JPH01179919A - Nonlinear optical element - Google Patents

Nonlinear optical element

Info

Publication number
JPH01179919A
JPH01179919A JP354388A JP354388A JPH01179919A JP H01179919 A JPH01179919 A JP H01179919A JP 354388 A JP354388 A JP 354388A JP 354388 A JP354388 A JP 354388A JP H01179919 A JPH01179919 A JP H01179919A
Authority
JP
Japan
Prior art keywords
nonlinear
light
input light
electro
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP354388A
Other languages
Japanese (ja)
Inventor
Hajime Sakata
肇 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP354388A priority Critical patent/JPH01179919A/en
Priority to US07/292,537 priority patent/US5002369A/en
Priority to DE68927115T priority patent/DE68927115D1/en
Priority to EP89100344A priority patent/EP0324434B1/en
Publication of JPH01179919A publication Critical patent/JPH01179919A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable good operation with low power by providing reflecting mirrors consisting of multilayered dielectric films which form an optical resonator with a nonlinear crystal in-between and further providing transparent electrodes on both side faces of the reflecting mirror. CONSTITUTION:The reflecting mirrors 12, 13 consisting of the multilayered dielectric films forming the optical resonator in common use as insulating layers are provided on both side faces of the nonlinear medium 11 having photoconductivity and electrooptic effect to input light 17 and further the output light has a differential gain characteristics or history characteristic with respect to the input light from the side faces of the transparent electrodes 14, 15 provided on both side faces on the outside of the reflecting mirrors. Namely, this element consists of the mechanism to impress a high voltage to the transparent electrodes from the outside, to generate induced refractive indices in the nonlinear crystal and to decrease the induced refractive indices according to the intensity of the input light thereafter. The good operation to the sufficiently low intensity of the input light is thereby enabled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非線形光学素子に関し、特に光を情報媒体とし
て利用した光コンピユータ−、光通信等の各種の分野で
光変調器、光メモリ、光スィッチ、光増幅器、光しきい
値素子、光論理動作等の光機能素子として用いる場合に
好適な非線形光学素子に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to nonlinear optical elements, and is particularly applicable to optical modulators, optical memories, and optical switches in various fields such as optical computers and optical communications that use light as an information medium. The present invention relates to a nonlinear optical element suitable for use as an optical functional element such as an optical amplifier, an optical threshold element, or an optical logic operation device.

(従来の技術) 従来より同一の光入力強度に対して2つの異った光出力
の安定状態を生ずる素子としての非線形光字素−tには
種々のものが提案されている。
(Prior Art) Various types of nonlinear optical elements-t have been proposed as elements that produce stable states of two different optical outputs for the same optical input intensity.

第2図は従来の非線形光学素子の概略図である。同図に
おいて21は光の入射強度に対して吸収、分散、又はそ
の双方が非線形性を示す非線形媒質、22.23は非線
形媒質21をその内部に含む光共振器を形成する所定の
透過率を有する反射鏡である。
FIG. 2 is a schematic diagram of a conventional nonlinear optical element. In the figure, 21 is a nonlinear medium exhibiting nonlinearity in absorption, dispersion, or both with respect to the incident light intensity, and 22 and 23 are the predetermined transmittances forming an optical resonator containing the nonlinear medium 21 therein. It is a reflecting mirror with

同図に示す非線形光学素子は一方の側から入射光が反射
鏡22を通って非線形媒質21内へ入射すると入射光は
非線形媒質21で吸収、分散等の影響を受けて反射鏡2
3に達し、一部が透過し、他は反射し、再び非線形媒質
23へ戻る。
In the nonlinear optical element shown in the figure, when incident light from one side passes through a reflecting mirror 22 and enters into a nonlinear medium 21, the incident light is absorbed by the nonlinear medium 21, dispersion, etc.
3, some of them are transmitted, others are reflected, and return to the nonlinear medium 23 again.

このとき光共振器内の往復における光の位相差、反射鏡
の反射率等のパラメータを適切に設定すると光の人出力
特性に非線形性が現われる。
At this time, if parameters such as the phase difference of the light during the round trip within the optical resonator and the reflectance of the reflecting mirror are appropriately set, nonlinearity will appear in the human output characteristics of the light.

例えば第3図に示すように非線形光学素子21への入射
光強度■。を0より序々に増加してぃくとある程度にな
ると急徴に透過光強度Itが増加する現象が現われる。
For example, as shown in FIG. 3, the intensity of light incident on the nonlinear optical element 21 is . When it gradually increases from 0 to a certain point, a phenomenon appears in which the transmitted light intensity It suddenly increases.

この特性を一般に微分利得特性と称している。This characteristic is generally called a differential gain characteristic.

この他、前記パラメータの設定によっては、例えば第4
図に示すように入射光強度I0を増加させたときの特性
と減少させたときの特性が異る、所謂履歴特性を持たせ
ることも可能である。尚、履歴特性は非光双安定性と呼
ばれる場合もある。
In addition, depending on the settings of the parameters, for example, the fourth
As shown in the figure, it is also possible to provide a so-called hysteresis characteristic in which the characteristics when the incident light intensity I0 is increased and the characteristics when it is decreased are different. Note that the hysteresis characteristic is sometimes called non-optical bistability.

このような特性を有する非線形光学素子は光を媒体とす
る、例えばメモリ、スイッチ、増幅、論理動作、光制御
等の機能素子として広く利用することができる。
Nonlinear optical elements having such characteristics can be widely used as functional elements that use light as a medium, such as memories, switches, amplification, logic operations, optical control, and the like.

