JPH01178728A - Steam injection equipment for gas turbine - Google Patents

Steam injection equipment for gas turbine

Info

Publication number
JPH01178728A
JPH01178728A JP4088A JP4088A JPH01178728A JP H01178728 A JPH01178728 A JP H01178728A JP 4088 A JP4088 A JP 4088A JP 4088 A JP4088 A JP 4088A JP H01178728 A JPH01178728 A JP H01178728A
Authority
JP
Japan
Prior art keywords
steam
gas turbine
combustor
heater wire
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4088A
Other languages
Japanese (ja)
Inventor
Kazutoshi Ishibashi
和利 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4088A priority Critical patent/JPH01178728A/en
Publication of JPH01178728A publication Critical patent/JPH01178728A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To prevent a flame of a combustor from blowing out by setting up each heater wire in steam pipelines between a steam flow regulating valve and the combustor. CONSTITUTION:Each steam pipeline 23 is installed in place ranging from a steam turbine or a exhaust heat recovery heat exchanger to a combustor 2. Each heater wire is set up in an interval between a steam flow regulating valve 11 of this steam pipeline 23 and the combustor 2, heating the heater wire 24, and temperature control over the steam pipeline 23 takes place. With this constitution, any liquefaction of injection steam at the time of steam jet starting is checked, so that any possible blowout of a flame inside the combustor 2 is preventable.

Description

【発明の詳細な説明】 〔発明の目的] (産業上の利用分野) この発明は、ガスタービン排ガス中の窒素酸化物を低減
するガスタービンの蒸気噴射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a steam injection device for a gas turbine that reduces nitrogen oxides in gas turbine exhaust gas.

(従来の技術) 従来のガスタービンプラントの構造は、第5図に示すよ
うに、まず空気圧縮機1で圧縮した空気を燃焼器2へ導
き、この燃焼器2内で圧縮空気と燃お1とを混合燃焼さ
せ、このとぎ生じた高温高圧の燃焼ガスが膨張する過程
C、ガスタービン3に付属するガスタービンロータ4を
回転させ、このガスタービンロータ4ど同軸上に設(プ
られた発電機5を回して電気エネルギを得る構造となっ
ている。
(Prior Art) The structure of a conventional gas turbine plant is as shown in FIG. A process C in which the resulting high-temperature, high-pressure combustion gas expands, the gas turbine rotor 4 attached to the gas turbine 3 is rotated, and the gas turbine rotor 4 is installed coaxially with the electric power generator. The structure is such that electric energy is obtained by rotating the machine 5.

近年のガスタービンプラン1〜では、燃焼器2内での燃
焼ガスの燃焼温度を十Rさせることによってプラントの
高効率化を図っているが、燃焼湿度を上昇させると、空
気中の窒素が酸化して人体に有害な窒素酸化物(以F 
N Oという)が発生し× てしまう。そこで、従来のガスタービンプラントには、
燃焼火炎中に蒸気を噴射して燃焼温度を低下させ、NO
xを低減する蒸気噴射装M6が配設されている。
In recent gas turbine plans 1 to 2, the efficiency of the plant is increased by increasing the combustion temperature of combustion gas in the combustor 2 to 10 R, but increasing the combustion humidity causes nitrogen in the air to oxidize. Nitrogen oxides (F), which are harmful to the human body,
(referred to as NO) occurs. Therefore, in conventional gas turbine plants,
Steam is injected into the combustion flame to lower the combustion temperature and NO
A steam injection device M6 is provided which reduces x.

この蒸気噴射装置6は、排熱回収熱交換器7または蒸気
タービン8からの蒸気を抽気して減温器9へ導き、ここ
で蒸気の温度を低下さゼた後、遮断弁10および蒸気流
量調節弁11を通り、蒸気マニホールド12から燃焼器
2内へ蒸気を噴射させる構造となっている。排熱回収熱
交換器7おにび蒸気タービン8から減温器9等を通って
蒸気マニホールド12へ蒸気を導く経路は、蒸気配管1
3により構成される。このように、低湿の蒸気を燃焼火
炎中に噴射することにJ:す、燃焼温度を低下さゼ、N
Oxの発生を低減させている。
This steam injection device 6 extracts steam from an exhaust heat recovery heat exchanger 7 or a steam turbine 8 and guides it to a desuperheater 9 where the temperature of the steam is lowered. The structure is such that steam passes through a control valve 11 and is injected from a steam manifold 12 into the combustor 2. A path for guiding steam from the exhaust heat recovery heat exchanger 7 and the steam turbine 8 to the steam manifold 12 through the desuperheater 9 and the like is the steam piping 1.
Consisting of 3. In this way, injecting low-humidity steam into the combustion flame reduces the combustion temperature.
It reduces the generation of Ox.

