以上によって、GF(2”lの送元回路が、GF(21
)上の加算回路乗算回路および送元回路の組み合わせか
らなる演算回路で得られることが示されたが、以下に上
記原理に基づき有限体逆元回路をゲート回路として構成
した実施例について説明する。
As a result of the above, the source circuit of GF(2”l) is changed to GF(21
) It has been shown that the above can be obtained by an arithmetic circuit consisting of a combination of an adder circuit, a multiplier circuit, and a source circuit, but an embodiment in which a finite field inverse circuit is configured as a gate circuit based on the above principle will be described below.

第2図は、GF(22n)のnを4とした場合、すなわ
ちGF(28)の有限体逆元回路の一実施例のロジック
回路図である。第2図において(14)は入力されるG
F(2”)の元であり、これは第1図入力元(1)に対
応する。ここではGF(2’)の元αトL、rGF (
22n) 上ノ原始多項式X’+X’+X”+X2十1
の根をとり、GF(2’)の元βをα17と定義し、β
′としてβ′をとっている。即ち入力元はiμ&β2十
P44□・β′a)なるGF(2”)の元を意味してい
る。
FIG. 2 is a logic circuit diagram of an embodiment of a finite field inverse element circuit of GF(28) when n of GF(22n) is set to 4. In Figure 2, (14) is the input G
This is the element of F(2''), which corresponds to the input source (1) in Figure 1.Here, the elements αtL, rGF (
22n) Upper primitive polynomial X'+X'+X''+X21
Take the root of , define the element β of GF(2') as α17, and β
′ is β′. That is, the input source means the element of GF(2'') iμ&β20P44□·β'a).

(]5)は入力されたGF(2’)の元にβを乗じ、G
F(22n)上のG F −(2’)の基底(1、β、
β′、4勺に関して表現して出力する乗算回路であり、
排他的論理和ゲート(36)で構成され、a2=β+β
aなることによりこれは第1図の乗算回路(4)に対応
するものである。(16)は入力されたGF(2’)の
元を2乗してβで除し、GF (22n)上のGF(2
’)の基底(1、β、β′、β1)に関して表現して出
力する排他的論理和ゲー)(36)からなる乗算回路で
あり、a2=β+βaなることよりこの出力は第1図乗
算回路(6)の出力に対応するものである。(17)、
(18)はGF(22n)上の加算回路であり、それぞ
れ第1図の加算回路(10)、(11)に対応するもの
である。(19)、(20)、(21)はGF (22
n)ので乗算回路で、2つの入力元の積をGF(22n
)上のGF (22n)の基底(1、β、β′、βB)
に関して出力するもので、それぞれ第1図の乗算回路(
7)、(8)、(9)に対応するものであり、そのロジ
ック回路図を第3図に示す。(222n)はGF(2’
)上の送元回路で入力元の逆元をGF(22n)上のG
F(2’)の基底(1、β、β′、β3)に関して出力
するもので、第1図の送元回路(122n)に対応する
ものであり、そのロジック回路図を第4図に示す。(2
3)は出力されるGF (22n)の元であり、これは
i<Qtβ’+ Q4+iβ’d)を意味しく゛會0 ている。 第3図はGF(2’)上の乗算回路で、GF
 (22n)のGF(2’)の基底(1、β、β′、β
1)に関して表現されたGF (22n)(7)2つの
元s、、s。
(]5) multiplies the input GF(2') by β, and
The basis (1, β,
It is a multiplication circuit that expresses and outputs in terms of β', 4,
Consists of exclusive OR gate (36), a2=β+β
This corresponds to the multiplication circuit (4) in FIG. (16) squares the element of the input GF(2') and divides it by β.
This is a multiplication circuit consisting of an exclusive OR game (36) which is expressed in terms of the bases (1, β, β', β1) of This corresponds to the output of (6). (17),
(18) is an adder circuit on the GF (22n), which corresponds to the adder circuits (10) and (11) in FIG. 1, respectively. (19), (20), (21) are GF (22
n), so a multiplier circuit calculates the product of the two input elements as GF(22n
) on the basis of GF (22n) (1, β, β', βB)
The multiplier circuit shown in Figure 1 (
7), (8), and (9), and the logic circuit diagram thereof is shown in FIG. (222n) is GF(2'
), the inverse of the input source is converted to G on GF(22n).
It outputs the bases (1, β, β', β3) of F(2'), and corresponds to the source circuit (122n) in Figure 1, whose logic circuit diagram is shown in Figure 4. . (2
3) is the source of the output GF (22n), which meaningfully satisfies i<Qtβ'+Q4+iβ'd). Figure 3 shows the multiplication circuit on GF(2'),
(22n) base of GF(2') (1, β, β', β
1) GF (22n) (7) expressed in terms of two elements s,,s.

