JPH01179712A - Treatment of scrap indium-phosphorus compound semiconductor - Google Patents

Treatment of scrap indium-phosphorus compound semiconductor

Info

Publication number
JPH01179712A
JPH01179712A JP63002162A JP216288A JPH01179712A JP H01179712 A JPH01179712 A JP H01179712A JP 63002162 A JP63002162 A JP 63002162A JP 216288 A JP216288 A JP 216288A JP H01179712 A JPH01179712 A JP H01179712A
Authority
JP
Japan
Prior art keywords
scrap
indium
hydrochloric acid
compound semiconductor
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63002162A
Other languages
Japanese (ja)
Other versions
JP2518330B2 (en
Inventor
Takeshi Sakano
坂野 武
Naotoshi Nemoto
根本 直俊
Tetsuo Nishimoto
西元 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP216288A priority Critical patent/JP2518330B2/en
Publication of JPH01179712A publication Critical patent/JPH01179712A/en
Application granted granted Critical
Publication of JP2518330B2 publication Critical patent/JP2518330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover high-purity InP film scrap InP semiconductors in high yield by decomposing powdered scrap InP semiconductors into an InCl3 soln. and PH3, and then selectively hydrolyzing the soln. CONSTITUTION:Scrap indium-phosphorus compd. semiconductors are powdered, and the powdered scrap is decomposed into an indium chloride soln. and hydrogen phosphide by the reaction with hydrochloric acid in an inert gas atmosphere. The soln. is then selectively hydrolyzed to precipitate and recover associated impurities. Since the soln. is further hydrolyzed in succession to the hydrolysis by hydrochloric acid in this process, the concn. of hydrochloric acid after the decomposition reaction is preferably made as low as possible. Accordingly, the scrap InP is effectively heated for the purpose. The heating is appropriately carried out in the air at 300-500 deg.C, hence the decomposition rate is increased to several to several tens percent, and violent frothing, which is frequently seen in the reaction of the powdered scrap with hydrochloric acid, can be eliminated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はインジウム−リン化合物半導体C以下。[Detailed description of the invention] (Industrial application field) The present invention is an indium-phosphorus compound semiconductor C and below.

InP化合物半導体という)の製造、力ロエなどの工程
で発生するスクラップから純度の高いインジウムおよび
リン化水素を回収する方法に関する。
The present invention relates to a method for recovering highly pure indium and hydrogen phosphide from scrap generated in processes such as the production and processing of InP compound semiconductors.

(従来技術とその問題点) InPはI−V属化合物半導体を代表する素材の一つと
してその用途開発が進められているが、他の半導体材料
と同様に単結晶化の工程、単結晶からウェハな製造する
工程などにおいて、その中のかなりの部分がスクラップ
化することを免れな(ゝO 従って、これらのスクラップからインジウムを高い収率
で経済的に回収し再利用することはその稀少性からみて
非常に重要であり、−万、リン化水素またはそれを原料
とする単体リンとをそれぞれ電子材料として、またはI
nP4’GaPの原料として利用することも有用である
(Prior art and its problems) InP is being developed for use as one of the representative materials for IV group compound semiconductors, but like other semiconductor materials, it is difficult to form a single crystal during the single crystallization process. In the process of manufacturing wafers, etc., a considerable portion of indium inevitably becomes scrap. It is very important from the viewpoint of
It is also useful to use it as a raw material for nP4'GaP.

InPスクラップの処理方法としては従来次のような方
法がある。
Conventionally, there are the following methods for processing InP scrap.

(1)熱分解法 この方法では900℃またはそれ以上の高温度における
操作を必要とする。
(1) Pyrolysis method This method requires operation at high temperatures of 900°C or higher.

(2)アルカリ水酸化物と溶融する方法(特開昭60−
24332号公報)この方法ではリンはすべてリン酸ナ
トリウムに変化するため、再利用は困難である。
(2) Method of melting with alkali hydroxide (Unexamined Japanese Patent Publication No. 1983-
(No. 24332) In this method, all phosphorus is converted to sodium phosphate, making it difficult to reuse.

さらに、これらの方法に共通する問題点としては、スク
ラップ中の不純物が回収される金属インジウム中に移行
し、その除去は必ずしも簡単でないという点があげられ
る。
Furthermore, a problem common to these methods is that impurities in the scrap migrate into the recovered metal indium, and their removal is not always easy.