非線形媒質の動作機構を大別して2つに分けると、1つ
は光が入射することにより電子の準位が変化し、屈折率
又は吸収係数が変化するものと、他の1つは光の入射に
より熱が発生し、屈折率又は吸収係数が変化するもので
ある。熱効果を利用するものは電子効果を利用するもの
に比べてやや低パワー動作の傾向があるが動作速度が遅
い、安定性に欠ける等という問題点がある。
The operating mechanism of nonlinear media can be roughly divided into two types: one in which the level of electrons changes due to the incidence of light and the refractive index or absorption coefficient changes, and the other in which the refractive index or absorption coefficient changes due to the incidence of light. Heat is generated due to this, and the refractive index or absorption coefficient changes. Those that utilize thermal effects tend to operate at a slightly lower power than those that utilize electronic effects, but they have problems such as slow operating speed and lack of stability.

逆に電子・効果を利用するものは高速動作が可能である
が動作パワーが大きく、又、屈折率変化、吸収係数変化
等が小さい為、非線形動作の幅が小さいという問題点が
ある。
On the other hand, those that utilize electron effects are capable of high-speed operation, but have a problem in that the operating power is large, and changes in refractive index, absorption coefficient, etc. are small, so the width of nonlinear operation is small.

一般には非線形媒質を光共振器内に含み、光共振器の反
射鏡を利用して光帰還を図る構成の非線形光学素子は多
くの場合、動作パワーが大きいという点が最大の問題点
となっている。
In general, the biggest problem with nonlinear optical elements, which include a nonlinear medium in an optical resonator and use a reflective mirror in the optical resonator for optical feedback, is that the operating power is large. There is.

例えば光双安定動作が常温で比較的低パワー動作が可能
と言われているZn5c、 Ga八へ/ GaAlAs
であっても数100 W/c12以上のパワー密度を要
する。
For example, Zn5c, which is said to be capable of optically bistable operation at room temperature and relatively low power, and GaAlAs.
Even in this case, a power density of several hundred W/c12 or more is required.

動作パワーが大きいと非線形光学素子の安定性が劣化し
たり、又、熱励起電子の発生による横方向への拡散が多
くなり、例えば2次元情報を並列処理する際の素子分解
能が劣化してくる。又、緩和時間か長くなり素子動作サ
イクルが低くなってくる。更に動作パワーの低い他の素
子と連携するときには他の素子の動作パワーまで減衰す
る必要が生じエネルギーの損失、系全体の熱発生等の種
々の問題点が生じてくる。
If the operating power is large, the stability of the nonlinear optical element will deteriorate, and the generation of thermally excited electrons will increase lateral diffusion, which will deteriorate the element resolution when processing two-dimensional information in parallel, for example. . Furthermore, the relaxation time becomes longer and the device operation cycle becomes shorter. Furthermore, when working with other elements with lower operating power, it is necessary to attenuate the operating power of the other elements, resulting in various problems such as energy loss and heat generation in the entire system.

(発明が解決しようとする問題点) 本発明は従来の素子において動作パワーが極めて大きい
という問題点を解決し、低パワーでしかも良好なる動作
か可能な簡易な構成の非線形光学素子の提供を目的とす
る。
(Problems to be Solved by the Invention) The purpose of the present invention is to solve the problem of extremely large operating power in conventional elements, and to provide a nonlinear optical element with a simple configuration that can operate well with low power. shall be.

(問題点を解決するための手段) 入力光に対して光導電性及び電気光学効果を有する非線
形媒質の両側面に絶縁層を兼ねた光共振器を形成する誘
電体多層膜から成る反射鏡を設け、更に該反射鏡の外側
の両側面に該非線形媒質に電界を印加する為の透明電極
を設け、該透明電極の側面からの入力光に対して出力光
が微分利得特性若しくは履歴特性を有することである。
(Means for solving the problem) A reflective mirror made of a dielectric multilayer film that forms an optical resonator that also serves as an insulating layer on both sides of a nonlinear medium that has photoconductivity and electro-optic effects for input light. Further, transparent electrodes are provided on both outer sides of the reflecting mirror for applying an electric field to the nonlinear medium, and output light has differential gain characteristics or hysteresis characteristics with respect to input light from the sides of the transparent electrodes. That's true.

(実施例) 第1図は本発明の一実施例の概略図である。同図におい
て10は非線形光学素子、11は光導電性及び電気光学
効果を有する非線形媒質、12゜13は絶縁膜を兼ねる
若しくは絶縁膜を内部に含むと共に光共振器を形成する
誘電体多層膜の反射鏡であり、非線形媒質11の両側に
設けられている。14.15は透明電極、16は外部電
源である。
(Embodiment) FIG. 1 is a schematic diagram of an embodiment of the present invention. In the figure, 10 is a nonlinear optical element, 11 is a nonlinear medium having photoconductive and electro-optic effects, and 12 and 13 are dielectric multilayer films that also serve as an insulating film or contain an insulating film inside and form an optical resonator. They are reflecting mirrors and are provided on both sides of the nonlinear medium 11. 14 and 15 are transparent electrodes, and 16 is an external power source.

本実施例においては入射光17の入力強度に対して、透
過光18、反射鏡19の出力強度か微分利得特性、又は
履歴特性を生じる。
In this embodiment, with respect to the input intensity of the incident light 17, the output intensity of the transmitted light 18 and the reflecting mirror 19 produces a differential gain characteristic or a history characteristic.

次に本実施例による非線形光学素子10の動作機構の導
出過程を (イ)入射光17の強度に依存する非線形媒質11の屈
折率変化、しいては光共振器内を往復する際の位相遅延
量の変化 (ロ)前記位相遅延量の変化が及ぼす入射光強度−出力
光強度(透過及び反射光強度)の特性という2つの過程
に分けて説明する。
Next, we will explain the process of deriving the operating mechanism of the nonlinear optical element 10 according to the present example. Change in amount (b) This will be explained separately in two processes: the incident light intensity-output light intensity (transmitted and reflected light intensity) characteristics caused by the change in the phase delay amount.

