JPH01180318A - Control method of automatic temperature-rise for extrusion machine - Google Patents
Control method of automatic temperature-rise for extrusion machineInfo
- Publication number
- JPH01180318A JPH01180318A JP63003441A JP344188A JPH01180318A JP H01180318 A JPH01180318 A JP H01180318A JP 63003441 A JP63003441 A JP 63003441A JP 344188 A JP344188 A JP 344188A JP H01180318 A JPH01180318 A JP H01180318A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- electric heater
- time
- heating
- rise
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000001125 extrusion Methods 0.000 title abstract 4
- 238000010438 heat treatment Methods 0.000 claims abstract description 63
- 238000004364 calculation method Methods 0.000 claims abstract description 9
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000005070 sampling Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005094 computer simulation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/78—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
- B29C48/80—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
- B29C48/83—Heating or cooling the cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/78—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
- B29C48/875—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling for achieving a non-uniform temperature distribution, e.g. using barrels having both cooling and heating zones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92704—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92857—Extrusion unit
- B29C2948/92876—Feeding, melting, plasticising or pumping zones, e.g. the melt itself
- B29C2948/92895—Barrel or housing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は押出機の自動昇温制御方法に係り、特にシリン
ダの各加熱ゾーンの昇温動作を同時に完了するようにし
た押出機の自動昇温制御方法に関する。[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to an automatic temperature increase control method for an extruder, and in particular to a method for simultaneously completing the temperature increase operation of each heating zone of a cylinder. This invention relates to an automatic temperature increase control method for an extruder.
(従来の技術)
押出機はホッパから供給される樹脂材料をスクリューに
より加圧溶融してダイに押出し、このダイによりフィル
ム、シート等の樹脂成型品を形成するものであるが、良
好な成型品を作るには樹脂材料の溶融樹脂温度を所定値
に維持しなければならない。そのため樹脂材料を押出す
シリンダの外周に軸線方向に互いに離間した複数の電気
ヒータを設けて上記軸線方向に沿うに複数の加熱ゾーン
を形成し、これら各電気ヒータのON率等を調整するこ
とにより各加熱ゾーンの温度調整を行っていた。この場
合、一般に、押出機の各加熱ゾーンでは樹脂材料や、ス
クリューの構成、成型品の種類等により異なった温度が
要求され、全工程即ちシリンダの全範囲にわたっては同
一温度ではない。(Prior art) An extruder uses a screw to pressurize and melt resin material supplied from a hopper and extrudes it into a die, which forms resin molded products such as films and sheets. To make this, the temperature of the molten resin material must be maintained at a predetermined value. Therefore, by providing a plurality of electric heaters spaced apart from each other in the axial direction on the outer periphery of the cylinder that extrudes the resin material to form a plurality of heating zones along the axial direction, and adjusting the ON rate of each of these electric heaters, etc. The temperature of each heating zone was adjusted. In this case, generally different temperatures are required in each heating zone of the extruder depending on the resin material, screw configuration, type of molded product, etc., and the temperature is not the same throughout the entire process, that is, over the entire range of the cylinder.
そのため押出機の運転に際し、先ず樹脂材料や、スクリ
ューの構成等に応じて、シリンダの各加熱ゾーンで希望
される温度を設定し、この温度になるように前記各加熱
ゾーンに設けられている各電気ヒータの加熱温度を調節
することが行われている。Therefore, when operating the extruder, first set the desired temperature in each heating zone of the cylinder according to the resin material, screw configuration, etc. The heating temperature of an electric heater is adjusted.
この各電気ヒータによる各加熱ゾーンの昇温方法として
は、各電気ヒータを同時に運転し、各加熱ゾーンが予定
の温度になるまで待つもの、あるいは運転してみて、そ
の昇温特性から各電気ヒータの運転開始時点を予測する
ものがあった。The method of raising the temperature of each heating zone using each electric heater is to operate each electric heater at the same time and wait until each heating zone reaches the expected temperature, or to operate each electric heater and determine the temperature increase characteristics of each electric heater. There was something that predicted the start of operation.
