JPH01178861A - Sensor for measuring freshness - Google Patents

Sensor for measuring freshness

Info

Publication number
JPH01178861A
JPH01178861A JP63002022A JP202288A JPH01178861A JP H01178861 A JPH01178861 A JP H01178861A JP 63002022 A JP63002022 A JP 63002022A JP 202288 A JP202288 A JP 202288A JP H01178861 A JPH01178861 A JP H01178861A
Authority
JP
Japan
Prior art keywords
freshness
sample
measured
sensor
oxygen electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63002022A
Other languages
Japanese (ja)
Inventor
Etsuo Watanabe
悦生 渡辺
Masakazu Hoshi
星 昌和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruha Nichiro Corp
Original Assignee
Taiyo Fishery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Fishery Co Ltd filed Critical Taiyo Fishery Co Ltd
Priority to JP63002022A priority Critical patent/JPH01178861A/en
Publication of JPH01178861A publication Critical patent/JPH01178861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To conduct the comprehensive evaluation of freshness of fish and flesh by measuring a sample directly, by a method wherein an oxygen-saturated buffer solution is supplied constantly to the fore end part of an oxygen electrode to which an immobilized microorganism is fitted and an introduction port is covered with a membrane which is permeable to a substance to be measured. CONSTITUTION:When an introduction port 4 is brought into contact with a sample, a substance to be measured is introduced from the sample 12 into the main body 3 of an apparatus through a membrane 5 and comes into contact with an immobilized microorganism fitted to the fore end part of an oxygen electrode 2 of a sensor 1 for measuring freshness. Accordingly, the respiratory activity of the germ is increased by low-molecular peptide, a free amino acid, sugar, etc. which are substances to be measured and exist in the sample, and as the result, the quantity of dissolved oxygen in a buffer solution in the main body 3 of the apparatus decreases. This change is detected by the oxygen electrode 2 and recorded as an electric response in a recorder 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鮮度計測用センサー、詳しくは微生物の特性を
利用してなる鮮度計測用センサーに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a sensor for measuring freshness, and more particularly to a sensor for measuring freshness that utilizes the characteristics of microorganisms.

〔従来の技術〕[Conventional technology]

魚肉や畜肉(牛肉、豚肉等)の鮮度は、その商品価値を
決定する重要な要素となっているだけでなく、衛生上の
観点からも重要な要素となっている。
The freshness of fish and livestock meat (beef, pork, etc.) is not only an important factor in determining its commercial value, but also an important factor from a hygiene perspective.

上記鮮度の測定方法としては、K値の測定、揮発性塩基
窒素の測定等、数多く提案されている。
Many methods have been proposed for measuring the freshness, such as measuring the K value and measuring volatile base nitrogen.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記測定方法の多くは、鮭肉の段階では
殆ど或いは全く存在しないもので、経時的に自己消化や
腐敗により生成し、増加する個々の物質に着目した方法
であり、これらの方法では総合的な鮮度評価ができず、
しかもその測定に極めて長時間を要するものであった。
However, most of the above measurement methods focus on individual substances that are hardly or not present in the salmon meat stage and are produced and increased over time due to autolysis and putrefaction. It is not possible to evaluate the freshness of
Moreover, the measurement required an extremely long time.

そこで上記従来の方法に対し、本発明者等は微生物セン
サーを利用し、山中に起こっている各イ1「の化学変化
を総合的に評価する、鮮度計測技術を開発し、既に提案
している(特願昭62−22931号、特願昭62−2
78’lO1号)。
Therefore, in contrast to the conventional methods described above, the present inventors have developed and have already proposed a freshness measurement technology that uses microbial sensors to comprehensively evaluate the chemical changes occurring in the mountains. (Patent Application No. 1983-22931, Patent Application No. 62-2
78'lO1).

上記の鮮度計測技術は、微生物を培養するだめの栄養源
の一つであるペプトンがカゼイン氷解物の低分子ペプチ
ドであり、微生物は、このように低分子化されたペプチ
ド、遊離アミノ酸及び糖等を好んで栄養源としているこ
とに石目したものであり、酸素電極の先端部に固定化微
生物を装着してなる鮮度計測用微生物センサーを用い、
試料中の遊離アミノ酸、低分子ペプチド及び糖等の増加
の程度、即ち鮮度低下の度合を、微生物の呼吸活性の増
加量として計測するものである。即ち、試料中に生じた
低分子ペプチド、遊離アミノ酸及び糖等により、微生物
の呼吸活性が増加し、試料中の溶存酸素量が減少するこ
とを利用し、この変化を酸素電極で検出し、常法により
電気的な応答として計測するものである。
The above freshness measurement technology uses peptone, which is one of the nutritional sources for culturing microorganisms, as a low-molecular peptide derived from melted casein. We were surprised to find that this is the preferred source of nutrients, and we use a microbial sensor for freshness measurement, which is made by attaching immobilized microorganisms to the tip of an oxygen electrode.
The degree of increase in free amino acids, low-molecular peptides, sugars, etc. in the sample, that is, the degree of decrease in freshness, is measured as the amount of increase in the respiratory activity of microorganisms. In other words, low-molecular-weight peptides, free amino acids, sugars, etc. generated in the sample increase the respiratory activity of microorganisms and reduce the amount of dissolved oxygen in the sample. This change is detected with an oxygen electrode and constantly monitored. It is measured as an electrical response using the method.