InPスクラップに随伴する不純Qylは一定したモノ
ではないが、獣金属としてはドーピング剤として用いら
れる錫、亜鉛などがあり、またスクラップの発生と集収
に伴うものとして鉄、銅などがある。更にガリウム系の
化合物手導体が混在することもある。
The impurity Qyl that accompanies InP scrap is not constant, but there are animal metals such as tin and zinc that are used as doping agents, and iron and copper that accompany the generation and collection of scrap. Furthermore, gallium-based compound hand conductors may also be present.

(発明の目的) このような点からみて、本発明者らは、上記の従来技術
の問題点を解決しInP化合物半導体スクラップから高
純度のInとPを高収率で回収する処理方法を提供すべ
く、まずInP&分解してインジウムな精製の容易な形
態とすると同時にリンを分離回収すること、インジウム
の損失ケ招くことなく、その中の不純物な除去すること
、かつそれらの操作が十分な経済性を持つことなどを重
点とする処理方法シ検討した結果、InP化合物半導体
を塩酸で分解することによって、上記目的を達成し得る
ことを見出し、本発明に到達した。
(Objective of the Invention) In view of the above, the present inventors have provided a processing method for recovering high-purity In and P from InP compound semiconductor scrap at a high yield by solving the problems of the above-mentioned conventional technology. In order to do this, we first need to decompose InP to form indium in a form that is easy to purify, and at the same time separate and recover phosphorus, remove impurities from it without incurring loss of indium, and make these operations sufficiently economical. As a result of examining processing methods that place emphasis on properties, it was discovered that the above object could be achieved by decomposing an InP compound semiconductor with hydrochloric acid, and the present invention was achieved.

(発明の構成) すなわち、本発明によれば、インジウム−リン化合物半
導体スクラップな、不活性ガス雰囲気で塩酸との反応に
より、塩化インジウム溶液とリン化水素に分解した後%
該塩化インジウム溶液の選択的加水分解によって随伴す
る不純物を沈殿させて除去することを特徴とするインジ
ウム−リン化合物半導体スクラップの処理方法が得られ
る。
(Structure of the Invention) That is, according to the present invention, indium-phosphorus compound semiconductor scrap is decomposed into an indium chloride solution and hydrogen phosphide by reaction with hydrochloric acid in an inert gas atmosphere.
A method for treating indium-phosphorus compound semiconductor scrap is obtained, which is characterized in that accompanying impurities are precipitated and removed by selective hydrolysis of the indium chloride solution.

本発明では以上のように、InPスクラップの処理にお
いて、該スクラップをインジウムとリンに分解する手段
として塩酸による分解を採用した。
As described above, in the present invention, in the treatment of InP scrap, decomposition using hydrochloric acid is employed as a means for decomposing the scrap into indium and phosphorus.

この反応は次のように進行し、塩化インジウム溶液とフ
ォスフイン(PHs、+171−87.4℃)な主体と
するリン化水素を生成する。
This reaction proceeds as follows, producing an indium chloride solution and hydrogen phosphide mainly consisting of phosphine (PHs, +171-87.4°C).

I n P+ 38C,13=I n ClOs 十P
 Hs    l1lInPは硫酸や硝酸によっても分
解するが、硫酸は塩酸に比べて反応が著しく遅く、−万
硝酸は分解速度に関してはかなり良好であるが、塩酸と
異なり、リン化水素が2次的に酸化され、リン酸として
液中に固定される。これは貴重な材料の損失な招くのみ
ならず、後段の不純物の除去操作を妨害する点でも好ま
しくない。更K、塩酸を用いた場合の利点としてはスク
ラップ中にGaPやGaAr5が混在していても、部分
的な分解にとどまることがあげられるが、この点はとく
にG a Pについて顕著で塩酸による処理条件な適当
に選ぶことによってG a Pの分解率を非常に低くと
どめることができる。
I n P+ 38C, 13=I n ClOs 10P
Hs l1lInP is also decomposed by sulfuric acid and nitric acid, but the reaction with sulfuric acid is significantly slower than with hydrochloric acid, and - nitric acid has a fairly good decomposition rate, but unlike hydrochloric acid, hydrogen phosphide is oxidized secondarily. and fixed in the liquid as phosphoric acid. This is undesirable not only because it causes loss of valuable materials but also because it interferes with the subsequent impurity removal operation. Furthermore, the advantage of using hydrochloric acid is that even if GaP and GaAr5 are mixed in the scrap, only partial decomposition occurs, but this point is especially noticeable for GaP, and treatment with hydrochloric acid By appropriately selecting the conditions, the decomposition rate of G a P can be kept very low.