まず前記(イ)の過程における非線形光学素子の動作解
析モデルを第5図を用いて説明する。
First, the motion analysis model of the nonlinear optical element in the process (a) will be explained with reference to FIG.

厚さDの非線形媒質11としては光導電率及び電気光学
係数の大きな電気光学結晶が用いられる。例えばB50
(Bi1251020) 、BTO(Bi12 Ti0
20) 。
As the nonlinear medium 11 having a thickness D, an electro-optic crystal having a large photoconductivity and electro-optic coefficient is used. For example B50
(Bi1251020), BTO (Bi12 Ti0
20).

BGO(lli、□GeO2,) 、BaTi0.、、
SBN ((Ba、5r)Nb20.) 。
BGO(lli, □GeO2,), BaTi0. ,,
SBN ((Ba, 5r)Nb20.).

GaAs 、Zn5e 、CdTe 、LiNbO3等
が用いられる(以下11を電気光学結晶ともいう。) 電気光学結晶11を挟むようにして屈折率の高い層と低
い層とを交互に積層した誘電体多層膜の反射鏡12.1
3を形成している。
GaAs, Zn5e, CdTe, LiNbO3, etc. are used (hereinafter, 11 is also referred to as electro-optic crystal). A dielectric multilayer reflector in which layers with a high refractive index and layers with a low refractive index are alternately laminated with the electro-optic crystal 11 sandwiched therebetween. 12.1
3 is formed.

本実施例では反射鏡12.13は絶縁膜を兼ねるか又は
その内部に絶縁膜を含むようにしている。更に反射鏡1
2.13の外側の両側面に透明電極14.15を設けて
いる。
In this embodiment, the reflecting mirrors 12 and 13 also serve as an insulating film or include an insulating film therein. Furthermore, reflector 1
Transparent electrodes 14.15 are provided on both outer sides of 2.13.

尚、本実施例においては透明電極14.15や誘電体多
層膜の反射鏡を含めて全体として反射率、透過率、そし
て光吸収等を適切に設定している。
In this embodiment, the reflectance, transmittance, light absorption, etc. of the entire structure including the transparent electrodes 14 and 15 and the dielectric multilayer film reflector are appropriately set.

誘電体多層膜としては、例えばMgF2(n=1.38
) 、 S i 02 (n−1,46) 、 A 1
20:+(n−1,62) 、 M g O(ni、7
5) 、 T h 02(n−1,8) 、 S io
 (n−1,7〜2.0 ) 、 Zr02(n−2,
1) 、 Ce02(n−2,2)、 Ti0z(n=
2.2〜2.7)等が適用できる。又、透明電極膜とし
ては有機、無機に問わられずに、例えばS not  
(n−1,9)、  I  n2 03  (n−2,
0)。
As the dielectric multilayer film, for example, MgF2 (n=1.38
), S i 02 (n-1,46), A 1
20:+(n-1,62), MgO(ni,7
5), T h 02 (n-1, 8), S io
(n-1,7~2.0), Zr02(n-2,
1) , Ce02(n-2,2), Ti0z(n=
2.2 to 2.7) etc. can be applied. In addition, the transparent electrode film may be organic or inorganic, for example, S not
(n-1,9), I n2 03 (n-2,
0).

ITO(Sn02とIn、03の合成)等が適用できる
ITO (synthesis of Sn02 and In,03), etc. can be applied.

第6図は第5図における外部Ti源16の電圧印加によ
る電気光学結晶11、及び絶縁膜を兼ねた光共fif’
+3を形成する反射鏡12.13に加わる電界の様子を
表わしている。同図においては光が入射していない状態
を示しており、この場合には電気光学結晶11に外部電
界がそのまま加わっている。
FIG. 6 shows the electro-optic crystal 11 and the optical fiber fif' which also serves as an insulating film by applying a voltage from the external Ti source 16 in FIG.
It shows the electric field applied to the reflecting mirrors 12 and 13 forming +3. The figure shows a state in which no light is incident, and in this case, an external electric field is directly applied to the electro-optic crystal 11.

次に第7図に示すように入射光61が入射すると、その
領域で励起されたキャリア62が外部電界により移動し
、反射鏡12.13との界面でトラップされ、空間電荷
となる。従って、電気光学結晶11内では空間電荷が内
部電界となって外部から印加された電界を打ち消す方向
に働く。以上のように電気光学結晶11内の光強度に応
じて電気光学結晶ll中の電界が決定される。このとき
の電気光学結晶11内の電界は次のようになる。
Next, as shown in FIG. 7, when incident light 61 enters, carriers 62 excited in that region move due to the external electric field, are trapped at the interface with the reflecting mirrors 12 and 13, and become space charges. Therefore, within the electro-optic crystal 11, the space charge becomes an internal electric field that acts in a direction that cancels out the electric field applied from the outside. As described above, the electric field in the electro-optic crystal 11 is determined according to the light intensity in the electro-optic crystal 11. The electric field within the electro-optic crystal 11 at this time is as follows.

結晶中の光励起により生じるキャリア密度N(cm−’
・5−1)は量子効率η、入射フォトンエネルギーhν
、結晶内の光強度tc  (訃c+o−”) 、吸収係
数α(cl’)を用いると以下のように表わされる。
Carrier density N (cm-') caused by optical excitation in the crystal
・5-1) is quantum efficiency η, incident photon energy hν
, the light intensity within the crystal tc (訃c+o-''), and the absorption coefficient α(cl'), it can be expressed as follows.