上記の技術によれば、魚肉や畜肉の鮮度に関連する種々
の化学変化を総合的に、迅速且つ簡便に計測し、鮮度判
定を行うことのできる。
According to the above technology, various chemical changes related to the freshness of fish or livestock meat can be comprehensively, quickly and simply measured, and the freshness can be determined.

しかしながら、本発明者等による上記のか1度計測技術
においては、測定対象物質を含有する試料液を、試料で
ある魚肉又は畜肉から熱水抽出法等により前以って調製
しなければならないという問題があった。
However, in the above-mentioned one-time measurement technique developed by the present inventors, there is a problem in that a sample liquid containing the substance to be measured must be prepared in advance from the sample fish or livestock meat by a hot water extraction method or the like. was there.

従って、本発明の目的は、魚肉及び畜肉に対する総合的
な鮮lf評価を、迅速且つ簡便に、しかも試ギ4液を前
以って調製することなく行うことのできる鮮度計測用セ
ンサーを提供することにある。
Therefore, an object of the present invention is to provide a sensor for measuring freshness that can quickly and easily perform a comprehensive freshness evaluation of fish and livestock meat, and without having to prepare 4 sample liquids in advance. There is a particular thing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、種々検討した結果、固定化微生物を先端
部に装着した酸素電極が内蔵された装置本体を備えた鮮
度計測用センサーに、特定の膜で遮蔽されている導入口
を設け、該導入口を所定の条件の下で魚肉等の試料に接
触させることにより該試料の鮮度を直接計測でき、前記
目的を達成できることを知見した。
As a result of various studies, the present inventors installed an inlet shielded by a specific membrane in a freshness measurement sensor equipped with a device body that has a built-in oxygen electrode with immobilized microorganisms attached to the tip. It has been found that by bringing the inlet into contact with a sample such as fish meat under predetermined conditions, the freshness of the sample can be directly measured and the above objective can be achieved.

本発明は上記知見に基づいてなされたもので、以下の発
明を提供するものである。
The present invention has been made based on the above findings, and provides the following inventions.

固定化微生物を先端部に装着した酸素電極が内蔵された
装置本体を備え、該酸素電極の先端部には酸素飽和状4
Ji液が常時供給可能に構成され、且つ上記装置本体に
は、測定試料に接触させて該試料から測定対象物質を取
り込むための導入[」が設けられ、該導入口は上記測定
対象物質の透過可能な膜で遮蔽されていることを特i枚
とする鮮度計測用センサー(一体型構造)。
The device has a built-in oxygen electrode with immobilized microorganisms attached to the tip, and the tip of the oxygen electrode has an oxygen-saturated state of 4
The device is configured such that Ji liquid can be supplied at all times, and the device main body is provided with an introduction port for bringing the substance to be measured into contact with the sample to be measured, and the inlet port is configured to allow the substance to be measured to permeate through the sample. A freshness measuring sensor (integrated structure) that is specially shielded by a transparent membrane.

固定化微生物を先端部に装着した酸素電極が内蔵された
装置本体を備え、該酸素電極の先端部には酸素飽和緩衝
液が常時供給可能にt11成され、且つ上記袋面本体に
は上記緩衝液を介して接続されている接触部が連設され
ており、該接触部には、測定試料に接触させて該試料か
ら測定対象物質を取り込むための導入口が設けられ、該
導入口は上記測定対象物質の透過可能な膜で遮蔽されて
いることを特徴とする鮮度計測用センサー(分離型構造
)。
The device body is equipped with an oxygen electrode with immobilized microorganisms attached to the tip thereof, and the tip of the oxygen electrode is provided with an oxygen saturated buffer so that it can be constantly supplied with the buffer. A contact section connected via a liquid is provided in series, and the contact section is provided with an inlet for bringing the substance to be measured from the sample into contact with the sample, and the inlet is configured as described above. A sensor for measuring freshness (separate structure) characterized by being shielded by a membrane that allows the substance to be measured to pass through.