(発明が解決しようとする課題)
ところが電気ヒータを同時に運転し、各加熱ゾーンが予
定の温度になるまで待つものは簡単ではあるが、既に予
定温度に達した加熱ゾーンでは他の加熱ゾーンが所定温
度になるまでその温度を維持していなければならず、そ
の予定の温度になるまでの待ち時間に消費される電力が
無駄になる等の問題がある。また電気ヒータを運転して
みてその昇温特性から各電気ヒータの運転開始時点を予
測するものにあっては、昇温か同時にできるが、押出機
のスクリューの構成が変わったり樹脂材料が変更すると
、その都度、予め電気ヒータの加熱運転を行ってみて、
この昇温特性を決めて行かなければならず操作が大変面
倒である等の問題がある。そのため押出機のシリンダの
各加熱ゾーンを所定の温度に加熱する各電気ヒータの運
転開始時点を自動的にかつ迅速に決めることができるよ
うな手段に対する要望が強くなってきた。(Problem to be solved by the invention) However, although it is easy to operate the electric heaters at the same time and wait until each heating zone reaches the scheduled temperature, if the heating zone has already reached the scheduled temperature, other heating zones may The temperature must be maintained until the desired temperature is reached, and there are problems such as wasted power consumed during the waiting time until the expected temperature is reached. In addition, if the electric heaters are operated and the temperature rise characteristics are used to predict when each electric heater will start operating, heating can be done at the same time, but if the screw configuration of the extruder changes or the resin material changes, Each time, try running the electric heater in advance.
There are problems such as the need to determine the temperature increase characteristics and the operation is very troublesome. Therefore, there has been a strong demand for a means that can automatically and quickly determine when to start operating each electric heater that heats each heating zone of an extruder cylinder to a predetermined temperature.
本発明は上記要望を満たすべく押出機のシリンダを加熱
する各電気ヒータの運転開始時点を自動的に決めること
ができるようにした押出機の自動昇温制御方法を提供す
ることにある。SUMMARY OF THE INVENTION In order to meet the above-mentioned needs, the present invention provides an automatic temperature increase control method for an extruder, which can automatically determine the start point of operation of each electric heater that heats the cylinder of the extruder.
(課題を解決するための手段)
本発明は、シリンダの所望の加熱ゾーンの昇温を各加熱
ゾーンにそれぞれ設けられた電気ヒータにより行うよう
にした押出機の自動昇温制御方法において、前記各加熱
ゾーンの各電気ヒータの昇温特性を近似関数によって特
定し、その昇温特性によって前記電気ヒータの制御点温
度と前記各加熱ゾーンが予定する設定温度との偏差温度
が所定範囲になるまでの昇温時間を算出し、この算出時
間から前記各電気ヒータの昇温開始時点を算定し、その
昇温開始時点において各対応する電気ヒータの加熱を開
始するようにしたことを特徴とする押出機の自動昇温制
御方法を得ようとするものである。(Means for Solving the Problems) The present invention provides an automatic temperature increase control method for an extruder in which the temperature of a desired heating zone of a cylinder is raised by an electric heater provided in each heating zone. The temperature increase characteristic of each electric heater in the heating zone is specified by an approximation function, and the temperature difference between the control point temperature of the electric heater and the set temperature planned for each heating zone is determined according to the temperature increase characteristic until it reaches a predetermined range. An extruder characterized in that a temperature increase time is calculated, a temperature increase start point of each of the electric heaters is calculated from this calculated time, and heating of each corresponding electric heater is started at the temperature increase start point. The purpose is to obtain an automatic temperature increase control method.