電気光学結晶11に入射した光は本発明の目的からする
と、十分な量が透過又は/及び反射光となって出射する
必要がある。その為には通常電気光学結晶11の厚さは
、光の吸収長に比較して薄く発生したキャリアは損失な
く分離して電気光学結晶11の両表面でトラップされキ
ャリアの分布は表面だけと考えるのが妥当である。
For the purpose of the present invention, a sufficient amount of the light incident on the electro-optic crystal 11 needs to be emitted as transmitted or/and reflected light. For this purpose, the thickness of the electro-optic crystal 11 is usually considered to be thin compared to the absorption length of light, and the generated carriers are separated without loss and trapped on both surfaces of the electro-optic crystal 11, and the distribution of carriers is considered to be only on the surface. is reasonable.

そうすると第7図のように光双安定素子全体に電圧v0
を印加した状態で光が入射したときの電気光学結晶11
と反射鏡12.13の界面におけるキャリア密度分布は σ。 = 00   、  σ−二 −00但し、 a o  (c◆cm−”)=  e f NdL  
   −−−−−−−H(2)e:単位電荷(C) である。第7図に示すように領域A、B、C13つの領
域での電位を各々φ8.φb、φ。とすると 係数A、B、Cは各層の初期電位であり、係数Ao、B
、、C0は各層の電界である。
Then, as shown in Figure 7, the voltage v0 across the optical bistable element is
Electro-optic crystal 11 when light is incident with
The carrier density distribution at the interface between the reflector 12 and 13 is σ. = 00, σ−2 −00 However, a o (c◆cm−”)= e f NdL
--------H(2)e: Unit charge (C). As shown in FIG. 7, the potentials in the three regions A, B, and C are set to φ8. φb, φ. Then, the coefficients A, B, and C are the initial potentials of each layer, and the coefficients Ao, B
, , C0 is the electric field in each layer.

まず、上記の電位が連続である条件から一方、電界の境
界条件より次式が求められる。
First, from the above condition that the potential is continuous, on the other hand, from the boundary condition of the electric field, the following equation is obtained.

(4) 、 (5)式を解くことにより各係数が決定さ
れる。
Each coefficient is determined by solving equations (4) and (5).

今、必要な値は電気光学結晶にかかる電界B0である。The required value now is the electric field B0 applied to the electro-optic crystal.

電界B。をEとすれば、(4) 、 (5)式からとな
る。
Electric field B. If E is, then Equations (4) and (5) are obtained.

以上のように(1)式、(2)式、(6)式より光双安
定素子の外部印加電圧及び電気光学結晶11の内部光強
度の値から、結晶内部の電界が求まる。
As described above, the electric field inside the crystal can be determined from the externally applied voltage of the optical bistable element and the internal light intensity of the electro-optic crystal 11 using equations (1), (2), and (6).

次に電界によって電気光学結晶11の屈折率か、どのよ
うに変化するかについて述べる。
Next, we will discuss how the refractive index of the electro-optic crystal 11 changes depending on the electric field.

電気光学結晶11によって屈折率変化の様子は異なるが
、ここでは本実施例で挙げたBSO(魚群23)、Ga
As、CdTe (魚群43m)について説明する。上
記結晶はすべて光学的等方結晶である。従って、自然状
態では複屈折性を示さない。しかし、電界を印加するこ
とにより複屈折性を示すようになる。
The state of refractive index change differs depending on the electro-optic crystal 11, but here, the BSO (fish school 23) and Ga
As, CdTe (fish school 43m) will be explained. All of the above crystals are optically isotropic crystals. Therefore, it does not exhibit birefringence in its natural state. However, by applying an electric field, it becomes birefringent.

本実施例では光の進行方向と電界方向が第8図に示すよ
うに同じ向きである、所謂縦形動作である。電界を印加
することにより、第8図に示すように2軸を中心として
、本来の結晶軸x、y軸に対して一45°座標系を回転
させたx′、y”軸の位置に新たな主軸か現われる。こ
れを第9図のように電界印加時の主軸座標系(x’、y
′。
In this embodiment, the direction in which the light travels and the direction of the electric field are the same as shown in FIG. 8, which is a so-called vertical operation. By applying an electric field, the coordinate system is rotated by 145° with respect to the original crystal axes x and y, centering on the two axes, as shown in Figure 8, and new positions are created on the A principal axis appears.This can be expressed as the principal axis coordinate system (x', y
'.

2)と呼び、その時のx′、y′軸方向の偏光に対する
屈折率変化なΔnとすれば、電気光学係数γ41を用い
て となる。
2), and if Δn is the refractive index change with respect to polarized light in the x' and y' axis directions at that time, the electro-optic coefficient γ41 is used.

ここで、ndは自然状態での結晶の屈折率である。Here, nd is the refractive index of the crystal in its natural state.

第8図においてx′軸に偏光面を持つ直線偏光の場合、
光共振器内部の光強度ICの変化に伴い屈折率がnd+
Δn(ao−0)からndまで変化する。y軸に偏光面
を有する場合は、逆にnd−Δn (ooJ )からn
dまで変化する。
In the case of linearly polarized light with a polarization plane on the x' axis in Figure 8,
As the light intensity IC inside the optical cavity changes, the refractive index changes to nd+
It changes from Δn(ao−0) to nd. When the plane of polarization is on the y-axis, conversely, from nd-Δn (ooJ) to n
It changes up to d.

この他の偏光成分についてもnd−Δnからnd+Δn
までの範囲内で屈折率の変化か起こる。
Regarding other polarization components, from nd-Δn to nd+Δn
A change in refractive index occurs within a range of

次に1前述の(ロ)の過程を第5図を用いて説明する。Next, the process (b) mentioned above will be explained using FIG.