〔作用〕[Effect]

上記のように構成された鮮度計測用センサーでは、上記
試ギ4から上記導入口を通して測定対象物質を装置本体
に取り込むことができるので、該試料の鮮度を直接計i
1!’lすることができる。また、上記導入口を、装置
本体とは別体の接触部に設けることにより、上記直接計
測をより容易・簡便に行うことができる。
In the freshness measurement sensor configured as described above, the substance to be measured can be taken into the main body of the apparatus from the sample gage 4 through the inlet, so that the freshness of the sample can be directly measured.
1! 'l can. Further, by providing the introduction port in a contact portion separate from the main body of the device, the direct measurement can be performed more easily and conveniently.

〔実施例〕〔Example〕

次に、本発明の鮮度計測用センサーの一実施例を、第1
図に基づいて説明する。
Next, a first embodiment of the freshness measurement sensor of the present invention will be described.
This will be explained based on the diagram.

第1図は本発明の鮮度計測用センサーの一実施例の概略
を示す半断面図で、第2図は、」上記センサーを構成す
る、固定化微生物を先端部に装着した酸素電極を示す概
略図である。
FIG. 1 is a half-sectional view schematically showing an embodiment of the sensor for measuring freshness of the present invention, and FIG. 2 is a schematic half-sectional view showing an oxygen electrode with immobilized microorganisms attached to the tip, which constitutes the sensor. It is a diagram.

上記第1図に示す鮮度計測用センサー1は、固定化微生
物を先端部に装着した酸素電極2が内蔵された装置本体
3を備え、該装置本体3の下部には緩衝液の供給口3a
及び排出口3bが形成され、上記酸素電極2の先端部に
酸素飽和緩衝液が常時供給可能に構成されている。
The freshness measuring sensor 1 shown in FIG.
and a discharge port 3b are formed so that an oxygen saturated buffer solution can be constantly supplied to the tip of the oxygen electrode 2.

そして、上記装置本体3には、測定試料(第1図では図
示せず。)に接触させて該試料から測定対象物質を該装
置本体3の内部に取り込むための導入口4が設けられて
おり、該導入口4は上記測定対象物質の透過可能な膜5
で遮蔽されている。
The apparatus main body 3 is provided with an inlet 4 for bringing the substance to be measured from the sample into the apparatus main body 3 by bringing it into contact with a measurement sample (not shown in FIG. 1). , the inlet 4 is connected to a membrane 5 through which the substance to be measured is permeable.
is shielded by.

この膜5は、図中、装置本体3の下部の周囲に0リング
6で取付けられている。
This membrane 5 is attached around the lower part of the device main body 3 with an O-ring 6 in the figure.

上記膜5としては測定対象物質が透過可能な膜であれば
特に制限なく利用できるが、具体的には、例えば透析膜
、メンブランフィルタ−又は限外濾過膜等を挙げること
ができる。
The membrane 5 can be used without any particular restriction as long as it is a membrane through which the substance to be measured can permeate, but specific examples include dialysis membranes, membrane filters, and ultrafiltration membranes.

また、上記酸素電極2の先端部(電極部)に固定化微生
物を装着する方法としては、特に制限するものではない
が、第2図に示すように、テフロン膜21及び固定化微
生物(膜)22を順次配し、更にその下方から透析膜2
3を被覆する例をあげることができる。尚、上記テフロ
ン膜21及び上記透析膜23は、それぞれOリング24
及び25で上記酸素電極2の周囲に固定されている。
Furthermore, there are no particular restrictions on the method for attaching the immobilized microorganisms to the tip (electrode portion) of the oxygen electrode 2, but as shown in FIG. 22 in sequence, and then the dialysis membrane 2
An example can be given of covering 3. Note that the Teflon membrane 21 and the dialysis membrane 23 each have an O ring 24.
and 25 are fixed around the oxygen electrode 2.

また、上記酸素′@極2は、上記装置本体3の上方から
挿入され、該本体3の上部に螺合された取付は部材31
で固定されている。
Further, the oxygen'@ electrode 2 is inserted from above the device main body 3, and the mounting member 31 is screwed onto the upper part of the main body 3.
is fixed.

次に、本実施例の鮮度計測用センサーの作用を、第3図
をも参照しながら説明する。
Next, the operation of the freshness measuring sensor of this embodiment will be explained with reference to FIG. 3 as well.