また、蒸気噴射後、さらにタービン駆動後の排ガス中に
アンモニアガスを注入して混合させ、その下流側で排ガ
スを触媒に通すことにより、NOxを一層完全に低減す
ることも行なわれている。
Additionally, ammonia gas is injected and mixed into the exhaust gas after steam injection and after the turbine is driven, and the exhaust gas is passed through a catalyst on the downstream side to further completely reduce NOx.

ガスタービン着火がらターげン定格運転に達づるまでの
NOx排出量の変化を第6図に示す。まず、ガスタービ
ン着火と同時にNOxが排出され、ガスタービンが一定
回転数にて一定時間暖気運転される間、ガスタービンか
らのNO,の排出量は一定となる。次に、ガスタービン
暖気終了点からFSNL(定格回転数無負荷)の状態ま
でタービン回転数が上昇すると、NOx排出量はタービ
ン回転数とほぼ比例して上昇する。やがて、FSNLを
過ぎるとターどンの負荷に応じて排気量は上昇し、最小
負荷運転(Spinning Re5erve)のとき
にピークとなる。
Figure 6 shows the change in NOx emissions from gas turbine ignition until the turbine reaches rated operation. First, NOx is emitted at the same time as the gas turbine ignites, and while the gas turbine is warmed up for a certain period of time at a certain rotation speed, the amount of NOx emitted from the gas turbine remains constant. Next, when the turbine rotation speed increases from the gas turbine warm-up end point to the FSNL (rated rotation speed no load) state, the amount of NOx emissions increases almost in proportion to the turbine rotation speed. Eventually, after passing FSNL, the displacement increases according to the load on the engine, and reaches its peak during minimum load operation (Spinning Re5erve).

そこで、このNOx排出量を低減さ゛せるために燃焼器
2内の燃焼火炎に蒸気噴射を行ない、第6図中の一点鎖
線Aで示すようなNOx特性を得る。
Therefore, in order to reduce the amount of NOx discharged, steam is injected into the combustion flame within the combustor 2 to obtain the NOx characteristics as shown by the dashed-dotted line A in FIG.

しかし、これでも未だ公害対策の観点からは充分でない
ので、さらにガスタービン3からの排ガス中にアンモニ
アガスを注入してn凭硝触媒を通すことにより、第6図
の実線Bで示すようなNOx特性を得て、NOxを一層
低減ざゼている。
However, this is still not sufficient from the viewpoint of pollution control, so by further injecting ammonia gas into the exhaust gas from the gas turbine 3 and passing it through the sulfur catalyst, NOx as shown by the solid line B in Fig. 6 can be reduced. These characteristics have led to further reductions in NOx.

(発明が解決しようとする課題) ところが、上述のような従来のガスタービンの蒸気噴射
装置では、蒸気流量調節弁11の下流側と蒸気マニホー
ルド12との間の蒸気配管13内における雰囲気温度が
大気温度と殆ど同じであるため、蒸気噴射開始時にこの
蒸気配管13内を通過する蒸気の温度が低下して液化し
、この液化した蒸気が燃焼器2内の燃焼火炎に直接吹き
付()られて火炎が消され、ガスタービンが停止してし
まうおそれがあった。
(Problem to be Solved by the Invention) However, in the conventional gas turbine steam injection device as described above, the atmospheric temperature in the steam pipe 13 between the downstream side of the steam flow rate control valve 11 and the steam manifold 12 is lower than that of the atmosphere. Since the temperature is almost the same as the temperature, the temperature of the steam passing through the steam pipe 13 decreases and liquefies at the start of steam injection, and this liquefied steam is directly blown onto the combustion flame in the combustor 2. There was a risk that the flame would be extinguished and the gas turbine would shut down.

この発明は、上記事実を考慮してなされたものであり、
蒸気噴射開始時における蒸気の液化を防止して、燃焼室
内における燃焼火炎の吹き消えを防止できるガスタービ
ンの蒸気噴射装置を捷供することを目的とする。
This invention was made in consideration of the above facts,
An object of the present invention is to provide a steam injection device for a gas turbine that can prevent liquefaction of steam at the start of steam injection and prevent combustion flames from blowing out in a combustion chamber.