(作 用)
押出機のシリンダの各部の温度即ち、加熱ゾーンの所望
温度が、樹脂材料、スクリューの構成等により決定され
ると、予め求めておいた複数の電気ヒータの昇温特性を
示す近似関数の定数により、前記近似関数に沿ってコン
ピュータのシミュレーション計算で算出される各電気ヒ
ータの制御点温度と上記加熱ゾーンの所望の設定温度と
がコンピュータにより比較され、その比較による偏差温
度が一定になるまで加熱時間が算出される。この時間に
よって各電気ヒータの昇温開始時点が算出され、この昇
温開始時点において、順次各電気ヒータの加熱開始が行
われるので、各電気ヒータの昇温か常に同時に完了する
。(Function) Once the temperature of each part of the cylinder of the extruder, that is, the desired temperature of the heating zone, is determined by the resin material, the configuration of the screw, etc., an approximation indicating the temperature increase characteristics of the plurality of electric heaters determined in advance is determined. Using the constant of the function, the computer compares the control point temperature of each electric heater calculated by computer simulation according to the approximate function with the desired set temperature of the heating zone, and the deviation temperature resulting from the comparison becomes constant. The heating time is calculated until the The time point at which the temperature of each electric heater starts to increase is calculated based on this time, and at this point in time, the heating of each electric heater is sequentially started, so that the heating of each electric heater is always completed at the same time.
(実施例)
以下図面により本発明の実施例について説明をする。第
3図は本発明押出機の自動昇温制御装置の概要を示す構
成図である。押出機のシリンダ10内にはスクリュー1
1が回転自在に設けられており、そのスクリュー11の
回転によって図示しない樹脂材料が順次矢印方向に押出
される。このシリンダ10の外周12には軸線方向に互
いに離間された複数の電気ヒータ13 a + 13
b r13c・・・が設けられ、軸線方向に沿って順
次複数の加熱ゾーンが形成される。これら電気ヒータ1
3a、13b、 13c・・−には夫々PID温調計
14a、14b、14c・・・が接続され、上記電気ヒ
ータ13 a 、 13 b 、 13 c ・・
・がキーボード15を有するコンピュータ16によりP
ID温調計14a・・・を介して制御されるようにしで
ある。(Example) Examples of the present invention will be described below with reference to the drawings. FIG. 3 is a block diagram showing an outline of an automatic temperature increase control device for an extruder of the present invention. There is a screw 1 inside the cylinder 10 of the extruder.
1 is rotatably provided, and as the screw 11 rotates, a resin material (not shown) is successively extruded in the direction of the arrow. A plurality of electric heaters 13 a + 13 are arranged on the outer periphery 12 of the cylinder 10 and spaced apart from each other in the axial direction.
br13c... are provided, and a plurality of heating zones are sequentially formed along the axial direction. These electric heaters 1
PID temperature controllers 14a, 14b, 14c... are connected to the electric heaters 13a, 13b, 13c..., respectively, and the electric heaters 13a, 13b, 13c...
・P by a computer 16 having a keyboard 15
It is designed to be controlled via the ID temperature controller 14a.
また、この電気ヒータ13a、13b、13c・・・の
加熱状態はシリンダ10に取付けた熱電対17により検
出され、PID温調計14a・・・を介してコンピュー
タ16に送られ、各電気ヒータ13a・・・の昇温特性
、制御点の温度計算、偏差温度計算等が行われるように
しである。Further, the heating state of the electric heaters 13a, 13b, 13c... is detected by a thermocouple 17 attached to the cylinder 10, and is sent to the computer 16 via the PID temperature controller 14a... . . . temperature rise characteristics, control point temperature calculations, deviation temperature calculations, etc.
ところで押出機の各加熱ゾーンの各電気ヒータの昇温特
性は、一般に下記近似関数で表される。By the way, the temperature increase characteristics of each electric heater in each heating zone of an extruder are generally expressed by the following approximate function.
y (t) =K (1−exp (−(t−L) /
T) )・・・(1)
ここでKはプロセスゲイン定数、Lは等価むだ時間定数
、Tは等価時間定数である。y (t) = K (1-exp (-(t-L) /
T) )...(1) Here, K is a process gain constant, L is an equivalent dead time constant, and T is an equivalent time constant.