、 S、 、 33およびt、−tl 、”t、js 
 を入力とし、基底(1、β、β′、β力に関して表現
されたGF(22n)の7cuo 、ul、ut、us
  を出力とするものである。(24) 、(25)、
(26)、はそれぞれ入力元にβを乗じて基底(1、β
、β′、β3)に関して出力とする乗算回路で、排他的
論理和ゲー)(36)で構成される。なおこの第3図に
おいて(37)は排他的論理和ゲート、(38)は論理
積ゲートである。
, S, , 33 and t,-tl ,”t,js
7cuo, ul, ut, us of GF (22n) expressed in terms of the basis (1, β, β', β forces)
The output is (24), (25),
(26), respectively, multiply the input source by β to the basis (1, β
, β', β3), and is composed of an exclusive OR game (36). In FIG. 3, (37) is an exclusive OR gate, and (38) is an AND gate.

第4図はGF(2’)上の送元回路で、G F (22
n)上のGF(2’)の基底(1、β、β′、β3)に
関して表現されたGF (22n)の7C;VO−Vl
−Vz−Vaを入力とし、基底(1、β、β′、βB)
に関して表現されたGF (22n)の冗W。・−・w
B・wB  を出力とするものである。(27)は基底
変換回路で、(1、β、β′、β1)に関して表現され
た入力元を、GF(2’)の部分体GF(222n)の
元γ=β1をもって(1、γ、β、γβ)なる基底に関
する表現に変換するものである。(28)は基底変換回
路(27)の逆基底変換回路で基底(1、γ、β、γβ
)に関して表現された入力元を(1、β、β′、β′)
なる基底に関する表現に変換するものである。
Figure 4 shows the source circuit on GF(2'), GF(22
7C of GF (22n) expressed in terms of the basis (1, β, β', β3) of GF (2') on n); VO-Vl
-Vz-Va as input, base (1, β, β', βB)
The redundancy W of GF (22n) expressed in terms of.・-・w
The output is B·wB. (27) is a basis conversion circuit that converts the input element expressed in terms of (1, β, β', β1) into (1, γ, β, γβ). (28) is the inverse basis conversion circuit of the basis conversion circuit (27), and the basis (1, γ, β, γβ
) is the input source expressed in terms of (1, β, β′, β′)
It converts into an expression regarding the basis.

(29)は基底(1,γ、β、γβ)に関して表現され
たGF(2’)の元を入力とし、入力元の逆元を基底(
1、γ、β、γβ)に関して表現して出力する送元回路
であり、排他的論理和ゲート(36)からなる加算[*
 (30)、(31)、GF(222n)上の乗算回#
(322n)、(33)、(34)、および排他的論理
和ゲート(36)からなる逆元回#(35)とからなる
。これは第2図と同様に構成できるものである。即ちβ
2=γ十βであることより第2図の乗算回路(15)に
相当する回路はこの送元回路(29)では不必要であり
、第2図の乗算回路(16)に相当する回路はこの送元
回路(29)では入力の2本の信号を入れ換えて出力す
るだけでよい。また加算回路(30)、(31)はそれ
ぞれ第2図の加算回路(17)、(18)に対応し、乗
算回路(322n)、(33)、(34)は第2図の乗
算回路(19)、(20)、(21)に対応し、送元回
路(35)は第2図の送元回路(222n)に相当する
ものである。
(29) takes as input the element of GF(2') expressed in terms of the base (1, γ, β, γβ), and the inverse element of the input element as the base (
1, γ, β, γβ) and outputs the expression, and is an addition [*
(30), (31), multiplication times on GF (222n) #
(322n), (33), (34), and an inverse element #(35) consisting of an exclusive OR gate (36). This can be constructed in the same manner as in FIG. That is, β
Since 2 = γ + β, the circuit corresponding to the multiplication circuit (15) in Fig. 2 is unnecessary in this sending circuit (29), and the circuit corresponding to the multiplication circuit (16) in Fig. 2 is This source circuit (29) only needs to switch the two input signals and output them. Further, the adder circuits (30) and (31) correspond to the adder circuits (17) and (18) in FIG. 2, respectively, and the multiplier circuits (322n), (33), and (34) correspond to the multiplier circuits ( 19), (20), and (21), the source circuit (35) corresponds to the source circuit (222n) in FIG.