第3図は、本実施例の鮮度計測用センサー1を含む測定
系の一例の概略図で、同図に示す測定系は、その基本が
、恒温水槽7に浸漬され、一定の温度に維持されている
酸素飽和緩衝液8、該緩衝液8を上記鮮度計測用センサ
ーlに供給するためのポンプ9、該鮮度計測用センサー
1から上記緩衝液8を測定系外へ排除するためのポンプ
9as及び上記鮮度計測用センサー1の電気的応答を記
録するためのレコーダIOで構成されている。この外、
図中11は空気導入管で、安定した電気的応答を得るた
めに、上記緩衝液8中に空気を吹き込み、該緩衝液8の
溶存酸素量を飽和状態とするためのものである。
FIG. 3 is a schematic diagram of an example of a measurement system including the freshness measuring sensor 1 of this embodiment. The measurement system shown in the figure is basically immersed in a constant temperature water bath 7 and maintained at a constant temperature. an oxygen-saturated buffer 8, a pump 9 for supplying the buffer 8 to the freshness measurement sensor 1, a pump 9as for discharging the buffer 8 from the freshness measurement sensor 1 to the outside of the measurement system; It is comprised of a recorder IO for recording the electrical response of the freshness measuring sensor 1. Outside of this,
In the figure, reference numeral 11 denotes an air introduction tube, which blows air into the buffer solution 8 to bring the amount of dissolved oxygen in the buffer solution 8 into a saturated state in order to obtain a stable electrical response.

先ず、所定の条件下で安定した状態にある緩衝液8を、
所定の流速で上記鮮度計測用センサー1に供給し、測定
の基準状態を規定する。これは、上記レコーダ10に安
定したベースラインとして現れる。
First, the buffer solution 8, which is stable under predetermined conditions, is
It is supplied to the freshness measurement sensor 1 at a predetermined flow rate to define a reference state for measurement. This appears on the recorder 10 as a stable baseline.

次いで、図示するように、鮮度計測用センサー1の膜5
で遮蔽されている導入口4を、試料12に接触させ、そ
の状態を所定時間維持し、その際の電気的応答をレコー
ダ10に記録する。
Next, as shown in the figure, the membrane 5 of the freshness measuring sensor 1 is
The inlet 4, which is shielded by the inlet, is brought into contact with the sample 12, and this state is maintained for a predetermined period of time, and the electrical response at that time is recorded on the recorder 10.

本実施例の鮮度計測用センサー1による鮮度は、上記レ
コーダ10に記録されたピーク高又はピーク面積により
判定・評価される。
The freshness measured by the freshness measurement sensor 1 of this embodiment is determined and evaluated based on the peak height or peak area recorded on the recorder 10.

即ら、上記の如く導入口4を試料に接触させることによ
り、膜5を通して上記試料12から測定対象物質が装置
本体3の中に導入され、上記鮮度計測用センサーIの酸
素電極2の先端部に装着されている固定化微生物と接触
するように構成しである。従って、測定対象物質である
、試料中に存在する低分子ペプチド、遊離アミノ酸及び
糖等により、iM生物の呼吸活性が増加し、その結実装
置本体3内の緩衝液中の溶存酸素量が減少するこのにな
る。この変化を上記酸素電極2により検出し、それを電
気的な応答として記録計7に記録することが可能である
That is, by bringing the inlet 4 into contact with the sample as described above, the substance to be measured is introduced from the sample 12 into the main body 3 of the apparatus through the membrane 5, and the substance to be measured is introduced into the main body 3 of the apparatus from the sample 12 through the membrane 5. and is configured to contact immobilized microorganisms attached to the microorganism. Therefore, the respiratory activity of the iM organism increases due to the substances to be measured, such as low-molecular peptides, free amino acids, sugars, etc. present in the sample, and the amount of dissolved oxygen in the buffer solution in the fruiting device main body 3 decreases. This will be it. This change can be detected by the oxygen electrode 2 and recorded on the recorder 7 as an electrical response.

また、第3図に示す測定系における鮮度計測用センサー
1の応答は、試料の鮮度が低下している程、自己消化又
は微生物の作用により、低分子ペプチド、′f1離アミ
ノ酸及び糖等が増加するので、大きくなる。従って、前
述の如く、試料の鮮度は、レコーダ10に記録されたピ
ーク高又はピーク面積により判断することができ、鮮度
が悪い程上記ピーク高又はピーク面積が大きくなる。
In addition, the response of the freshness measurement sensor 1 in the measurement system shown in Figure 3 shows that the lower the freshness of the sample, the more low-molecular-weight peptides, 'f1-released amino acids, sugars, etc. increase due to autolysis or the action of microorganisms. So it gets bigger. Therefore, as described above, the freshness of a sample can be judged by the peak height or peak area recorded on the recorder 10, and the worse the freshness is, the larger the peak height or peak area becomes.

以上説明した如く、本実施例の鮮度計測用センサー1に
よれば、試料12の総合的な鮮度評価を、迅速且つ簡便
に、しかも該試料12について前処理を一切することな
く (試料を破壊することな()、直接計測して行うこ
とができる。
As explained above, according to the freshness measuring sensor 1 of this embodiment, the comprehensive freshness evaluation of the sample 12 can be performed quickly and easily, and without any pre-treatment of the sample 12 (destroying the sample). Kotona () can be measured directly.