InPと塩酸との反応速度を支配する主な条件にはスク
ラップの粒度、塩酸の濃度、温度などがあり、粒度はな
るべく小さいことが望ましい。単結晶の切断、ウェハの
研摩などの工程で発生するスクラップはきわめて細かい
のでそのまま用いられるが、単結晶化におけるスクラッ
プは通常、不規則な塊状をなしているので、これな1薫
以下の大きさに粉砕して処理する。塩酸は0.5N以上
の濃度が必要で、特に、2〜6Nが適当である。塩酸の
濃度がIN未満ではスクラップの分解率がかなり低下し
、−万、あまり濃度な高くすると、攪拌が困難になり、
かつ塩酸の揮発損失が増加する。
The main conditions governing the reaction rate between InP and hydrochloric acid include the particle size of the scrap, the concentration of hydrochloric acid, and the temperature, and it is desirable that the particle size is as small as possible. Scrap generated in processes such as cutting single crystals and polishing wafers is extremely fine and can be used as is, but scrap from single crystallization is usually in the form of irregular lumps, so it is difficult to use scraps that are smaller than one smoke. Grind and process. Hydrochloric acid needs to have a concentration of 0.5N or more, and 2 to 6N is particularly suitable. If the concentration of hydrochloric acid is less than IN, the decomposition rate of scrap will decrease considerably, and if the concentration is too high, stirring will become difficult.
And the volatilization loss of hydrochloric acid increases.

本発明方法では塩酸による分解に引き続いて加水分解の
操作な行うため、分解反応の終了時の塩酸濃度はなるべ
く低いことが望ましい。
In the method of the present invention, hydrolysis is performed subsequent to decomposition with hydrochloric acid, so it is desirable that the concentration of hydrochloric acid at the end of the decomposition reaction be as low as possible.

そのため、InPスクラップの塩酸に対する反応性につ
いて検討を別えた結果、上述の諸条件のほかに、スクラ
ップの加熱処理が有効であることが認められた。加熱処
理は空気中で300〜500℃の範囲で行うのが適当で
、これによって低濃度の塩酸による分解率が数係〜数1
096上昇するほか、粉状のスクラップにしばしばみら
れる塩酸との反応時における著しい泡立ちを解消するこ
とができる。
Therefore, after conducting separate studies on the reactivity of InP scrap with hydrochloric acid, it was found that heat treatment of the scrap was effective in addition to the above-mentioned conditions. It is appropriate to carry out the heat treatment in the air at a temperature of 300 to 500°C, thereby reducing the decomposition rate by a low concentration of hydrochloric acid to a factor of 1 to 1.
096, and also eliminates the significant foaming that often occurs with powdered scrap when reacting with hydrochloric acid.

例えば、粒度100μm以下のスクラップに対し、濃度
2〜6Nの塩酸な小過剰に用いて60〜100℃におい
て1時間処理を行った場合の分解率は85〜100%と
なるが、スクラップの加熱処理な行った場合には分解率
は92〜100%に上昇する。なお、この反応は不活性
ガス雰囲気中で行うが、これは発生するリン化水素が酸
化されて液中に残留するのを防ぐと共に、自然発火によ
る危険な予防する効果を有している。
For example, when scrap with a particle size of 100 μm or less is treated with a small excess of hydrochloric acid at a concentration of 2 to 6 N at 60 to 100°C for 1 hour, the decomposition rate is 85 to 100%, but heat treatment of scrap If this is done, the decomposition rate increases to 92-100%. This reaction is carried out in an inert gas atmosphere, which has the effect of preventing the generated hydrogen phosphide from being oxidized and remaining in the liquid, as well as preventing the danger of spontaneous combustion.

このような方法で、スクラップの処理を行った場合、駿
素酸として液中に固定されるリンの比率はis以下にす
ぎず、それ以外はリン化水素として揮発する。
When scrap is processed in this manner, the proportion of phosphorus fixed in the liquid as hydronic acid is only less than is, and the rest evaporates as hydrogen phosphide.

InPスクラップと塩酸との反応系から田る9雰ガス中
にはフォスフイン、微量のダイフォスフイン(PtH<
−沸点58℃)のほかに塩化水素、水分などが含まれる
。このガスからアルカリ洗浄によって塩化水紫?除去し
たのち、−70℃付近に冷却してダイフオスフイ/と水
分を除き、次に一100℃以下に冷却してフォスフイン
なWl−wIさせて回収する。このフォスフインは必要
に応じて更に低温蒸留によって不純物を除き、精與度な
高める。
The 9 atmosphere gas released from the reaction system of InP scrap and hydrochloric acid contains phosphine and a trace amount of diphosphine (PtH<
-Boiling point: 58°C), hydrogen chloride, water, etc. Chloride water purple by alkaline cleaning from this gas? After removal, it is cooled to around -70° C. to remove the phosphorus and moisture, and then cooled to below -100° C. to recover phosphine Wl-wI. If necessary, this phosphine is further refined by removing impurities by low-temperature distillation.