しかして、上記押出機における各加熱ゾーンの各電気ヒ
ータの昇温特性の定数は、各ゾーン毎の昇温カーブデー
タにより算出される。すなわち、まずキーボード15を
介してコンピュータ16を作動させると、PID温調計
14a・・・を介して各加熱ゾーンの各電気ヒータ13
g、13b、13C・・・に加熱信号が送られ、各電気
ヒータ13a・・・が加熱される。この各電気ヒータ1
3a・・・の加熱による各加熱ゾーンの温度は熱電対1
7により検出され、シリンダー温度が設定温度に達する
まで、所定時間毎に各PIDm調計14a・・・を介し
てコンビエータ16に送られる。これによって、各加熱
ゾーンにおける所定時間毎の温度変化に応じて各加熱ゾ
ーンの昇温カーブデータが得られ、ヒータON率が10
0%のときだけの昇温カーブデータによって各加熱ゾー
ンに対する(1)式の各定数、すなわちプロセスゲイン
定数に1等価むだ時間定数りおよび等価時間定数Tが算
出され、この値がコンピュータ16に記憶せしめられる
。これらの定数は温度によって殆んど変化しないので押
出機ごとに一回行えば良い。Therefore, the constant of the temperature increase characteristic of each electric heater in each heating zone in the extruder is calculated from the temperature increase curve data for each zone. That is, when the computer 16 is first activated via the keyboard 15, each electric heater 13 in each heating zone is activated via the PID temperature controller 14a...
A heating signal is sent to the electric heaters 13a, 13b, 13c, . . . , and each electric heater 13a . Each electric heater 1
The temperature of each heating zone due to heating of 3a... is determined by thermocouple 1.
7, and is sent to the combiator 16 via each PIDm controller 14a at predetermined time intervals until the cylinder temperature reaches the set temperature. As a result, temperature rise curve data for each heating zone is obtained according to temperature changes at predetermined time intervals in each heating zone, and the heater ON rate is 10%.
The constants in equation (1) for each heating zone, that is, the process gain constant plus one equivalent dead time constant and the equivalent time constant T, are calculated from the temperature rise curve data only at 0%, and these values are stored in the computer 16. I am forced to do it. Since these constants hardly change depending on the temperature, it is sufficient to perform the test once for each extruder.
そこで、押出機に使用される樹脂材料、スクリューの構
成等が決まると、それに応じて各加熱ゾーンの設定温度
が決められ、上記算出された各定数に、L、Tに基づい
て、上記設定温度に対する昇温完了時間がコンピュータ
16を使って計算機シミュレーションによって求められ
る。すなわちキーボード15を介しである加熱ゾーンに
対する設定温度tl、t2・・・をコンピュータ16に
入力する(Sl)(第1図)。この設定温度tl。Therefore, once the resin material used in the extruder, the configuration of the screw, etc. are determined, the set temperature of each heating zone is determined accordingly, and the set temperature is determined based on each constant calculated above, L, and T. The heating completion time for the temperature increase is determined by computer simulation using the computer 16. That is, the set temperatures tl, t2, . . . for a certain heating zone are input into the computer 16 via the keyboard 15 (Sl) (FIG. 1). This set temperature tl.
t2・・・の入力によってコンピュータ16で所定のサ
ンプリング時間加算(S2)毎にその時点における制御
点温度と温度偏差が算出される。この計算方法を第2図
に示すラプラス領域での伝達関数で示す計算機シミュレ
ーションのブロック綜目により説明する。所定の設定温
度がコンピュータ16に入力されると、これが下記(2
)式に示すPID温調計制御式22に加えられ、この下
記式(2)によってプロセス23への操作量信号M(s
)が算出される。By inputting t2..., the computer 16 calculates the control point temperature and temperature deviation at each predetermined sampling time addition (S2). This calculation method will be explained using a computer simulation block diagram using a transfer function in the Laplace domain shown in FIG. When a predetermined set temperature is input into the computer 16, it is determined as follows (2).
) is added to the PID temperature controller control equation 22 shown in equation (2) below, and the manipulated variable signal M(s
) is calculated.
M(s) −100/P ・ (1+1/(Tl
s)十TDs ) ・ E(s)・・・(2)
ここでE (s)は設定温度と制御点温度との温度偏差
、Pは比例定数、TIは積分時間、TDは微分時間であ
る。M(s) -100/P ・(1+1/(Tl
s) 10TDs) ・E(s)...(2) Here, E(s) is the temperature deviation between the set temperature and the control point temperature, P is the proportionality constant, TI is the integral time, and TD is the differential time. .