次に、本発明の鮮度計測用センサーについて更に詳述す
る。
Next, the freshness measuring sensor of the present invention will be described in more detail.

本発明の畜肉鮮度計測用微生物センサーに使用される微
生物としては、鮮度低下とともに生成、増加する物質を
資化する微生物であれば特に制限なく利用できるが、具
体的には例えば、下記表=1に示した腐敗菌等を挙げる
ことができる。一般的には、食品衛生上無害で、その呼
吸活性が鮮度指標と相関性がある好気性微生物を望まし
く使用することができる。尚、微生物を固定し、その固
定化微生物を酸素電極の先端部に装着する場合には、透
析膜等により被覆するのが好ましい。
The microorganisms used in the microbial sensor for measuring freshness of livestock meat of the present invention can be used without any particular restriction as long as they utilize substances that are produced and increased as freshness decreases. Examples include the putrefactive bacteria shown in . In general, aerobic microorganisms that are harmless from a food hygiene perspective and whose respiratory activity correlates with the freshness index can be preferably used. In addition, when immobilizing microorganisms and attaching the immobilized microorganisms to the tip of an oxygen electrode, it is preferable to cover the tip with a dialysis membrane or the like.

〔表−1〕微生物センサーへ利用可能な腐敗菌Achr
omobacter butyri(アクロモバクタ−
・ブティリイ) Achromobacter lipolyticum
(アクロモバクタ−・リボリイティカム)八lcali
genes (アルカリゲネス) Alcali(Heres viscosus(アルカ
リゲネス・ビスコ−サス) Alteromonas putrefaciens(
アルテロモナス・ピユートリファシェンス)Bacil
lus alvei (バチルス・アルヘイ) Bacillus cereus (バチルス・セレウス) Bacillus circulans(バチルス・サ
ーキュランス) Bacillus firmus (バチルス・フィルムス) 13aC4llHlicheniformis(バチル
ス・リケニフォルミス) Bacillus macerans (バチルス・マセランス) (バチルス・ステアロサーモフィリス)Bacillu
s 5ubtilis (バチルス・サブティリス) Enterobacter aerobenes(エン
チャバクター・アエロへ名ス) Enterobacter cloacae(エンチャ
バクター・クロアカ) Flavobacterium (フラボバクテリウム) Lactobacillus casei(ラクトバチ
ルス・カセイ) Lactobacillus fermentum(ラ
クトバチルス・ファーメンタム) LacLobacillus heterohioch
ii(ラクトバチルス・ヘテロヒオチ) Lactobacillus hiochii(ラクト
バチルス・ヒオチ) Lactobaci flus (ラクトバチルス) Leuconos toc (ロイコノストック) Micrococcus auranticus(ミク
ロコツカス・アラランティカス)門1crococcu
s  candidus(ミクロコンカス・カンディダ
ス) Micrococcus  flavus(ミクロコツ
カス・フラハス) Micrococcus freudenreichi
i(ミクロコツカス・フリューデンレイチー)Micr
ococcus ureae (ミクロコツカス・ウレア) Micrococcus varians(ミクロコツ
カス・パリアンス) Mixococcus (ミキソコッカス) ProLeus m1rabiris (プロテウス・ミラビリス) Pseudomonas fluorescens(シ
ュードモナス・フルオレッセンス)(シュードモナス・
シンキサンタ) Pseudomonas (シュードモナス) Serratia marcescens(セラチア・
マルセソセンス) Serratia (サラチア) (ストレプトコッカス・サーモフィルス)Vibri。
[Table-1] Achr bacteria that can be used for microbial sensors
omobacter butyri
・Achromobacter lipolyticum
(Achromobacter livoliiticum) 8lcali
genes (Alcaligenes) Alcali (Heres viscosus (Alcaligenes viscosus) Alteromonas putrefaciens (
Alteromonas piutrifaciens) Bacil
lus alvei Bacillus cereus Bacillus circulans Bacillus firmus 13aC4llHlicheniformis Bacillus macerans (Bacillus stearothermophilis) ) Bacillus
s 5ubtilis (Bacillus subtilis) Enterobacter aerobenes (Enchabacter aerohenames) Enterobacter cloacae (Enchabacter cloacae) Flavobacterium (Flavobacterium) Lactobacillus Lactobacillus casei Lactobacillus fermentum LacLobacillus heterohioch
Lactobacillus hiochii Lactobacillus hiochii Lactobacillus flus Leuconos toc Micrococcus auranticus ) Gate 1crococcu
s candidus (Microconcus candidus) Micrococcus flavus (Micrococcus flavus) Micrococcus freudenreichi
i (Micrococcus frudenleichii) Micr
ococcus ureae Micrococcus varians Mixococcus ProLeus m1rabiris Pseudomonas fluorescens ( Pseudomonas fluorescens) (Pseudomonas fluorescens)
Pseudomonas (Pseudomonas) Serratia marcescens (Serratia marcescens)
Marcesoscens) Serratia (Streptococcus thermophilus) Vibri.