上記の塩酸分解反応で生成する塩化インジウム溶液から
通常電気化学的方法で金属インジウムの採敞を行うが、
それに先立って、その中に含まれる錫、鉄その他の不純
物の除去を行う。特に、錫はインジウムより少し責な電
位を有し、インジウムと共に析出するため、純度の高い
インジウムを採取するためには、あらかじめ、これt十
分除去しておくことが望ましい。
Metallic indium is usually extracted by an electrochemical method from the indium chloride solution produced in the above hydrochloric acid decomposition reaction.
Prior to that, tin, iron and other impurities contained therein are removed. In particular, tin has a slightly higher potential than indium and is precipitated together with indium, so in order to collect highly pure indium, it is desirable to remove it sufficiently in advance.

本発明方法において採用した精製法は塩化インジウム溶
液の水素イオン濃度を調整し、錫、鉄などの不純物を選
択的に加水分解させ、沈殿として除去するものである。
The purification method adopted in the method of the present invention is to adjust the hydrogen ion concentration of the indium chloride solution, selectively hydrolyze impurities such as tin and iron, and remove them as precipitates.

これはInPスクラップと塩酸との反応で得られる塩化
インジウム溶液中に存在する錫と鉄がそれぞれ4価と3
価の状態においては0.1jp7ノ以下の低濃度の場合
も、p H1,5〜3の弱酸性領域で加水分解ケ起こし
て沈殿するのに対し、インジウムは第1図に示すように
、液中にリン酸がほとんど存在しない場合は20g/J
3の濃度においても、pH3付近まで沈殿を生じないと
いう知見に基づくものである。選択的加水分解において
はpHの選定が重要であるが、これはインジウムの濃度
と不純物の除去率の二つの因子を考慮して決められる。
This is because tin and iron present in the indium chloride solution obtained by the reaction of InP scrap with hydrochloric acid are tetravalent and trivalent, respectively.
Even at a low concentration of 0.1jp7 or less, indium undergoes hydrolysis and precipitates in the weakly acidic region of pH 1.5 to 3. In contrast, as shown in Figure 1, indium precipitates in a liquid state. 20g/J if there is almost no phosphoric acid in the
This is based on the knowledge that even at a concentration of 3, precipitation does not occur up to around pH 3. Selection of pH is important in selective hydrolysis, and this is determined by considering two factors: indium concentration and impurity removal rate.

通常、pHは2〜3の範囲とするのが適当で、この条件
においては、インジウムの実質的な損失を伴うことなく
錫、鉄などについて高い除去率な得ることができる。
Generally, it is appropriate for the pH to be in the range of 2 to 3, and under these conditions, a high removal rate of tin, iron, etc. can be obtained without substantial loss of indium.

この方法の実施においては、塩酸分解によって得られる
塩化インジウムに苛性アルカリまたはアンモニアな添加
してpF(を2〜3付近に調節し、次に液中に含まれる
錫(2価)、鉄(2価)などの被酸化性イオンの酸化に
必要な酸化剤を添加し、更に温度を90〜1o O”C
に高めて沈殿を凝集させる。これによって、錫はほぼ完
全に、鉄はその大部分が沈殿となって除去される。酸化
剤としては過酸化水濡、次亜塩素酸ナトリウム、過マン
ガン酸カリウムなどが用いられ、特に過マンガン酸カリ
ウムの場合、高い除去率が得られる。これは酸化反応で
生成する水和二酸化マンガンの吸着作用が加わるためと
推定される。今、インジウムの濃度5011/、L錫(
2価) 3o 01ダ/、、e、鉄(2価)100〜/
!の組成の溶液について酸化剤として過酸化水素を用い
てこの処理を行った場合、p F(2,0〜2.5にお
ける錫の除去率は95〜99%、鉄のそれは70〜90
%、となり、−万インジウムの損失は1憾以下にすぎな
い。更に、過マンガン酸カリウムな酸化剤として用いた
場合は、錫と鉄の除去率はそれぞれ99%以上、8゜〜
98c6に上昇する。なお、この方法はガリウムに対し
てもある程度有効で過マンガン酸カリウムを用いた場合
は約90%が除去される。
In carrying out this method, caustic alkali or ammonia is added to indium chloride obtained by hydrochloric acid decomposition to adjust pF to around 2 to 3, and then tin (divalent) and iron (divalent) contained in the solution are added. Add an oxidizing agent necessary for oxidizing oxidizable ions such as
to flocculate the precipitate. As a result, tin is almost completely removed, and most of the iron is precipitated and removed. As the oxidizing agent, aqueous peroxide, sodium hypochlorite, potassium permanganate, etc. are used, and especially in the case of potassium permanganate, a high removal rate can be obtained. This is presumed to be due to the adsorption effect of hydrated manganese dioxide produced in the oxidation reaction. Now, the concentration of indium is 5011/, L tin (
Bivalent) 3o 01 da/,,e, Iron (bivalent) 100~/
! When this treatment is carried out using hydrogen peroxide as an oxidizing agent on a solution with a composition of
%, and the loss of -10,000 indium is only less than 1. Furthermore, when using potassium permanganate as an oxidizing agent, the removal rate of tin and iron was 99% or more, respectively, and 8°~
Rise to 98c6. Note that this method is also effective to some extent for gallium, and when potassium permanganate is used, about 90% is removed.