〔発明の構成〕[Structure of the invention]

(課題を解決するだめの手段) この発明は、蒸気タービンまたは排熱回収熱交換器から
抽気した蒸気を燃焼器内へ導くための蒸気配管と、この
蒸気配管に介装され、この蒸気配管内を流れる蒸気の流
量を調節する蒸気流同調節介とを備え、上記燃焼器内の
燃焼火炎に上記蒸気配管から導いた蒸気を噴射させてタ
ービン排ガス中の窒素酸化物を低減させるガスタービン
の蒸気噴射装置において、上記蒸気流量調節弁下流側と
上記燃焼器との間の蒸気配管にヒータ線を配設し、この
ヒータ線を加熱して上記蒸気配管の温度調節を行なうよ
う構成されたものである。
(Means for Solving the Problems) The present invention provides a steam pipe for guiding steam extracted from a steam turbine or an exhaust heat recovery heat exchanger into a combustor, a steam pipe installed in the steam pipe, and a steam pipe installed in the steam pipe. A steam turbine for reducing nitrogen oxides in turbine exhaust gas by injecting steam led from the steam piping into a combustion flame in the combustor, and reducing nitrogen oxides in the turbine exhaust gas. In the injection device, a heater wire is disposed in the steam piping between the downstream side of the steam flow rate control valve and the combustor, and the heater wire is heated to adjust the temperature of the steam piping. be.

(作用) したがって、この発明に係るガスタービンの蒸気噴射装
置によれば、ヒータ線に電源装置から電力を与えること
によって、蒸気流量調節弁下流側と燃焼器との間の蒸気
配管を加熱し、この間を流れる噴射蒸気が蒸気配管内で
液化しないようにする。
(Function) Therefore, according to the steam injection device for a gas turbine according to the present invention, the steam piping between the downstream side of the steam flow rate control valve and the combustor is heated by applying electric power to the heater wire from the power supply device, The injection steam flowing between the pipes should not be liquefied in the steam piping.

(実施例) 以下、この発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図はこの発明に係るガスタービンの蒸気噴射装置の
一実施例が適用されたガスタービンブラン1への一部を
示す系統図、第2図はこの実施例の構成を示す斜視図で
ある。この実施例におい−C1萌記従来例と同様な部分
は同一の符号をイ4すことにより説明を省略する。
FIG. 1 is a system diagram showing a part of a gas turbine blanc 1 to which an embodiment of a gas turbine steam injection device according to the present invention is applied, and FIG. 2 is a perspective view showing the configuration of this embodiment. . In this embodiment, parts similar to those in the prior art example are denoted by the same reference numerals, and a description thereof will be omitted.

第1図に示ずように、蒸気流量調節弁11の下流側と蒸
気マニホールド12とを連結する蒸気配管23は2本配
設され、これらの蒸気配管23の外周にヒータ線24が
密着して取り付(プられる。
As shown in FIG. 1, two steam pipes 23 are provided to connect the downstream side of the steam flow rate control valve 11 and the steam manifold 12, and the heater wires 24 are tightly attached to the outer peripheries of these steam pipes 23. Installed (installed).

このヒータ線24は、第2図に示すように、2本の蒸気
配管に治って、蒸気流量調節弁11がら蒸気マニホール
ド12まで1本のヒータ線で1〜レースされる。このヒ
ータ線2/Iは、蒸気流量調節弁11直後の位置で蒸気
配管23がらN1脱し、電源装置25に接続されて電力
が供給され(qるJ:うに構成される。
As shown in FIG. 2, this heater wire 24 is formed into two steam pipes and is raced from the steam flow rate control valve 11 to the steam manifold 12 with one heater wire. This heater wire 2/I exits from the steam pipe 23 at a position immediately after the steam flow rate control valve 11, and is connected to the power supply device 25 to be supplied with electric power.

電源装置25にはスイッチ(図示せず)が配設され、こ
のスイッチの0N−OFF操作により、ヒータ線24へ
電力を供給するが否が、すなゎら蒸気配管23を加熱す
るか否かの切換が行イ(ゎれる。つまり、蒸気噴射開始
前にスイッチをON操作してヒータ線24へ通電し蒸気
配管23を暖める。蒸気噴射開始後は蒸気配管23を暖
める必要がないので、電源装置25のスイッチをOFF
とする。
The power supply device 25 is provided with a switch (not shown), and the ON/OFF operation of this switch determines whether power is supplied to the heater wire 24 or not, in other words, whether or not the steam pipe 23 is heated. In other words, before the start of steam injection, turn on the switch to energize the heater wire 24 and warm the steam pipe 23.After the start of steam injection, there is no need to warm up the steam pipe 23, so the power supply Turn off the switch 25
shall be.