上記PID温調計制御式22で算出された操作量信号M
(s)はプロセス23に作用し、ここで下記(3)式に
よって制御点温度Y (s)が算出される。Manipulated amount signal M calculated by PID temperature controller control formula 22 above
(s) acts on the process 23, where the control point temperature Y (s) is calculated by the following equation (3).
Y(s) −K/(1+Ts)exp(−Ls) ・M
(s)・” (3)上記(3)式は、加熱ゾーンの昇温
カーブデータを近似する(1)式のラプラス領域での伝
達関数を表すものであってる。Y(s) -K/(1+Ts)exp(-Ls) ・M
(s)・” (3) The above equation (3) represents the transfer function in the Laplace region of equation (1) that approximates the temperature increase curve data of the heating zone.
この制御点温度Y(8)が前記ブロック綜目の比較部2
1にフィードバックされ設定温度20の前記設定温度信
号t1と比較され温度偏差E (s)を得る。この第2
回のブロック綜目の時間領域での計算を例えばルンゲ・
クッタΦギルの方法や離散時間形の状態方程式に直す方
法で行い、Y (s)はy (t)として計算が行われ
る(S3)。そしてE (s)は時間領域での温度偏差
e (t)として計算される(S4)。This control point temperature Y(8) is
1 and compared with the set temperature signal t1 of the set temperature 20 to obtain a temperature deviation E (s). This second
For example, Runge
Y (s) is calculated as y (t) using the Kutta Φ-Gill method or the method of converting it into a discrete-time equation of state (S3). Then, E (s) is calculated as the temperature deviation e (t) in the time domain (S4).
以後同様にして各サンプリング時間毎に上記温皮部差計
算が行なわれ、この温度偏差が許容温度偏差例えば±1
℃になると、この許容温度偏差持続時間の計算が・行わ
れる(S5)。これは温度偏差がサンプリング時間毎に
連続して±1℃以内を持続しているかいなかを判定し、
その範囲内であればその間のサンプリング時間を加算す
る。そしてその加算された時間が指定された時間以上ど
うかを判断しくS6)、指定時間未満であればサンプリ
ング時間加算を初めから繰返し、指定時間以上であれば
、設定温度に昇温するまでのサンプリング時間加算で計
算した時間が昇温完了時間m1となる。Thereafter, the above warm skin difference calculation is performed for each sampling time in the same way, and this temperature deviation is determined as the allowable temperature deviation, for example, ±1.
℃, calculation of the allowable temperature deviation duration is performed (S5). This determines whether the temperature deviation continues to be within ±1℃ at each sampling time,
If it is within that range, the sampling time during that time is added. Then, it is determined whether the added time is greater than or equal to the specified time (S6), and if it is less than the specified time, the sampling time addition is repeated from the beginning, and if it is greater than or equal to the specified time, the sampling time is increased until the temperature reaches the set temperature. The time calculated by addition becomes the temperature rise completion time m1.
このような計算を各加熱ゾーンの各電気ヒータ13a、
13b・・・につき行い、加熱ゾーンが各設定温度にな
る各電気ヒータ13a、13b・・・の昇温完了時間m
1.m2.m3・・・が算出るされる。Such calculations are performed for each electric heater 13a in each heating zone,
13b..., and the heating completion time m of each electric heater 13a, 13b... is carried out so that the heating zone reaches each set temperature.
1. m2. m3... is calculated.
これらの昇温完了時間ml、m2.m3・・・に基づい
て押出機の運転をするときの各電気ヒータ13a、13
b・・・の運転開始時点を時間ml。These heating completion times ml, m2. Each electric heater 13a, 13 when operating the extruder based on m3...