次に、本発明な実施例により具体的に説明するが、以下
の実施例は本発明の範囲な限定するものではない。
Next, the present invention will be specifically explained using Examples, but the following Examples are not intended to limit the scope of the present invention.

実施例1 錫をドーパントとするn型InP単結晶の典造工程で発
生した小塊状のスクラップをボールミルを用いて44μ
m以下に粉砕し、これを分析した結果、表1の組成を得
た。
Example 1 Small lump-like scrap generated in the production process of n-type InP single crystal with tin as a dopant was processed into 44 μm using a ball mill.
The composition shown in Table 1 was obtained as a result of analysis of the powder.

表1 成 分    含有率(重量%) In         79.21 p         20.04 Sn         0.41 Fe         O,012 M9.Caなど   侵   部 この粉砕物40pと純水69114を攪拌装置、還流冷
却器、!1度計2分液ロート、ガス吹込管などな備えた
四つロフラスコに入れ、攪拌しながら窒素ガスを毎分2
!の速度で通じた。外部加熱によって、温度が60℃に
達した時点で分液ロートから12Nの濃度の塩酸74d
を30分の間に添加し、その後温度%:95℃まで上げ
て、更に30分間反応を続けた。なお、還流冷却器の頂
部から出るガスからは実施例3に従ってフォスフインの
回収を行った。
Table 1 Component Content (wt%) In 79.21 p 20.04 Sn 0.41 Fe O,012 M9. Ca, etc. 40p of this pulverized material and 69114 of pure water are mixed in a stirring device, a reflux condenser, and! Once placed in a four-loop flask equipped with a separating funnel and a gas blowing tube, nitrogen gas was blown in at 2 minutes per minute while stirring.
! It passed at a speed of When the temperature reached 60°C by external heating, 74 d of hydrochloric acid with a concentration of 12N was added from the separating funnel.
was added over a period of 30 minutes, and then the temperature was raised to 95° C. and the reaction was continued for an additional 30 minutes. In addition, phosphine was recovered from the gas exiting from the top of the reflux condenser in accordance with Example 3.

この分解反応で生成した塩化インジウム溶液をr過して
小量の未反応物を除き、P洗液な併せて600WLtと
して分析した結果は表2の通りで、Inいその93チが
溶液中に移行した。
The indium chloride solution produced in this decomposition reaction was filtered to remove a small amount of unreacted materials, and the P washing solution was analyzed as 600 WLt. The results are shown in Table 2. It has migrated.

表 2 成 分   濃   度  水溶化率C%)In   
 49.11 1/43  93p      60.
2  ダ/I!J    O,45Sn    268
  W/13  98Fe      8.OW/II
  10011)HO,52 この塩化インジウム溶液から580Wtlをとり、約7
0℃に加熱しながら、濃度28慢のアンモニア水を加え
てpHを2.5に調節したのち、過マンガン酸カリウム
の濃度2%の溶液15dl徐々に加えて10分間煮沸し
、最後に濃度1%の硫酸マンガン溶液を加えて過剰の過
マンガン酸カリウムを分解し、p[(を2.5に再調節
した。
Table 2 Component Concentration Water solubilization rate C%) In
49.11 1/43 93p 60.
2 Da/I! J O,45Sn 268
W/13 98Fe 8. OW/II
10011) HO,52 Take 580 Wtl from this indium chloride solution and
While heating to 0°C, add aqueous ammonia with a concentration of 28 to adjust the pH to 2.5, then gradually add 15 dl of a 2% solution of potassium permanganate, boil for 10 minutes, and finally adjust the pH to 2.5. % manganese sulfate solution was added to destroy excess potassium permanganate and readjust p[() to 2.5.