(ビブリオ) また、上記微生物を固定化し、固定化されたごの固定化
微生物を酸素電極の先端部に装着するには、例えば、微
生物を培養した培養液をメンブランフィルタ−で濾過し
て該フィルターに微生物を吸着固定し、このように微生
物の吸着固定されたフィルターを必要に応じて適切な大
きさに切り抜いて酸素電極の先端部に装着することによ
り行うことができる。
(Vibrio) In addition, in order to immobilize the above-mentioned microorganisms and attach the immobilized microorganisms to the tip of the oxygen electrode, for example, the culture solution in which the microorganisms are cultured is filtered with a membrane filter. This can be done by adsorbing and immobilizing microorganisms on the oxygen electrode, cutting out the filter on which the microorganisms have been adsorbed and immobilized to an appropriate size as necessary, and attaching the filter to the tip of the oxygen electrode.

また、本発明の鮮度計測用センサーに使用される酸素電
極としては特に制限なく、種々のものを利用できる。
Further, the oxygen electrode used in the freshness measurement sensor of the present invention is not particularly limited, and various types can be used.

また、本発明の鮮度計測用センサーとしては、前記第1
図に示したものに限るものでなく、例えば、第4図に示
したように、前記実施例の場合と略同様の構成からなる
装置本体3を備えてはいるが、該本体3には導入口4を
設けず、該本体3に連設されている接触部14に設けた
ものであってもよい。上記接触部I4と上記本体3とは
、緩衝液を該本体3の中に供給するための管13で連結
されており、上記緩衝液を介して互いに接続されている
。従って、第4図に示した実施例の鮮度計測用センサー
1を第3図の測定系に適用する場合は、該センサー1を
、酸素飽和緩衝液8が上記接触部14の供給口14aか
ら接触部14の中に供給され、次いで該緩衝液8が排出
口14b、管13及び装置本体の供給口3aを経て該装
置本体3の中に供給され、その後排出口3bから排出さ
れるように上記測定系に組み込む。計測の仕方は、上記
接触部14の導入口4を試料12に直接接触させて前記
実施例の場合と同様に行う。
Further, as the freshness measuring sensor of the present invention, the first
For example, as shown in FIG. 4, the device body 3 is provided with a configuration substantially similar to that of the above embodiment, but the device body 3 is not limited to what is shown in the figure. The opening 4 may not be provided, but may be provided in the contact portion 14 which is connected to the main body 3. The contact portion I4 and the main body 3 are connected by a pipe 13 for supplying a buffer solution into the main body 3, and are connected to each other via the buffer solution. Therefore, when applying the freshness measurement sensor 1 of the embodiment shown in FIG. 4 to the measurement system of FIG. 14, and then the buffer solution 8 is supplied into the device body 3 via the outlet 14b, the pipe 13 and the supply port 3a of the device body, and is then discharged from the outlet 3b. Incorporate into measurement system. The measurement is carried out in the same manner as in the previous embodiment by bringing the inlet 4 of the contact section 14 into direct contact with the sample 12.

第4図に示した実施例の場合は、試料に接触させ、該試
料から測定対象物質を取り込むための導入口4が、装置
本体3とは別体の接触部14に設けられているいるため
、試料12の計測を一段と容易、簡便に行うことができ
る。
In the case of the embodiment shown in FIG. 4, the inlet 4 for contacting the sample and taking in the substance to be measured from the sample is provided in the contact part 14, which is separate from the main body 3 of the apparatus. , measurement of the sample 12 can be performed more easily and conveniently.

次に、本発明の鮮度計測用センサーについて、該センサ
ーを使用して鮮度の計測を行う実験例を挙げて具体的に
説明する。
Next, the sensor for measuring freshness of the present invention will be specifically explained by giving an experimental example in which the sensor is used to measure freshness.

実験例 市販されているマグロの切身及び牛の角切内のそれぞれ
について、温度及び時間等の保存条件を変えて鮮度の異
なる試料を作成し、各試料について第3図に示す測定系
を用いてその鮮度を計測すると同時に、該試料について
の官能検査を行った。
Experimental example Samples of commercially available tuna fillet and beef cubes with different freshness were prepared by changing storage conditions such as temperature and time, and the measurement system shown in Figure 3 was used to measure each sample. At the same time as measuring the freshness, a sensory test was conducted on the sample.

その時に、レコーダlOに記録されたピーク高を横軸に
、鮮度低下の度合を縦軸(目盛の数字が大きい程鮮度が
低い)に採った場合の両者の関係を表したのが第5図に
示すグラフである。
Figure 5 shows the relationship between the two when the horizontal axis is the peak height recorded on the recorder lO and the vertical axis is the degree of deterioration of freshness (the larger the number on the scale, the lower the freshness). This is the graph shown in .