第5図に示すように反射鏡12.13を構成する各層の
屈折率を入射光17側から順にno+nI 、n 2 
+ ””、膜厚をd 、 、 d2. ・−(nm)と
し、入射光の波長をλ(nm) 、入射光強度を1゜(
訃cm−2) 、透過光強度を11  (訃Cff1−
2)、反射光強度を1.(訃Cl1l−2)、電気光学
結晶ll内の内部光強度をI C(W−cm−”)とす
る。又、各層間の反射係数をr ! +  2 + ”
”、透過係数なtl。
As shown in FIG. 5, the refractive index of each layer constituting the reflecting mirror 12, 13 is determined from the incident light 17 side as follows: no+nI, n2
+ "", film thickness is d, , d2. -(nm), the wavelength of the incident light is λ(nm), and the intensity of the incident light is 1°(
cm-2), and the transmitted light intensity is 11 (Cff1-
2), the reflected light intensity is 1. (Cl1l-2), the internal light intensity within the electro-optic crystal ll is I C (W-cm-"). Also, the reflection coefficient between each layer is r! + 2 + "
”, transmission coefficient tl.

t2とする。Let it be t2.

以上のパラメータを用いて第5図に示す構成の所謂ファ
プリベロー型共振器の強度透過率及び強度反射率を求め
る。フレネル係数を用いたマトリクス法によれば、非線
形光学素子全体の振幅反射率R′、振幅透過率T′は以
下のように表わされる。
Using the above parameters, the intensity transmittance and intensity reflectance of the so-called Fabry Bellows resonator having the configuration shown in FIG. 5 are determined. According to the matrix method using Fresnel coefficients, the amplitude reflectance R' and amplitude transmittance T' of the entire nonlinear optical element are expressed as follows.

但し、CIl、 C21は以下のように計算される。However, CIl and C21 are calculated as follows.

透過側多層膜反射鏡 1・ j 上記においてji+は各層の位相差で 又、αは電気光学結晶の吸収係数である。Transmission side multilayer reflector 1.j In the above, ji+ is the phase difference of each layer Further, α is the absorption coefficient of the electro-optic crystal.

従って、(8) 、 (9)式から強度反射率R1強度
透過率Tは以下のように表わされる。
Therefore, from equations (8) and (9), the intensity reflectance R1 and the intensity transmittance T are expressed as follows.

(12) 、 (13)式のC,、、C2,に含まれる
電気光学結晶の屈折率(n9)は前述の(イ)の過程に
おいて説明したように内部光強度ICで変化するためI
Cの関数となっている。即ち 、 n9:nd  + Δ n  (I  c  )  =
 ・・・・・・−(14)である。
The refractive index (n9) of the electro-optic crystal included in C, , C2, in equations (12) and (13) changes with the internal light intensity IC as explained in the process (a) above, so I
It is a function of C. That is, n9: nd + Δ n (I c ) =
......-(14).

次に透過側、反射側の帰還条件から、内部光強度ICと
反射光強度1.、、透過光強度ltの関係は第5図に示
す電気光学結晶11の厚さd9をDで表わすと It =A・ ■c          ・・・・・・
・・・・・・(15)■、=■。−B−IC・・・・・
・・−・−(16)但し、 ・・・・・・・−−−−−(+7) ・・・・・・・・・−(ta) となる。
Next, from the feedback conditions on the transmission side and reflection side, the internal light intensity IC and the reflected light intensity 1. ,,The relationship between the transmitted light intensity lt is shown in FIG. 5, where the thickness d9 of the electro-optic crystal 11 is represented by D, It =A・■c...
......(15) ■, =■. -B-IC...
・・・・−(16) However, ・・・・・・・−−−−−(+7) ・・・・・・・・・−(ta)

(+7) 、 (+8)式中のRBは透過側の多層膜の
反射鏡の強度反射率であり、次のように求められる。
RB in the formulas (+7) and (+8) is the intensity reflectance of the multilayer mirror on the transmission side, and is determined as follows.

まず、(10)式のように電界係数を表わすと従って、
(19)式の係数を用いて となる。
First, if we express the electric field coefficient as in equation (10), then
Using the coefficients of equation (19), it becomes.

(13)式と(15)式、 (+2)式と(16)式か
ら各々内部光強度!6を除去すると、入射光強度I0と
透過光強度1tとの関係、及び入射光強度I0と反射光
強度11との関係が各々得られる。得られた関係は超越
方程式で与えられ、解析的に第10図に示すような入射
−透過光強度特性が得られる。パラメータの設定により
微分利得特性や履歴特性が得られる。履歴特性において
、負の傾きを持つ状態は実際には図に示す矢印のように
上か下かの安定状態を示す。
Internal light intensity from equations (13), (15), (+2) and (16), respectively! 6, the relationship between the incident light intensity I0 and the transmitted light intensity 1t and the relationship between the incident light intensity I0 and the reflected light intensity 11 are obtained. The obtained relationship is given by a transcendental equation, and an incident-transmitted light intensity characteristic as shown in FIG. 10 is analytically obtained. Differential gain characteristics and history characteristics can be obtained by setting parameters. In the history characteristic, a state with a negative slope actually indicates a stable state, either upward or downward, as shown by the arrow in the figure.

同様にして第11図に示すような入射−反射光強度も得
ることができる。
Similarly, the incident-reflected light intensity as shown in FIG. 11 can also be obtained.

次に本発明の非線形光学素子の作成の第1実施例を示す
。結晶方向が<001>面で作成した厚さ約500μm
のBSO板の両面にBSOに近い順にmgl’2/ Z
rO2/ MgF2 / ZrO2/ MgF2 / 
ZrO2/MgI+2/ ZrO2を成膜し、誘電体多
層膜の反射鏡とし、BSOを挟んでファブリベロー型光
共振器を形成した。
Next, a first embodiment of the production of a nonlinear optical element according to the present invention will be described. Approximately 500 μm thick with crystal orientation <001> plane
mgl'2/Z on both sides of the BSO board in order of proximity to the BSO.
rO2/ MgF2 / ZrO2/ MgF2 /
A film of ZrO2/MgI+2/ZrO2 was formed to serve as a reflective mirror for a dielectric multilayer film, and a Fabry-Bello type optical resonator was formed with BSO sandwiched therebetween.