なお乗算回路(322n)、(33)、(34)は第3
図と同様の考え方でそのロジック回路を第5図のように
構成できる。
Note that the multiplication circuits (322n), (33), and (34) are the third
The logic circuit can be constructed as shown in FIG. 5 using the same concept as shown in the figure.

このように上記実施例では有限体の逆元回#iを簡単に
構成することができ、上記のようにGF(28)の送元
回路の場合にはROMが不必要となる。
In this way, in the above embodiment, the inverse element #i of the finite field can be easily constructed, and a ROM is not required in the case of the source circuit of GF (28) as described above.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明の有限体送元回路はGF(
2”)の位数2nの部分体GF(2?L)の加算、乗算
、逆元を行う演算回路よりなるので回路を構成するハー
ドウェア量を大幅に減少させることができ回路がコンパ
クトに実現でき、信頼性が向上し、消費電力も少なくて
済む。
As mentioned above, the finite field source circuit of this invention is GF(
Since it consists of an arithmetic circuit that performs addition, multiplication, and inversion of the subfield GF(2?L) of order 2n of 2"), the amount of hardware that makes up the circuit can be significantly reduced, making the circuit compact. This improves reliability and consumes less power.

従って今後発展してゆく情報伝達関連の符号化器復号化
器への適用が便利となる。
Therefore, it will be convenient to apply it to encoders and decoders related to information transmission, which will be developed in the future.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す有限体送元回路のロ
ジック回路図、第2図はこの発明の他の実施例を示すG
F (22n)の有限体送元回路のロジック回路図、第
3図はGF (22n)の乗算回路のロジック回路図、
第4図はGF(2’)の有限体送元回路のロジック回路
図、第5図はGF (22n)の乗算回路のロジック回
路図、第6図は従来のROMを用いた有限体送元回路の
ロジック図、第7図はこのROMに記憶された内容説明
図である。 図中符号(1)はGF (22n)の入力元、 (22
n)、 (3)はGF(2”)の入力元、(4)、(5
)、(6)、(7)、(8)、(9)は乗算回路、(1
0)、(11)は加算回路、(122n)は送元回路、
(13)はGF(2−)の出力元、(14)はGF (
22n)の入力元、(15)、(16)は乗算回路、(
17)、(18)は加算回路、(19)、(20) 、
(21)は乗算回路、(222n)は送元回路、(23
)はGF (22n)の出力元、(24)、(25)、
(26)は乗算回路、(27)は基底変換回路、(28
)は逆基底変換回路、(29)は送元回路、(30)、
(31)は加算回路、(322n)、(33)、(34
)は乗算回路、(35)は送元回路である。 なお図中同一符号は同一または相当部分を示す。
FIG. 1 is a logic circuit diagram of a finite field source circuit showing one embodiment of this invention, and FIG. 2 is a logic circuit diagram of a finite field source circuit showing another embodiment of this invention.
The logic circuit diagram of the finite field source circuit of F (22n), Figure 3 is the logic circuit diagram of the multiplication circuit of GF (22n),
Figure 4 is a logic circuit diagram of a finite field source circuit of GF (2'), Figure 5 is a logic circuit diagram of a multiplier circuit of GF (22n), and Figure 6 is a logic circuit diagram of a finite field source circuit using a conventional ROM. The logic diagram of the circuit, FIG. 7, is an explanatory diagram of the contents stored in this ROM. The code (1) in the figure is the input source of GF (22n), (22
n), (3) are the input sources of GF(2”), (4), (5
), (6), (7), (8), (9) are multiplication circuits, (1
0), (11) are adder circuits, (122n) is a source circuit,
(13) is the output source of GF (2-), (14) is GF (
22n) input sources, (15) and (16) are multiplication circuits, (
17), (18) are adder circuits, (19), (20),
(21) is a multiplication circuit, (222n) is a source circuit, (23
) is the output source of GF (22n), (24), (25),
(26) is a multiplication circuit, (27) is a base conversion circuit, (28
) is the inverse basis conversion circuit, (29) is the source circuit, (30),
(31) is an adder circuit, (322n), (33), (34
) is a multiplication circuit, and (35) is a source circuit. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 位数2^2^nのガロア体GF(2^2^n)の元を入
力とし、GF(2^2^n)に含まれ、その位数2^n
の部分体GF(2^n)に含まれない元α、およびGF
(2^n)の元a_0、a_1、f_0、f_1により
α=f_0+f_1α、および入力元をa_0+a_1
αと表す時、入力元からGF(2^n)の加算、乗算、
逆元を行い(a_0+f_1a_1)/{a_0(a_
0+f_1a_1)+f_0a_1^2}およびa_1
/{a_0(a_0+f_1a_1)+f_0a_1^
2}を出力する演算回路を備えたことを特徴とする有限
体逆元回路。
The input is an element of the Galois field GF(2^2^n) of order 2^2^n, which is included in GF(2^2^n) and whose order is 2^n.
elements α that are not included in the subfield GF(2^n) of and GF
By the elements a_0, a_1, f_0, f_1 of (2^n), α=f_0+f_1α, and the input source is a_0+a_1
When expressed as α, addition and multiplication of GF(2^n) from the input source,
Perform inverse element (a_0+f_1a_1)/{a_0(a_
0+f_1a_1)+f_0a_1^2} and a_1
/{a_0(a_0+f_1a_1)+f_0a_1^
A finite field inverse element circuit characterized by comprising an arithmetic circuit that outputs 2}.
JP63006103A 1988-01-13 1988-01-13 Finite field inverse element circuit Pending JPH01181232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63006103A JPH01181232A (en) 1988-01-13 1988-01-13 Finite field inverse element circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63006103A JPH01181232A (en) 1988-01-13 1988-01-13 Finite field inverse element circuit