官能検査は、各試料をステーキ風に焼いて、実際に食し
て行った。その結果、鮮度と官能検査による旨さとの間
には密接な関係があり、鮮度が低下する程旨さも低下す
ることが認められた。そして、縦軸の目盛3より上の範
囲では腐敗しており、食することはできなかった。
The sensory test was conducted by grilling each sample like a steak and actually eating it. As a result, it was found that there is a close relationship between freshness and taste as determined by sensory tests, with the lower the freshness, the lower the taste. The area above scale 3 on the vertical axis was rotten and could not be eaten.

第5図から明らかなように、本発明のバイオセンサー1
による計測時に記録されるピーク高と、マグロ肉(魚肉
)及び牛肉(畜肉)の鮮度との間にあ密接な関係があり
、しかも旨さとの間にも相関性が認められた。
As is clear from FIG. 5, biosensor 1 of the present invention
There was a close relationship between the peak height recorded during measurement and the freshness of tuna meat (fish meat) and beef (livestock meat), and a correlation was also observed between the taste.

尚、上記測定においては、微生物として、Simmon
s’mediumにてpH7,2、温度25°Cで培養
したアルテロモナス・ビュートリファシェンスを用いた
In addition, in the above measurement, Simon
Alteromonas buterifaciens cultured in S'medium at pH 7.2 and temperature of 25°C was used.

また、固定化微生物膜としては、上記指標菌を含む培養
液1mlをメンブランフィルタ−を用い、該フィルター
に上記微生物を吸着固定した後、得られたフィダーを直
径3Iの円形に切り抜いて調製したものを用いた。
The immobilized microorganism film was prepared by using a membrane filter to adsorb and immobilize 1 ml of the culture solution containing the above-mentioned indicator bacteria, and then cutting out the obtained feeder into a circular shape with a diameter of 3I. was used.

また、測定系の条件は次の通りとした。Furthermore, the conditions of the measurement system were as follows.

緩j!i液ニ リン酸緩衝液(0,L M>    pH7,0温度 
           28℃ 流速           0.6 ml / min
Loose j! i-solution diphosphate buffer (0, L M> pH 7, 0 temperature
28℃ Flow rate 0.6 ml/min
.

固定化微生物膜上の菌数:   5XLO’個/cdま
た、本実験例では、鮮度計測用センサーに設けられてい
る導入口を遮蔽するための膜として、孔径2μmのメン
ブランフィルタ−を用いた。
Number of bacteria on the immobilized microorganism film: 5XLO' pieces/cd In addition, in this experimental example, a membrane filter with a pore diameter of 2 μm was used as a membrane for shielding the inlet provided in the sensor for measuring freshness.