各々の膜厚は、この素子の動作に使用されるArレーザ
ー光の波長(λ= 514.5nm )に合わせ、光学
的M厚n−dが1080人となるように設計している。
The thickness of each film is designed to match the wavelength of the Ar laser beam (λ=514.5 nm) used for the operation of this device, so that the optical thickness n−d is 1080 nm.

又、全体で絶縁膜も兼ねている。The entire film also serves as an insulating film.

更に、外側に透明電極としてITOMを成膜した。IT
O電極1漠の一部にソート線を溶着し、5000VのD
C電圧をI T O’ii fj間に印加した。
Further, ITOM was formed as a transparent electrode on the outside. IT
A sorting wire is welded to a part of the O electrode 1, and a D of 5000V is applied.
C voltage was applied between I T O'ii fj.

Arレーザー光の偏光方向を<100>方向から一45
°回転した軸方向とし、パルス幅を1 m5ecに固定
し、光強度な0から次第に増加していき反射及び透過の
出力光強度を測定した。
Change the polarization direction of the Ar laser beam from the <100> direction to -45
The output light intensity of reflection and transmission was measured with the pulse width fixed at 1 m5ec and the light intensity gradually increasing from 0.

次に逆に入力光強度を減少していき、同様に反射、透過
光強度を測定した。このときの結果を第12図、第13
図に示す。図中のパラメータは初期位相量で7アブリベ
ロー共振器の共振状態からの位相差を示している。初期
位相の設定に依存して入出力光強度特性が微分利得特性
や双安定特性を示しているのがわかる。
Next, the input light intensity was conversely reduced, and the reflected and transmitted light intensities were measured in the same manner. The results at this time are shown in Figures 12 and 13.
As shown in the figure. The parameters in the figure indicate the initial phase amount and the phase difference from the resonant state of the 7-abbrew resonator. It can be seen that the input and output light intensity characteristics exhibit differential gain characteristics and bistable characteristics depending on the initial phase setting.

次に第2実施例として誘電体多層膜の反射鏡の膜構成を
入射側と透過側で異る構成とした。構成膜材料はZrO
2とMgF2とITOとで同様であるが膜厚を変えた。
Next, as a second embodiment, the film structure of the reflecting mirror of the dielectric multilayer film was different on the incident side and the transmission side. Constituent film material is ZrO
2, MgF2, and ITO, but the film thickness was changed.

入射側の膜構成は850面から順にMgF2(1130
人) 、 ZrO2(745人) 、 MgF2(11
30人) 、 Zr02(745人) 、 MgF2(
1130人) 、 Zr02(745人)。
The film structure on the incident side is MgF2 (1130
), ZrO2 (745 people), MgF2 (11
30 people), Zr02 (745 people), MgF2 (
1130 people), Zr02 (745 people).

Mgh (1130人> 、 ITO(745人)とし
、透過側の膜構成は850面から順にMgF2(750
人) 、 ZrO□(495人) 、 MgFz (7
50人) 、 ZrO,(495人)。
Mgh (1130 people>), ITO (745 people), and the membrane configuration on the permeation side is MgF2 (750 people) in order from 850 faces.
), ZrO□ (495 people), MgFz (7
50 people), ZrO, (495 people).

MgF2(750人) 、 Zr02(495人) 、
 MgF2(750人) 、 ITO(495人)とし
た。
MgF2 (750 people), Zr02 (495 people),
MgF2 (750 people) and ITO (495 people).

初期位相量をパラメータとした入出力特性(透過及び反
射光強度)を第14図、第15図に示す。共掘器を構成
している反射鏡の反射率を選択することにより第1実施
例よりも、更に非線形的動きの大きな非線形光学素子が
得られる。このように誘電体多層膜の構成、初期位相量
等を適切に設定することにより様々な入出力特性を持つ
非線形光学素子を得ることができる。
The input/output characteristics (transmitted and reflected light intensity) using the initial phase amount as a parameter are shown in FIGS. 14 and 15. By selecting the reflectance of the reflecting mirrors constituting the co-excavator, a nonlinear optical element with even greater nonlinear movement than in the first embodiment can be obtained. In this way, by appropriately setting the structure of the dielectric multilayer film, the initial phase amount, etc., it is possible to obtain nonlinear optical elements having various input/output characteristics.

次に本発明の第3実施例として片面を研磨し鏡面とした
GaAs結晶板を用い、その反射面の一部をエツチング
して鏡面を形成した。両面が鏡面となったi+’ii 
Mは5ai+X5mmはどで、厚さを300μm程度と
した。続いて両面にSiO□とTiO2の交互層を4層
形成し、最外面にITOllSlを成膜して光共振器を
形成した。ITO透明電極にり一ト線をポンデメングし
、DC電圧を3000v印加し、素子を形成した。
Next, as a third embodiment of the present invention, a GaAs crystal plate having one side polished to a mirror surface was used, and a portion of the reflective surface was etched to form a mirror surface. i+'ii with mirror surfaces on both sides
M had dimensions of 5ai+5 mm and a thickness of about 300 μm. Subsequently, four alternating layers of SiO□ and TiO2 were formed on both sides, and ITOllSl was formed on the outermost surface to form an optical resonator. A tonic line was applied to the ITO transparent electrode, and a DC voltage of 3000 V was applied to form a device.

尚、動作可能な波長は0.8〜1.1μm程度の近赤外
光である。誘電体多層膜の膜構成や光共振器の初期位相
量を調整することにより第1.第2実施例と同様の非線
形性人出力特性を得た。
Note that the operable wavelength is near-infrared light of about 0.8 to 1.1 μm. By adjusting the film configuration of the dielectric multilayer film and the initial phase amount of the optical resonator, the first. Nonlinear human output characteristics similar to those of the second example were obtained.