The start point of operation of b... is the time ml.
m2.m3・・・から逆算し、各電気ヒータ13g、1
3b・・・の加熱開始時点が決められる(第4図)。す
なわち、同時に各加熱ヒータが昇温を完了する所望時刻
TMから電気ヒータ13aはTM−mlの時刻に加熱す
るようにする。以後同様に各電気ヒータ13b、130
・・・の加熱開始時点が決められる。しかして上述のよ
うにして決定された各加熱設定温度において、コンピュ
ータから自動的に各PID温調計に昇温指令がだされ各
電気ヒータ13a、13b・・・の加熱が開始され、こ
れによって各加熱ゾーンの各電気ヒータ13a。m2. Counting backwards from m3..., each electric heater is 13g, 1
The heating start point of 3b... is determined (FIG. 4). That is, the electric heater 13a is made to heat at a time TM-ml from the desired time TM when each heater finishes raising the temperature at the same time. Thereafter, each electric heater 13b, 130
The heating start point of ... can be determined. At each heating set temperature determined as described above, a temperature increase command is automatically issued from the computer to each PID temperature controller, and heating of each electric heater 13a, 13b, etc. is started. Each electric heater 13a in each heating zone.
13b・・・時間ml、m2の経過後に同時に設定温度
tl、t2.t3・・・になる。13b... After the elapse of time ml, m2, the set temperatures tl, t2. It becomes t3...
本発明は、押出機の各加熱ゾーンを予め設定された温度
に昇温す、る場合、各電気ヒータを昇温特性に近似する
関数で特定し、この関数に沿って昇温される制御点温度
と設定温度との偏差計算から各電気ヒータの昇温時間を
コンピュータによって計算させるようにしたから、昇温
時間の計算が容易であるばかりでなく、さらにその昇温
時間に基づいて各電気ヒータの加熱開始時点が決定され
るので、押出機の各加熱ゾーンの昇温を所望の時刻に同
時に完了することができ、押出機の始動時における待時
間がなく電力の省エネルギ化を図ることができる。In the present invention, when heating each heating zone of an extruder to a preset temperature, each electric heater is specified by a function that approximates the heating characteristics, and a control point at which the temperature is raised in accordance with this function is provided. Since the computer calculates the temperature rise time for each electric heater from the deviation calculation between the temperature and the set temperature, it is not only easy to calculate the temperature rise time, but also calculates the temperature rise time for each electric heater based on the temperature rise time. Since the heating start point of the extruder is determined, the heating of each heating zone of the extruder can be completed at the same time at the desired time, and there is no waiting time when starting the extruder, resulting in energy savings. can.
第1図は本発明に係る押出機の自動昇温制御方法の作動
を示すフローチャート、第2図は、第1図の作動を説明
するための主要部制御回路のブロック線図、第3図は、
本押出機の自動昇温制御方法の概要を示す構成図、第4
図は本発明の作動特性図である。
1°0・・・シリンダ、11・・・スクリュー、12・
・・シリンダの外面、13・・・電気ヒータ、14・・
・PID温調計、15・・・キーボード、16・・・コ
ンピュータ、17・・・熱電対、20・・・設定温度、
21・・・比較部、22・・・PID温調計制御式、2
3・・・プロセス。
第2図
第3図
一時間 TM
第4図FIG. 1 is a flowchart showing the operation of the automatic temperature increase control method for an extruder according to the present invention, FIG. 2 is a block diagram of the main control circuit for explaining the operation of FIG. 1, and FIG. ,
Block diagram showing an overview of the automatic temperature increase control method of this extruder, No. 4
The figure is an operational characteristic diagram of the present invention. 1°0...Cylinder, 11...Screw, 12.
...Cylinder outer surface, 13...Electric heater, 14...
