JPH01180129A - Radio repeater station - Google Patents

Radio repeater station

Info

Publication number
JPH01180129A
JPH01180129A JP63003126A JP312688A JPH01180129A JP H01180129 A JPH01180129 A JP H01180129A JP 63003126 A JP63003126 A JP 63003126A JP 312688 A JP312688 A JP 312688A JP H01180129 A JPH01180129 A JP H01180129A
Authority
JP
Japan
Prior art keywords
power
power supply
circuit
wireless relay
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63003126A
Other languages
Japanese (ja)
Inventor
Katsuya Nakazato
中里 勝哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63003126A priority Critical patent/JPH01180129A/en
Publication of JPH01180129A publication Critical patent/JPH01180129A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Abstract

PURPOSE:To operate a radio relay station by an economical power system by providing a control circuit reducing the transmission output of the radio repeater based on the result of detection of a power installation fault detection circuit. CONSTITUTION:If a fault takes place in any of thermocouple generators 61-6n, the number of power supplies is reduced by one from N sets and the output power is reduced. Moreover, a generator fault detection circuit 7 detects a fault of the generator 6 simultaneously and sends an alarm signal. Then a control circuit 9 operates any of power supply interruption circuits 10. That is, the power supply of the power to any of RF AMPs 3 is stopped. Then the power consumption by the AMP 3 is reduced while the power supply is interrupted and the other AMP 3 keeps stable operation. Moreover, when no power is supplied to the AMP 3, the input signal is supplied as it is to the output as the NR AMP having the bypass circuit and the input signal is sent to the output circuit with slight loss.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、無線中継局に間し、特に、中間中継局におけ
る消費電力を低減せしめることにより経済的な電源シス
テムで動作する無線中継局に間する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to wireless relay stations, and particularly to wireless relay stations that operate on an economical power supply system by reducing power consumption in intermediate relay stations. Pause.

[従来の技術] 一般に、極超短波などを利用した無線通信における中間
の無線中継局では、独立した電源設備が必要となる。こ
のため、従来は、太陽電池を利用した電源システムや、
熱電対発電機を利用した電源システムや、チャージャー
とバッテリーとを利用したバッテリーフローティングシ
ステム、あるいはエンジン発電機とバッテリーの組合せ
により保守期間を6力月以上に延長した充放電システム
などが採用されている。
[Prior Art] Generally, an intermediate wireless relay station in wireless communication using extremely high frequency waves or the like requires independent power supply equipment. For this reason, conventional power systems using solar cells,
A power supply system using a thermocouple generator, a battery floating system using a charger and battery, or a charging/discharging system that extends the maintenance period to six months or more by combining an engine generator and battery are being adopted. .

第2図は、従来の無線中継局における電R設備のブロッ
ク図である。同図のものは、熱電対発電機を採用したも
のである。
FIG. 2 is a block diagram of electric R equipment in a conventional wireless relay station. The one shown in the figure uses a thermocouple generator.

同図において、6.〜6□、は熱電対発電機、11は電
源接続回路である。
In the figure, 6. ~6□ are thermocouple generators, and 11 is a power supply connection circuit.

このように、従来の無線中継局では、通常、N+1電源
システムを備えていた。すなわち、負荷に必要な消費電
力を担うN個の熱電対発電機と、1個の予備用熱発電機
とによって電源設備を構成していた。
Thus, conventional wireless relay stations are usually equipped with an N+1 power supply system. That is, the power supply equipment was constituted by N thermocouple generators that bear the power consumption necessary for the load and one backup thermoelectric generator.

[解決すべき問題点コ 上述した従来の無線中継局は、信頼性を確保するため、
電源設備をN+1電源システムで構成していたため、高
価であるとともに、現用のN個の発電機が正常に動作し
ている場合、予備用の1個の熱発電機は無駄な装置とな
ってしまうという問題点があった。
[Problems to be solved] In order to ensure reliability, the conventional wireless relay station described above has
Because the power supply equipment was configured with an N+1 power supply system, it was expensive, and if the current N generators were operating normally, one backup thermal generator would be a waste of equipment. There was a problem.

本発明は、上記問題点にかんがみてなされたもので、経
済的な電源システムを備えた無線中継局の提供を目的と
する。
The present invention has been made in view of the above problems, and aims to provide a wireless relay station equipped with an economical power supply system.

[問題点の解決手段] 上記目的を達成するため、本発明の無線中継局は、無線
中継装置と、この無線中継装置が動作するに必要な電源
容量を供給するN個の電源設備と、このN個の電源設備
の故障を検出する電源設備故障検出回路と、この電源設
備故障検出回路の検出結果にもとづいて上記無線中継装
置の送信出力を減少させるコントロール回路とを備えた
構成としである。
[Means for Solving Problems] In order to achieve the above object, the wireless relay station of the present invention includes a wireless relay device, N power supply facilities that supply the power capacity necessary for the operation of this wireless relay device, and This configuration includes a power supply equipment failure detection circuit that detects failures in N power supply equipment, and a control circuit that reduces the transmission output of the wireless relay device based on the detection results of the power supply equipment failure detection circuit.