(発明の効果) 本発明の非線形光学素子は光導電効果と電気光学効果を
動作原理としている。そして非線形結晶を挟んで光共振
器を形成する誘電体多層膜の反射鏡を設け、更に反射鏡
の両側面に透明電極を設けた構成をとっている。そして
透明電極に外部より高電圧を印加し、非線形結晶中に誘
導屈折率を創出している。しかる後に入力光強度に応じ
て誘導屈折率が減少するメカニズムから成り立っている
ことを特長としている。
(Effects of the Invention) The nonlinear optical element of the present invention uses the photoconductive effect and the electro-optic effect as operating principles. A dielectric multilayer reflective mirror forming an optical resonator is provided with a nonlinear crystal sandwiched therebetween, and transparent electrodes are further provided on both sides of the reflective mirror. A high voltage is then externally applied to the transparent electrode to create an induced refractive index in the nonlinear crystal. It is characterized by a mechanism in which the induced refractive index is then reduced according to the input light intensity.

このような構成により十分低い入力光強度に対して動作
が可能で、かつ集積度が高く、しかも動作安定の高い良
好なる非線形光学素子を達成している。
With this configuration, an excellent nonlinear optical element that can operate with sufficiently low input light intensity, has a high degree of integration, and has high operational stability has been achieved.

又、光共振器を形成する反射鏡を誘電体多層膜で形成す
ることにより、吸収による光損失が少なく、又、絶縁膜
も兼ねることにより構成全体の簡素化を図った非線形光
学素子を達成することが出来る等の特長を有している。
In addition, by forming the reflective mirror that forms the optical resonator with a dielectric multilayer film, a nonlinear optical element with less optical loss due to absorption and also serving as an insulating film can be achieved with a simplified overall configuration. It has features such as being able to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の非線形光学素子の一実施例の概略図、
第2図は従来の非線形光学素子の概略図、第3.第4図
は従来の非線形光学素子の入出力特性の説明図、第5図
は第1図の動作解析モデルの説明図、第6図〜第9図は
各々本発明の非線形光学素子の動作原理の説明図、第1
0図は本発明の非線形光学素子の入力−透過光特性の説
明図、第11図は本発明の非線形光学素子の人力−反射
光特性の説明図、第12図、第13図は本発明の非線形
光学素子の第1実施例の入出力特性の説明図、第14図
、第15図は本発明の非線形光学素子の第2実施例の入
出力特性の説明図である。 図中、11は非線形媒質、12.13は誘電体多層膜の
反射鏡、14.15は透明電極、16は外部電源、17
.61は入射光、18は透過光、19は反射光、62は
励起されたキャリアである。 特許出願人  キャノン株式会社 代  理  人     高  梨  幸  M”  
’i、  、 第1図 第2図 第 3 口 人身を先強、戊10 章 4 図 入射光列E度工〇 勇6図 第8図 第   9  図 章  10  図 入会4九泡虐I。 男11図 人耐先マ弧慢 第   12   図 入77 L 泡/l (w/cm”) 第   13   図 入 厚r4 光 7415度 (w/cm”)第   
14   霞 入肴:を先5弧度(w/cmλ) 第   15   閃 0.00   、CI4   、O8O,120,1G
   O,200,240,28入身1 t ?弧度(
w/cmL) 手続ネ甫正11(自発) 昭和63年 4月21 特許庁長官           殿 1、事件の表示 昭和63年特許願第 3543号 2、発明の名称 非線形光学素子 3、補正をする者 事件との関係     特許出願人 住所 東京都大田区下丸子3−30−2名称 (100
)  キャノン株式会社代表者 賀  来  能 三 
部 4、代理人 居所 〒158東京都世田谷区奥沢2−17−3ベルハ
イム自由が丘301号(電話?+8−5614)6、補
正の内容 (1)明細書中を下記のとおり補正する。 3   8   非光双安定性  光双安定性  ゝ−
/頁   行     誤       正6   5
   反射鏡     反射光6 16  第5図  
  第1図 9  12   光双安定    非線形光学11 3
〜4   光双安定    非線形光学12  13 
  :y@     y’軸13    9    t
2      t2・・・に−1に−11 178「解析的に」を削除する
FIG. 1 is a schematic diagram of an embodiment of the nonlinear optical element of the present invention,
FIG. 2 is a schematic diagram of a conventional nonlinear optical element, and FIG. FIG. 4 is an explanatory diagram of the input/output characteristics of a conventional nonlinear optical element, FIG. 5 is an explanatory diagram of the operation analysis model of FIG. Explanatory diagram, 1st
Figure 0 is an explanatory diagram of the input-transmitted light characteristics of the nonlinear optical element of the present invention, Figure 11 is an explanatory diagram of the human power-reflected light characteristic of the nonlinear optical element of the present invention, and Figures 12 and 13 are diagrams of the input-transmitted light characteristic of the nonlinear optical element of the present invention. FIGS. 14 and 15 are explanatory diagrams of the input/output characteristics of the first embodiment of the nonlinear optical element, and FIGS. 15A and 15B are explanatory diagrams of the input/output characteristics of the second embodiment of the nonlinear optical element of the present invention. In the figure, 11 is a nonlinear medium, 12.13 is a dielectric multilayer film reflector, 14.15 is a transparent electrode, 16 is an external power source, and 17
.. 61 is incident light, 18 is transmitted light, 19 is reflected light, and 62 is excited carrier. Patent applicant Canon Co., Ltd. Representative Yuki Takanashi M”
'i, , Figure 1 Figure 2 Figure 3 The mouth is first strong. Figure 11 Man's Endurance Arm 12th Illustration 77 L Foam/l (w/cm") 13th Illustration Thickness R4 Light 7415 degrees (w/cm")
14 Kasumi appetizer: 5 degrees of arc (w/cmλ) 15th flash 0.00, CI4, O8O, 120, 1G
O, 200, 240, 28 entry 1 t? Arc degree (
w/cmL) Procedure Neho Sho 11 (Voluntary) April 21, 1988 Director General of the Patent Office 1, Indication of the case Patent Application No. 3543 of 1988 2, Title of invention Nonlinear optical element 3, Person making correction case Relationship with Patent applicant address 3-30-2 Shimomaruko, Ota-ku, Tokyo Name (100
) Canon Co., Ltd. Representative Nozo Kaku
Part 4. Agent's residence: 301 Jiyugaoka, Belheim, 2-17-3 Okusawa, Setagaya-ku, Tokyo 158 (Telephone: +8-5614) 6. Contents of amendment (1) The description is amended as follows. 3 8 Non-optical bistability Optical bistability ゝ-
/page Line Wrong Correct 6 5
Reflector Reflected light 6 16 Figure 5
Figure 19 12 Optical bistable nonlinear optics 11 3
~4 Optical bistable nonlinear optics 12 13
:y@y' axis 13 9 t
2 t2... to -1 to -11 178 Delete "analytically"