処理な終った液な放冷した後、ノニオン型の高分子凝集
剤を少量加えて沈殿k濾過し、P洗液な併せて660m
1とした。このようにして精製した塩化インジウム溶液
の分析結果は表3に示すとおりで、この溶液からアルミ
ニウム板を用いてインジウムな析出させることによって
純度99.9914のインジウムが回収された。
After the treated liquid was left to cool, a small amount of nonionic polymer flocculant was added and precipitated by filtration.
It was set to 1. The analysis results of the thus purified indium chloride solution are shown in Table 3, and indium with a purity of 99.9914 was recovered from this solution by precipitating indium using an aluminum plate.

表 3 成 分   濃  度   除去率(%)In    
 42.85g/4   0.70(回収率8−9.3
値)P     3.2 ダ/43  94Sn   
  O,31!9/43  99.9Fe     1
,2+1197.、g   sa!j!施例2 本実例2はInP単結晶の加工の際に発生した泥状スク
ラップ処理の場合である。このスクラップからふるい分
けによって、−53μmの部分なとり、水洗後乾燥した
結果、表4の組成のものが得られた。
Table 3 Component Concentration Removal rate (%) In
42.85g/4 0.70 (recovery rate 8-9.3
Value) P 3.2 da/43 94Sn
O,31!9/43 99.9Fe 1
,2+1197. , g sa! j! Example 2 Example 2 is a case of processing muddy scrap generated during processing of InP single crystal. This scrap was sieved to remove a -53 μm portion, washed with water, and dried to obtain the composition shown in Table 4.

表4 成  分       含有率(重量−)In    
         68.70P          
    16.90Sn          4.5X
10″″3F’e          a、02xlO
−2Ga          2.40X10”−2カ
ーボy、Ca5i等   残 部 この乾燥物30Iをとり、電気マツフル炉を用いて突気
中で400℃で1時間加熱処理を行ったのち、実施例1
と同様に小過剰の塩酸な加えて分解した。r洗液な併せ
て500agとして分析した結果は表5のとおりで、イ
ンジウムはその96%が水溶化した。なお、加熱処理を
加えることなく、塩酸処理を行った場合は、フラスコ内
容物の泡立ちのため、塩酸の添加に約1.5時間を要し
、水溶化率も71チと低い値にとどまつた。
Table 4 Component Content (weight-)In
68.70P
16.90Sn 4.5X
10″″3F’e a, 02xlO
-2Ga 2.40X10''-2 carboy, Ca5i, etc. 30I of this dried material was taken and heat-treated at 400°C for 1 hour in an electric Matsufuru furnace, followed by Example 1
Similarly, a small excess of hydrochloric acid was added to decompose. Table 5 shows the results of analysis of 500 ag of the r-washing solution, showing that 96% of the indium was soluble in water. In addition, when hydrochloric acid treatment was performed without heat treatment, it took about 1.5 hours to add hydrochloric acid due to foaming of the contents of the flask, and the water solubilization rate remained low at 71 cm. .

表 5 成 分   濃  度   水溶化率c%)In   
  39.58g/J    96P     42.
6 Ing/、130.42Sn     2.5W/
4   93Fe     17.8 q/II   
 98Ga     7.81n9/43   54こ
の塩化インジウム溶液から480R1をとり、約70℃
に卵熱しながら濃度28チのアンモニア水を加えてpH
を3.0に調節したのち、過マンガン酸カリウムの濃度
1チの溶液7dを徐々に加えて10分間煮沸し、最後に
濃度1優の硫酸マンガン溶液を加えて過剰の過マンガン
酸カリウムな分解し、p[(を3.0に再調節した。
Table 5 Component Concentration Water solubilization rate c%) In
39.58g/J 96P 42.
6 Ing/, 130.42Sn 2.5W/
4 93Fe 17.8 q/II
98Ga 7.81n9/43 54 Take 480R1 from this indium chloride solution and heat it to about 70℃
While heating the eggs, add aqueous ammonia with a concentration of 28% to adjust the pH.
After adjusting the concentration to 3.0, gradually add 7 d of potassium permanganate solution with a concentration of 1.0% and boil for 10 minutes.Finally, add a manganese sulfate solution with a concentration of 1.0% to decompose excess potassium permanganate. and p[( was readjusted to 3.0.