[実施例コ 以下、図面にもとづいて本発明の詳細な説明する。[Example code] Hereinafter, the present invention will be explained in detail based on the drawings.

第1図は、本発明の一実施例に係る無線中継局のブロッ
ク図である。なお、従来例と共通または対応する部分に
ついては同一の符号で表す。
FIG. 1 is a block diagram of a wireless relay station according to an embodiment of the present invention. Note that parts common to or corresponding to those of the conventional example are denoted by the same reference numerals.

同図において、1(11〜1.)は受信機、2(21〜
2.)は受信機1に接続される送信機、3(31〜3.
)は送信機2の出力を増幅するRF  AMPである。
In the figure, 1 (11-1.) is a receiver, 2 (21-1.) is a receiver, and 2 (21-1.) is a receiver.
2. ) are transmitters connected to receiver 1, 3 (31-3.);
) is an RF AMP that amplifies the output of the transmitter 2.

また、4は電源ユニットで、受信機1−RF  AMP
3へ安定な電力を供給する。そして、これらの受信機1
〜電源ユニツト4て極超短波無線中継装置を構成してい
る。なお、53,5゜は受信用および送信用の空中線で
あり、受信機lおよび送信機2に接続されている。
In addition, 4 is a power supply unit, and receiver 1-RF AMP
Supply stable power to 3. And these receivers 1
~The power supply unit 4 constitutes an extremely high frequency radio relay device. Note that 53.5° is a receiving and transmitting antenna, which is connected to the receiver 1 and the transmitter 2.

次に、6(6,〜6.)は熱電対発電機、7(71〜7
.1)は発電機故障検出回路であり、この発電機故障検
出回路7は熱電対発電機6の動作状況を監視し、故障を
検出するとアラーム信号を送出する。また、8はダイオ
ードで、熱電対発電機6を並列に接続する。そして、9
はコントロール回路、10(10,〜10.)はRF 
 AMP送信機3と電源ユニット4の間に挿入された電
力供給遮断回路であり、コントロール回路9は発電器故
障検出回路7のアラーム信号を受信すると電力供給遮断
回路10を動作させる。
Next, 6 (6, ~ 6.) is a thermocouple generator, 7 (71 ~ 7.
.. 1) is a generator failure detection circuit, and this generator failure detection circuit 7 monitors the operating status of the thermocouple generator 6, and sends out an alarm signal when a failure is detected. Further, 8 is a diode, and the thermocouple generator 6 is connected in parallel. And 9
is the control circuit, 10 (10, ~10.) is the RF
This is a power supply cutoff circuit inserted between the AMP transmitter 3 and the power supply unit 4, and when the control circuit 9 receives an alarm signal from the generator failure detection circuit 7, it operates the power supply cutoff circuit 10.

上記構成において、熱電対発電機6.〜6nが正常に動
作しているときは、このN個の熱電対発電機6によって
全てのRF  AMP3が動作している。しかし、熱電
対発電機61〜6oのいずれかに故障が生じると電源は
N個から1個減少し、出力電力も減少する。また、これ
と同時に発電器故障検出回路7が熱電対発電機6の故障
を検出し、アラーム信号を送出する。すると、コントロ
ール回路9が電力供給遮断回路10のうちいずれかを作
動させる。すなわち、いずれかのRF  AMP3への
電力の供給を停止させる。このため、電力供給を遮断し
たRF  AMP3の分だけ消費電力が減少し、他のR
F  AMP3は安定した動作を維持することができる
In the above configuration, the thermocouple generator 6. 6n are operating normally, all the RF AMPs 3 are operated by these N thermocouple generators 6. However, if a failure occurs in any of the thermocouple generators 61 to 6o, the number of power supplies decreases by one from N, and the output power also decreases. At the same time, the generator failure detection circuit 7 detects a failure of the thermocouple generator 6 and sends out an alarm signal. Then, the control circuit 9 activates one of the power supply cutoff circuits 10. That is, the supply of power to one of the RF AMPs 3 is stopped. Therefore, the power consumption is reduced by the amount of RF AMP3 whose power supply was cut off, and the power consumption of other RF AMP3 is reduced.
F AMP3 can maintain stable operation.

なお、RF  AMP3は電力供給されない場合、人力
信号はそのまま出力へ供給されるバイパス回路を有する
かNRAMP(負抵抗型増幅器)の構成をとり、電力供
給されない場合は、わずかなロスで入力信号を出力回路
へ送信する。
In addition, when RF AMP3 is not supplied with power, the human input signal is supplied directly to the output.It has a bypass circuit or has an NRAMP (negative resistance amplifier) configuration, and when it is not supplied with power, it outputs the input signal with a small loss. Send to circuit.