・PID temperature controller, 15...keyboard, 16...computer, 17...thermocouple, 20...set temperature,
21... Comparison section, 22... PID temperature controller control type, 2
3... Process. Figure 2 Figure 3 One hour TM Figure 4
Claims (1)
にそれぞれ設けられた電気ヒータにより行うようにした
押出機の自動昇温制御方法において、前記各加熱ゾーン
の各電気ヒータの昇温特性を近似関数によって特定し、
その昇温特性によって前記各電気ヒータの加熱による制
御点温度と前記各加熱ゾーンが予定する設定温度との偏
差温度が所定範囲になるまでの昇温時間を算出し、この
算出時間から前記各電気ヒータの昇温開始時点を算定し
、その昇温開始時点において各対応する電気ヒータの加
熱を開始するようにしたことを特徴とする押出機の自動
昇温制御方法。 2、前記近似関数は y(t)=K〔1−exp{−(t−L)/T}〕にし
たことを特徴とする請求項1に記載の押出機の自動昇温
制御方法。[Scope of Claims] 1. In an automatic temperature increase control method for an extruder, in which the temperature of a desired heating zone of a cylinder is raised by an electric heater provided in each heating zone, each electric heater of each heating zone is heated. Identify the temperature rise characteristics of the heater using an approximation function,
Based on the temperature increase characteristics, the temperature increase time until the deviation temperature between the control point temperature due to heating of each electric heater and the set temperature scheduled for each of the heating zones reaches a predetermined range is calculated, and from this calculation time, each of the electric heaters 1. An automatic temperature increase control method for an extruder, characterized in that the time point at which the temperature of a heater starts to increase is calculated, and the heating of each corresponding electric heater is started at the time when the temperature increase starts. 2. The automatic temperature increase control method for an extruder according to claim 1, wherein the approximation function is y(t)=K[1-exp{-(t-L)/T}].
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63003441A JPH01180318A (en) | 1988-01-11 | 1988-01-11 | Control method of automatic temperature-rise for extrusion machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63003441A JPH01180318A (en) | 1988-01-11 | 1988-01-11 | Control method of automatic temperature-rise for extrusion machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01180318A true JPH01180318A (en) | 1989-07-18 |
Family
ID=11557437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63003441A Pending JPH01180318A (en) | 1988-01-11 | 1988-01-11 | Control method of automatic temperature-rise for extrusion machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01180318A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01190427A (en) * | 1988-01-26 | 1989-07-31 | Sekisui Chem Co Ltd | Automatic temperature rise control system |
-
1988
- 1988-01-11 JP JP63003441A patent/JPH01180318A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01190427A (en) * | 1988-01-26 | 1989-07-31 | Sekisui Chem Co Ltd | Automatic temperature rise control system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5173224A (en) | Fuzzy inference thermocontrol method for an injection molding machine with a pid control | |
CA2053625C (en) | Thermocontrol method for an injection molding machine | |
CA2399118C (en) | Method for operating extruder temperature controller with stable temperature reset | |
JP3024696B2 (en) | Temperature control method for injection molding machine | |
US5397515A (en) | Injection molding machine temperature control system | |
US4407651A (en) | Hybrid reheating system and method for polymer preforms | |
JPH04105915A (en) | Temperature control method for injection molding machine | |
EP2054185A1 (en) | Thermal management of extruder of molding system, amongst other things | |
US20090076644A1 (en) | Method of Operating a Temperature Management Device | |
US6861018B2 (en) | Temperature control method and apparatus for injection molding structure | |
JP4042645B2 (en) | Automatic temperature rise control method for molding machine | |
JPH01180318A (en) | Control method of automatic temperature-rise for extrusion machine | |
JP2007276189A (en) | Temperature control method of injection moulding machine | |
Su et al. | Discrete-time VSS temperature control for a plastic extrusion process with water cooling systems | |
JPH01267021A (en) | Simulation system of multi-zone temperature controlling system and method for identifying characteristic parameter | |
JPH0422688B2 (en) | ||
JP3028281B2 (en) | Temperature control method for injection molding machine | |
JP2597920B2 (en) | Temperature control method for injection molding machine | |
JPH0720948A (en) | Controller for heater | |
JP3234001B2 (en) | Vulcanizer temperature controller | |
JPH082573B2 (en) | Cylinder temperature control method for injection molding machine | |
SU883878A1 (en) | Device for controlling article thermal treatment | |
JPH0354038B2 (en) | ||
JPH06126748A (en) | Temperature control device of vulcanizer | |
JPH05228973A (en) | Method and device for controlling temperature of injection equipment |