Claims (1)

【特許請求の範囲】[Claims] 入力光に対して光導電性及び電気光学効果を有する非線
形媒質の両側面に絶縁層を兼ねた光共振器を形成する誘
電体多層膜から成る反射鏡を設け、更に該反射鏡の外側
の両側面に該非線形媒質に電界を印加する為の透明電極
を設け、該透明電極の側面からの入力光に対して出力光
が微分利得特性若しくは履歴特性を有することを特徴と
する非線形光学素子。
A reflecting mirror made of a dielectric multilayer film that forms an optical resonator that also serves as an insulating layer is provided on both sides of a nonlinear medium that has photoconductivity and electro-optic effects for input light, and furthermore, both sides of the outside of the reflecting mirror are provided. A nonlinear optical element, characterized in that a transparent electrode is provided on a surface for applying an electric field to the nonlinear medium, and output light has differential gain characteristics or hysteresis characteristics with respect to input light from the side surface of the transparent electrode.
JP354388A 1988-01-11 1988-01-11 Nonlinear optical element Pending JPH01179919A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP354388A JPH01179919A (en) 1988-01-11 1988-01-11 Nonlinear optical element
US07/292,537 US5002369A (en) 1988-01-11 1988-12-30 Nonlinear optical element having electrodes on two side surfaces of nonlinear medium through insulating layers
DE68927115T DE68927115D1 (en) 1988-01-11 1989-01-10 Method for activating a nonlinear optical device with electrodes on two lateral surfaces of a nonlinear medium with insulation layers in between
EP89100344A EP0324434B1 (en) 1988-01-11 1989-01-10 Method of activating a nonlinear optical element having electrodes on two side surfaces of nonlinear medium through insulating layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP354388A JPH01179919A (en) 1988-01-11 1988-01-11 Nonlinear optical element

Publications (1)

Publication Number Publication Date
JPH01179919A true JPH01179919A (en) 1989-07-18

Family

ID=11560331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP354388A Pending JPH01179919A (en) 1988-01-11 1988-01-11 Nonlinear optical element

Country Status (1)

Country Link
JP (1) JPH01179919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111332A1 (en) * 2017-12-05 2019-06-13 浜松ホトニクス株式会社 Light modulator, optical observation device, and light irradiation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111332A1 (en) * 2017-12-05 2019-06-13 浜松ホトニクス株式会社 Light modulator, optical observation device, and light irradiation device
JPWO2019111332A1 (en) * 2017-12-05 2020-12-03 浜松ホトニクス株式会社 Light modulator, light observation device and light irradiation device

Similar Documents

Publication Publication Date Title
Feinberg Asymmetric self-defocusing of an optical beam from the photorefractive effect
Smith Optical bistability, photonic logic, and optical computation
US4867510A (en) Device and method for doubling the frequency of elecromagnetic radiation of a given frequency
JPS6014222A (en) Optical wavelength converting element
EP0324434B1 (en) Method of activating a nonlinear optical element having electrodes on two side surfaces of nonlinear medium through insulating layers
Martinot et al. Experimental observation of optical bistability by excitation of a surface plasmon wave
Fukushima et al. Ferroelectric liquid-crystal spatial light modulator achieving bipolar image operation and cascadability
JPH01179919A (en) Nonlinear optical element
Herzfeld On the theory of forced double refraction (photoelasticity)
Astheimer et al. Infrared modulation by means of frustrated total internal reflection
Otsuka et al. Optical bistability based on self-induced polarization-state change in anisotropic Kerr-like media
Karvounis et al. Electro-mechanical to optical conversion by plasmonic-ferroelectric nanostructures
US5046803A (en) Actively phased matched frequency doubling optical waveguide
Smith Optical harmonic generation in two ferroelectric crystals
Hutchings et al. Optically bistable interference filters: self-consistent modeling of nonlinear optical characteristics and optimization
JPH01179920A (en) Nonlinear optical element
Wang et al. Design and modeling of asymmetric Fabry-Perot electrooptic modulators containing a polymeric film
JPS62269125A (en) Optical logical operation element
JPS6118933A (en) Device for changing wavelength of light
JPH03217825A (en) Space optical modulating element
JP3365648B2 (en) Optical mirror
JPH02190830A (en) Optical nand gate
Zhang et al. Ultrahigh-order mode-assisted hybrid optoelectronic bistability with an ultralow threshold
JPH03107824A (en) Optical writing type liquid crystal light valve
KR960029872A (en) Resonator of the center wavelength 1024nm mirror and the second harmonic generator using the same