この場合、例えば、送信出力は3wからIWへ4.7d
B下がることになる。しかし、回線規格からいえば、通
常の場合この程度のマージンを保有しているのが普通で
ある。このため、回線性能としては実用上何ら問題は生
じない。
In this case, for example, the transmission power is 4.7d from 3w to IW.
B will go down. However, in terms of line standards, it is normal to have this margin in normal cases. Therefore, there is no practical problem in terms of line performance.

また、3WからI Wへ送信出力を下げることにより一
つのRF  AMPあたり20w〜30wの消費電力を
節約でき、1+1双方向システムては、80w−w12
0wの消費電力低減が可能となる。
In addition, by lowering the transmission power from 3W to IW, power consumption of 20W to 30W can be saved per RF AMP, and in a 1+1 bidirectional system, 80W-W12
It is possible to reduce power consumption to 0W.

これに対して、熱電対発電機は、現在、発電容量が80
w〜120Wのものが人手可能である。
In contrast, thermocouple generators currently have a power generation capacity of 80
Power of 120 W can be produced by hand.

このため、本実施例の構成をとれば従来より一台だけ熱
電対発電機を少なくできる。
Therefore, with the configuration of this embodiment, the number of thermocouple generators can be reduced by one compared to the conventional one.

なお、故障した電源は正常に復帰すれば、送信出力も故
障前の出力に復帰する。
Note that if the failed power supply returns to normal, the transmission output will also return to the output before the failure.

このように本実施例では、RF  AMPを含む極超短
波無線中!!H置と、N個の熱電対発電機システムと、
RF  AMPへの電力供給遮断回路と、熱電対発電機
故障検出回路と、この熱電対発電機故障検出回路の検出
結果にもとづいて上記電力供給遮断回路をコントロール
するコントロール回路とから構成されている。
In this way, in this embodiment, ultra short wave radio including RF AMP! ! H station, N thermocouple generator system,
It consists of a power supply cutoff circuit to the RF AMP, a thermocouple generator failure detection circuit, and a control circuit that controls the power supply cutoff circuit based on the detection result of the thermocouple generator failure detection circuit.

なお、本発明は上記実施例に限定されるものでなく、要
旨の範囲内における種々変形例を含むものである。例え
ば、上述の実施例では、熱電対発電機を並列接続した場
合を示したが、直列接続する場合も可能である。また、
必ずしも熱電対発電機である必要はなく、他の電源でも
良い。
It should be noted that the present invention is not limited to the above embodiments, but includes various modifications within the scope of the gist. For example, in the above-mentioned embodiment, the thermocouple generators were connected in parallel, but it is also possible to connect them in series. Also,
It does not necessarily have to be a thermocouple generator, and other power sources may be used.

さらに、電力供給遮断回路は、RF  AMPに内蔵す
ることもできる。また、上述した電源ユニットとは独立
にRF  AMP用の電源ユニットが用意され、このR
F  AMP用電源ユニットと上述した発電機〜ダイオ
ードから構成される直流電源システムとの間に遮断回路
を挿入することもできる。
Furthermore, the power supply cutoff circuit can also be built into the RF AMP. In addition, a power supply unit for RF AMP is prepared independently of the power supply unit described above, and this R
It is also possible to insert a cutoff circuit between the F AMP power supply unit and the above-mentioned DC power supply system composed of the generator and the diode.

[発明の効果コ 以上説明したように本発明は、中間中継局を構成する無
線中継装置が動作するに最低限必要な電源容量を供給す
るN個の電源設備を備えるとともに、このN個の電源設
備のうち1個が故障した場合、送信出力を適当に減らす
ことにより、消費電力を低減せしめ、安定な動作を維持
することが可能な無線中継局を提供できるという効果が
ある。
[Effects of the Invention] As explained above, the present invention includes N power supply equipment that supplies the minimum power capacity required for the operation of the wireless relay equipment that constitutes the intermediate relay station, and also provides a If one of the equipment fails, the power consumption can be reduced by appropriately reducing the transmission output, thereby providing a wireless relay station that can maintain stable operation.