処理を終った液を放冷したのち、ノニオン型の高分子凝
集な少量加えて沈殿な濾過し、r洗液な併せて550d
とした。このようにして精製した塩化インジウム溶液の
分析結果は表6に示すとおりで、この溶液から実施例1
の場合と同じ方法で純度99.99−のインジウムが回
収された。
After the treated liquid was left to cool, a small amount of nonionic polymer agglomerate was added and filtered to form a precipitate.
And so. The analysis results of the indium chloride solution purified in this way are shown in Table 6, and from this solution Example 1
Indium with a purity of 99.99- was recovered using the same method as in the case of .

表 6 成分 濃 度 除去率(%) I n      34.29g743  0.75 
(回収率99.3%)P   14.51R9/形61 Sn   <0.1 my/、、e )95Fe   
O,9N9/E 94 Ga   O,7yty/4390 実施例3 実施、例1において還流冷却器の頂部から出る窒素な主
体とするガス中にはフォスフインと微量のダイフォスフ
インの他、塩化水素、水分などが含まれている。このガ
スを濃度INの水酸化ナトリウム溶液を入れたガス洗浄
びんおよび一77℃に冷却した捕集器に順次通じてフォ
スフイン以外の不純物な除き、次に液体窒業で冷却した
捕集器によって液状のフォスフインな捕集した。回収さ
れたフォスフインの童は7.6gで、これはスクラップ
中のリンの94.8%に相当する。
Table 6 Component Concentration Removal rate (%) I n 34.29g743 0.75
(Recovery rate 99.3%) P 14.51R9/Type 61 Sn <0.1 my/,,e)95Fe
O,9N9/E 94 Ga O,7yty/4390 Example 3 In Example 1, the nitrogen-based gas coming out from the top of the reflux condenser contained phosphine and a trace amount of diphosphine, as well as hydrogen chloride and water. etc. are included. This gas is sequentially passed through a gas washing bottle containing a sodium hydroxide solution with a concentration of IN and a collector cooled to -77°C to remove impurities other than phosphine. The phosphine was collected. The amount of phosphine recovered was 7.6 g, which corresponds to 94.8% of the phosphorus in the scrap.

(発明の効果) 本発明は上記の構成をとることによって、InPスクラ
ップから、緩和な条件と簡単な操作によって、インジウ
ムとリンを高い純度と良好な収率においてそれぞれ回収
することを可能ならしめるもので、半導体工業の分野に
おいて非常に有用なものである。
(Effects of the Invention) By adopting the above configuration, the present invention makes it possible to recover indium and phosphorus from InP scrap with mild conditions and simple operations in high purity and good yield. Therefore, it is very useful in the field of semiconductor industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はリン酸濃度とInの沈殿開始pH(95℃)と
の関係を示すグラフ図である。 特許出願人  三菱金属株式会社 代 埋 人    白   Jll   義  直菊 
1図 りにのイ刀二東L+、  zo% lノ〉鴫濃ン*(、P> ン
FIG. 1 is a graph showing the relationship between phosphoric acid concentration and In precipitation starting pH (95° C.). Patent applicant: Mitsubishi Metals Co., Ltd. Naokiku Yoshihiro Jll
1 plan of two east L+, zo% lノ〉Shinon *(,P>

Claims (4)

【特許請求の範囲】[Claims] (1)インジウム−リン化合物半導体スクラップを粉状
化し、粉状化した該スクラップを不活性ガス雰囲気で塩
酸との反応により塩化インジウム溶液とリン化水素に分
解した後、該塩化インジウム溶液の選択的加水分解によ
つて随伴する不純物を沈殿させて除去することを特徴と
するインジウム−リン化合物半導体スクラップの処理方
法。
(1) After pulverizing indium-phosphorus compound semiconductor scrap and decomposing the pulverized scrap into an indium chloride solution and hydrogen phosphide by reaction with hydrochloric acid in an inert gas atmosphere, the indium chloride solution is selectively removed. 1. A method for treating indium-phosphorus compound semiconductor scrap, which comprises precipitating and removing accompanying impurities through hydrolysis.
(2)特許請求範囲第(1)項記載のインジウム−リン
化合物半導体スクラップの処理方法であって、該インジ
ウム−リン化合物半導体スクラップを、前記塩酸との反
応に先立つて空気中で300〜500℃の範囲で加熱処
理することを特徴とする処理方法、
(2) A method for processing indium-phosphorus compound semiconductor scrap according to claim (1), wherein the indium-phosphorus compound semiconductor scrap is heated in air at 300 to 500°C prior to the reaction with the hydrochloric acid. A treatment method characterized by heat treatment in the range of
(3)特許請求の範囲第(1)項記載のインジウム−リ
ン化合物半導体スクラップの処理方法であって、該塩化
インジウム溶液の選択的加水分解を行うに当つて酸化剤
として過マンガン酸カリウムを用いることを特徴とする
処理方法、
(3) A method for processing indium-phosphorus compound semiconductor scrap according to claim (1), in which potassium permanganate is used as an oxidizing agent in selectively hydrolyzing the indium chloride solution. A processing method characterized by
(4)特許請求の範囲第(1)項記載のインジウム−リ
ン化合物半導体の処理方法において、該リン化水素を含
むガスからフォスフィンを回収することを特徴とする処
理方法。
(4) A method for treating an indium-phosphorus compound semiconductor according to claim (1), characterized in that phosphine is recovered from the gas containing hydrogen phosphide.
JP216288A 1988-01-08 1988-01-08 Indium-phosphorus compound semiconductor scrap processing method Expired - Lifetime JP2518330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP216288A JP2518330B2 (en) 1988-01-08 1988-01-08 Indium-phosphorus compound semiconductor scrap processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP216288A JP2518330B2 (en) 1988-01-08 1988-01-08 Indium-phosphorus compound semiconductor scrap processing method