〔発明の効果〕〔Effect of the invention〕

本発明の鮮度計測用センサーは、魚肉及び畜肉の総合的
な鮮度評価を、迅速且つ簡便に、しかも試料を直接計測
して行うことができるという効果を奏するものである。
The freshness measuring sensor of the present invention has the effect that comprehensive freshness evaluation of fish meat and livestock meat can be performed quickly and easily by directly measuring a sample.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の鮮度計測用センサーの一実施例の概
略を示す半断面図、第2図は固定化微生物を先端部に装
着した酸素電極を示す概略図、第3図は鮮度計測用セン
サーを含む測定系の概略を示すフローシート、第4図は
他の実施例の鮮度計測用センサーの概略を示す半断面図
、第5図は試料の鮮度と鮮度計測用センサーの出力値と
の相関関係を示すグラフである。 1・・・鮮度計測用センサー 2・・・酸素電極 4・・・導入口、5・・・ロク 12・・・試料 22・・・固定化微生物 特許出願人     大洋漁業株式会社第1図   第
2図 第3図
Figure 1 is a half-sectional view schematically showing an embodiment of the sensor for measuring freshness of the present invention, Figure 2 is a schematic diagram showing an oxygen electrode with immobilized microorganisms attached to the tip, and Figure 3 is a diagram for measuring freshness. FIG. 4 is a half-sectional view showing an outline of the freshness measuring sensor of another embodiment, and FIG. 5 shows the freshness of the sample and the output value of the freshness measuring sensor. It is a graph showing the correlation. 1... Sensor for freshness measurement 2... Oxygen electrode 4... Inlet port, 5... Roku 12... Sample 22... Immobilized microorganism patent applicant Taiyo Fishery Co., Ltd. Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)固定化微生物を先端部に装着した酸素電極が内蔵
された装置本体を備え、該酸素電極の先端部には酸素飽
和緩衝液が常時供給可能に構成され、且つ上記装置本体
には、測定試料に接触させて該試料から測定対象物質を
取り込むための導入口が設けられ、該導入口は上記測定
対象物質の透過可能な膜で遮蔽されていることを特徴と
する鮮度計測用センサー。
(1) The device body includes an oxygen electrode with immobilized microorganisms attached to the tip thereof, and is configured such that an oxygen saturated buffer solution can be constantly supplied to the tip of the oxygen electrode, and the device body includes: A sensor for measuring freshness, characterized in that an inlet is provided for bringing in a substance to be measured from the sample by bringing it into contact with the sample, and the inlet is shielded by a membrane through which the substance to be measured is permeable.
(2)固定化微生物を先端部に装着した酸素電極が内蔵
された装置本体を備え、該酸素電極の先端部には酸素飽
和緩衝液が常時供給可能に構成され、且つ上記装置本体
には上記緩衝液を介して接続されている接触部が連設さ
れており、該接触部には、測定試料に接触させて該試料
から測定対象物質を取り込むための導入口が設けられ、
該導入口は上記測定対象物質の透過可能な膜で遮蔽され
ていることを特徴とする鮮度計測用センサー。
(2) The apparatus body is equipped with an oxygen electrode having a built-in immobilized microorganism at its tip, and is configured such that an oxygen saturated buffer solution can be constantly supplied to the tip of the oxygen electrode, and the apparatus body has the above-mentioned A contact part connected via a buffer solution is provided in series, and the contact part is provided with an inlet for bringing into contact with the measurement sample and taking in the substance to be measured from the sample,
A sensor for measuring freshness, characterized in that the inlet port is shielded by a membrane through which the substance to be measured can pass.
JP63002022A 1988-01-08 1988-01-08 Sensor for measuring freshness Pending JPH01178861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63002022A JPH01178861A (en) 1988-01-08 1988-01-08 Sensor for measuring freshness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63002022A JPH01178861A (en) 1988-01-08 1988-01-08 Sensor for measuring freshness

Publications (1)

Publication Number Publication Date
JPH01178861A true JPH01178861A (en) 1989-07-17

Family

ID=11517704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63002022A Pending JPH01178861A (en) 1988-01-08 1988-01-08 Sensor for measuring freshness

Country Status (1)

Country Link
JP (1) JPH01178861A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570741A (en) * 1978-11-21 1980-05-28 Hitachi Ltd Substrate analysis method
JPS6365357A (en) * 1986-09-05 1988-03-23 Fujitsu Ltd Sensor for carbon dioxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570741A (en) * 1978-11-21 1980-05-28 Hitachi Ltd Substrate analysis method
JPS6365357A (en) * 1986-09-05 1988-03-23 Fujitsu Ltd Sensor for carbon dioxide

Similar Documents

Publication Publication Date Title
Mayerhofer et al. Characterization of a heat-stable protease of Pseudomonas fluorescens P26
Bai et al. Formation and destruction of biogenic amines in Chunjang (a black soybean paste) and Jajang (a black soybean sauce)
Toko et al. Heat effect on the taste of milk studied using a taste sensor
JPS5832879B2 (en) How do you know what to do?
Cobb III et al. Biochemical changes in shrimp inoculated with Pseudomonas, Bacillus and a Coryneform bacterium
WATANABE et al. Microbial sensors for the detection of fish freshness
JPH01178861A (en) Sensor for measuring freshness
US4985125A (en) Method for detecting meat freshness using a biosensor
EP1216307B1 (en) Method for the detection of antimicrobial residues
Rockenmacher Relationship of catalase activity to virulence in Pasteurella pestis
Wang et al. An insight into the changes in the microbial community of Kantuan‐sliced chicken during storage at different temperatures
Yano et al. Monitoring of beef aging using a two-line flow injection analysis biosensor consisting of putrescine and xanthine electrodes
GB2220066A (en) Detecting biological contamination
Janarthanan et al. Enzymatic determinations with rotating bioreactors: Determination of glutamate in food products
Ruiz-Capillas et al. Determination of biogenic amines
JPH01222767A (en) Device for testing drugs
JP2540532B2 (en) Method of measuring freshness of fish
JPH01119762A (en) Germ sensor for measuring freshness of livestock meat
Horie et al. Quality evaluation on green tea
Gosnell et al. Improvements on the agar plate method to determine lysozyme
Pan et al. A comparative procedure for evaluating antimicrobial activity of gaseous agents
JPH10276796A (en) Measurement of physiological activity and apparatus therefor
Lima Ascorbic acid degradation kinetics and mass transfer effects in biological tissue during ohmic heating
Diaz et al. Feasibility of continuous glutamate monitoring in perfused retinal tissue with a potentiometric biosensing probe
Watanabe et al. Determination of fish freshness with a biosensor system