Publications (1)

Publication Number Publication Date
JPH01181232A true JPH01181232A (en) 1989-07-19

Family

ID=11629167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63006103A Pending JPH01181232A (en) 1988-01-13 1988-01-13 Finite field inverse element circuit

Country Status (1)

Country Link
JP (1) JPH01181232A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482324A (en) * 1990-07-25 1992-03-16 Nec Corp Multiplication circuit for finite field
US6038581A (en) * 1997-01-29 2000-03-14 Nippon Telegraph And Telephone Corporation Scheme for arithmetic operations in finite field and group operations over elliptic curves realizing improved computational speed
US6389442B1 (en) 1997-12-30 2002-05-14 Rsa Security Inc. Efficient finite field multiplication in normal basis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482324A (en) * 1990-07-25 1992-03-16 Nec Corp Multiplication circuit for finite field
US6038581A (en) * 1997-01-29 2000-03-14 Nippon Telegraph And Telephone Corporation Scheme for arithmetic operations in finite field and group operations over elliptic curves realizing improved computational speed
US6389442B1 (en) 1997-12-30 2002-05-14 Rsa Security Inc. Efficient finite field multiplication in normal basis

Similar Documents

Publication Publication Date Title
Mirzaee et al. On the numerical solution of fractional stochastic integro-differential equations via meshless discrete collocation method based on radial basis functions
Lefever et al. The brusselator: it does oscillate all the same
JPS60144834A (en) Arithmetic circuit for finite field
KR100309724B1 (en) Reed solomon coding apparatus and reed solomon coding method
US5227992A (en) Operational method and apparatus over GF(2m) using a subfield GF(2.sup.
Jarvis The Emergence of Consciousness from Chaos
EP0447245A2 (en) Bit-serial division method and apparatus
Fairen et al. Power series approximation to solutions of nonlinear systems of differential equations
JPH01181232A (en) Finite field inverse element circuit
Pei et al. On choosing state variables for piecewise-smooth dynamical system simulations
Sharma et al. Numerical simulation of quantum anharmonic oscillator, embedded within an infinite square well potential, by matrix methods using Gnumeric spreadsheet
Chkareuli et al. Constrained gauge fields from spontaneous Lorentz violation
Stachowiak et al. Exact solutions in bouncing cosmology
US20220044121A1 (en) Training device, inferring device, training method, inferring method, and non-transitory computer readable medium
Tarasov et al. Semidefinite programming and arithmetic circuit evaluation
Rajeev et al. Highly nonlinear wave solutions in a dual to the chiral model
JP2641285B2 (en) Galois field division circuit and multiplication / division shared circuit
Wadgaonkar et al. Floating point FPGA architecture of PID controller
Dobrucký et al. Analysis of higher order system with impulse exciting functions in z-domain
JPH0253141A (en) Galois extension field computing element
Lin et al. Failure criteria of dentin-resin tensile bond test—a fracture mechanics approach
Markowski Digraphs Structures with Weights Corresponding to One-Dimensional Fractional Systems
Nguyen et al. Improving the Accuracy of ACI 318-08 Design Standard for Predicting Strength of CFST Columns Using Machine Learning
Alabdulmohsin et al. Analytic Summability Theory
Leinbach Representing numbers as continued fractions and an N-spire. tns document to do some basic continued fraction arithmetic