Publications (2)

Publication Number Publication Date
JPH01179712A true JPH01179712A (en) 1989-07-17
JP2518330B2 JP2518330B2 (en) 1996-07-24

Family

ID=11521662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP216288A Expired - Lifetime JP2518330B2 (en) 1988-01-08 1988-01-08 Indium-phosphorus compound semiconductor scrap processing method

Country Status (1)

Country Link
JP (1) JP2518330B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274413A (en) * 2007-03-30 2008-11-13 Tohoku Univ Method for recovering metal
CN113774491A (en) * 2021-09-07 2021-12-10 广东先导微电子科技有限公司 Method for preparing indium phosphide polycrystal from indium phosphide tailings
CN114380323A (en) * 2022-02-11 2022-04-22 株洲科能新材料股份有限公司 Method for recovering indium from indium phosphide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274413A (en) * 2007-03-30 2008-11-13 Tohoku Univ Method for recovering metal
CN113774491A (en) * 2021-09-07 2021-12-10 广东先导微电子科技有限公司 Method for preparing indium phosphide polycrystal from indium phosphide tailings
CN113774491B (en) * 2021-09-07 2022-06-28 广东先导微电子科技有限公司 Method for preparing indium phosphide polycrystal from indium phosphide tailings
CN114380323A (en) * 2022-02-11 2022-04-22 株洲科能新材料股份有限公司 Method for recovering indium from indium phosphide

Also Published As

Publication number Publication date
JP2518330B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
JP3972464B2 (en) Method for producing high-purity tin
JPS6218632B2 (en)
JPS6153103A (en) Recovery of high-purity tellurium from crude tellurium dioxide
US4601890A (en) Process for purifying molybdenum trioxide
JPH01179712A (en) Treatment of scrap indium-phosphorus compound semiconductor
CN103667706B (en) The separating and purifying method of gold in a kind of plation waste material
EP0271845A1 (en) Process for recovering gallium trichloride from gallium-containing waste
JPH04191340A (en) Production of high purity tin
JP5447824B2 (en) A method for purifying a rhodium nitrite complex ion solution and a method for producing an ammonium salt thereof.
JP3799488B2 (en) Method for purifying Ga-containing solution
JPS589820B2 (en) Method for recovering gallium from alkaline aluminate solutions obtained from processing aluminum-containing ores
JP4087196B2 (en) Method for recovering ruthenium and / or iridium
JPH09268334A (en) Method for recovering indium
US2822261A (en) Method of separating metal values from ammoniacal solutions
EP0459765B1 (en) Method for recovery of copper from copper-containing materials
JPS61261447A (en) Method for recovering high-purity zinc sulfate from zinc-containing dust
CN110054213B (en) Method for preparing sodium stannate by soda roasting of high-silicon type cassiterite concentrate
US1228119A (en) Process of treating aluminum skimmings, screenings, dross, slags, or analogous aluminous materials.
JPH0625766A (en) Treatment of ferroscrap and metal zinc-containing material
WO1997030936A1 (en) Nitric acid process for ferric sulfate production
JPS63315521A (en) Method for purifying waste liquor from acid cleaning with hydrochloric acid
CN117604276A (en) High-purity molybdenum purification method based on liquid phase metallurgy
JPH0373608B2 (en)
JPH0362774B2 (en)
JPH03150321A (en) Method for recovering thallium