そして、この結果、経済的に有効な総合システム\を実
現できる。
As a result, an economically effective comprehensive system can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る無線中継局のブロック
図、第2図は従来の無線中継局における電源設備のブロ
ック図である。 1:受信機 2:送信機 3:RF  AMP 4:電源ユニット 6:熱電対発電機 7:発電機故障検出回路 9:コントロール回路 10電力供給遮断回路
FIG. 1 is a block diagram of a wireless relay station according to an embodiment of the present invention, and FIG. 2 is a block diagram of power supply equipment in a conventional wireless relay station. 1: Receiver 2: Transmitter 3: RF AMP 4: Power supply unit 6: Thermocouple generator 7: Generator failure detection circuit 9: Control circuit 10 Power supply cutoff circuit

Claims (2)

【特許請求の範囲】[Claims] (1)無線中継装置と、この無線中継装置が動作するに
必要な電源容量を供給するN個の電源設備と、このN個
の電源設備の故障を検出する電源設備故障検出回路と、
この電源設備故障検出回路の検出結果にもとづいて上記
無線中継装置の送信出力を減少させるコントロール回路
とを具備することを特徴とする無線中継局。
(1) a wireless relay device, N power supply equipment that supplies the power capacity necessary for the wireless relay device to operate, and a power equipment failure detection circuit that detects a failure of the N power supply equipment;
A wireless relay station comprising: a control circuit that reduces the transmission output of the wireless relay device based on the detection result of the power supply equipment failure detection circuit.
(2)前記無線中継装置が、複数段の送信機と、この複
数段の送信機に対して個別に電源の供給を遮断する電源
遮断回路とを有するものであり、前記コントロール回路
が、前記電源設備故障検出回路の検出結果にもとづいて
上記電源遮断回路を動作させるものである特許請求の範
囲第1項記載の無線中継局。
(2) The wireless relay device includes a plurality of stages of transmitters and a power cutoff circuit that individually cuts off power supply to the plurality of transmitters, and the control circuit is configured to control the power supply. 2. The wireless relay station according to claim 1, wherein said power cutoff circuit is operated based on the detection result of an equipment failure detection circuit.
JP63003126A 1988-01-12 1988-01-12 Radio repeater station Pending JPH01180129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63003126A JPH01180129A (en) 1988-01-12 1988-01-12 Radio repeater station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63003126A JPH01180129A (en) 1988-01-12 1988-01-12 Radio repeater station

Publications (1)

Publication Number Publication Date
JPH01180129A true JPH01180129A (en) 1989-07-18

Family

ID=11548671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63003126A Pending JPH01180129A (en) 1988-01-12 1988-01-12 Radio repeater station

Country Status (1)

Country Link
JP (1) JPH01180129A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7567779B2 (en) 1993-07-30 2009-07-28 International Multi-Media Corporation Sub-orbital, high altitude communications system
US7844218B2 (en) 1993-07-30 2010-11-30 International Multi-Media Corporation Sub-orbital, high altitude communications system
JP2012015747A (en) * 2010-06-30 2012-01-19 Japan Radio Co Ltd Electronic device, auxiliary power supply unit, and relay device
US8483120B2 (en) 1993-07-30 2013-07-09 Sherwin I. Seligsohn High efficiency sub-orbital high altitude telecommunications system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7567779B2 (en) 1993-07-30 2009-07-28 International Multi-Media Corporation Sub-orbital, high altitude communications system
US7844218B2 (en) 1993-07-30 2010-11-30 International Multi-Media Corporation Sub-orbital, high altitude communications system
US8483120B2 (en) 1993-07-30 2013-07-09 Sherwin I. Seligsohn High efficiency sub-orbital high altitude telecommunications system
JP2012015747A (en) * 2010-06-30 2012-01-19 Japan Radio Co Ltd Electronic device, auxiliary power supply unit, and relay device

Similar Documents

Publication Publication Date Title
JPS60254928A (en) Set stand-by communication system
JPH0630467A (en) Remote transmitting device
WO2004015502A3 (en) Single fault impervious integrated control and monitoring system
JPH01180129A (en) Radio repeater station
JPH11168424A (en) Simplified portable telephone base station system
EP1073176A2 (en) A low cost battery charging system
US6370048B1 (en) AC power system with redundant AC power sources
CN210899177U (en) Marine satellite communication equipment
CN211830247U (en) Multi-battery charging and discharging control device and system
CN106786563A (en) A kind of autonomous switching circuit of binary channel platform power
KR102348865B1 (en) Uninterruptible power supply
JPS6127231Y2 (en)
RU2769110C1 (en) Multi-contact switching system with four power contacts and dc link
CN109976427B (en) Power supply system with low standby power consumption
CN201639351U (en) Communication power supply screen
JP2642427B2 (en) Automatic recovery operation device for distribution system
JPS58134535A (en) Reducing method of power consumption of solar cell radio station
JP2001292082A (en) Wireless communication system
CN116455276A (en) Tracking coordination switching system and method between excitation regulators
WO2020216017A1 (en) Power source system with low standby power consumption
JPS6326042A (en) Equipment-state supervising system
CN116566462A (en) Communication satellite multimode measurement and control system
CN115694158A (en) Converter valve control system
JP2002205697A (en) Integrated control system for artificial satellite
JPS6282727A (en) Emergency broadcast receiver