次に、蒸気配雀23とヒータ線24どの密着固定構造の
一例を第3図を参照して説明する。
Next, an example of a structure for closely fixing the steam sparrow 23 and the heater wire 24 will be described with reference to FIG. 3.

蒸気配管23外周にはこの蒸気配管23の軸方向に沿っ
てヒータ線24が密着配設される。ヒータ線24を蒸気
配管23に密着固定さゼるために、蒸気配管23の軸方
向適数箇所において補強線26により、ヒータ線24と
蒸気配管23とを同時に巻いている。そして、蒸気配管
23とヒータ線24の外周に、外部との断熱用として断
熱材27を設け、さらにその外周を覆うように蒸気配管
保護用の硬質カバー28を設(プる。また、この硬質カ
バ−28外周には硬質カバー28を固定するための補強
線29が、硬質カバー28の軸方向の随所に巻き何重ら
れる。そして、硬質カバー28の外周に外装金属板30
を被覆して1本のラインとしている。
A heater wire 24 is disposed in close contact with the outer periphery of the steam pipe 23 along the axial direction of the steam pipe 23 . In order to tightly fix the heater wire 24 to the steam pipe 23, the heater wire 24 and the steam pipe 23 are simultaneously wound around the reinforcing wire 26 at a suitable number of locations in the axial direction of the steam pipe 23. Then, a heat insulating material 27 is provided around the outer periphery of the steam pipe 23 and the heater wire 24 for insulation from the outside, and a hard cover 28 for protecting the steam pipe is further provided to cover the outer periphery of the heat insulating material 27. A reinforcing wire 29 for fixing the hard cover 28 is wound around the hard cover 28 in various places in the axial direction and overlapped several times on the outer periphery of the hard cover 28.
is covered to form one line.

このにうな構成のガスタービン蒸気噴射装置では、ガス
タービンの燃焼器内にお(Jる燃焼火炎へ蒸気噴射を開
始する前に、電源装置25のスイッチをON操作してヒ
ータ線24に電力を投入し、蒸気流量調節弁11と蒸気
マニホールド12との間の蒸気配管23をヒータ線24
の熱にJ:って予め暖めることができるので、蒸気配管
23が低温環境下にあっても、この蒸気配管23内の噴
射蒸気の液化を防止できる。イの結果、噴射蒸気を燃焼
室内に噴射しても燃焼火炎の吹ぎ消えが無くなり、ガス
タービンが停止覆ることがない。
In this gas turbine steam injection system having this configuration, before starting steam injection into the combustion flame in the combustor of the gas turbine, the switch of the power supply device 25 is turned on to supply power to the heater wire 24. The heater wire 24 is connected to the steam pipe 23 between the steam flow rate control valve 11 and the steam manifold 12.
Since the heat of J: can be prewarmed, even if the steam pipe 23 is in a low-temperature environment, the injected steam in the steam pipe 23 can be prevented from liquefying. As a result of (a), even if the injection steam is injected into the combustion chamber, the combustion flame will not blow out and the gas turbine will not stop.

また、その他の効果として、蒸気配管23が低温環境下
にあっても噴射蒸気の液化を防止できるため、噴射蒸気
が従来J:りも低い温度であっても、この噴射蒸気を暖
めて噴射できる。つまり、第4図の時点Cに示すように
、従来よりも早い時期に蒸気噴射を開始できることにな
る。その結果、ガスタービン起動途中のピークN0xl
Jl出量を大幅に低減でき、NO8υ1出串の規制が厳
しい条件下でも運転が可能となる。なお、第4図中の破
線りは蒸気噴射開始後にお(プるNO8排出量を示し、
実線[は蒸気噴射開始後排ガス中にアンモニアを注入し
たときのNO8排出量を示す。
In addition, as another effect, it is possible to prevent the injected steam from liquefying even if the steam pipe 23 is in a low-temperature environment, so even if the injected steam is at a lower temperature than conventional methods, the injected steam can be heated and injected. . In other words, as shown at time C in FIG. 4, steam injection can be started earlier than in the past. As a result, the peak N0xl during gas turbine startup
Jl output can be significantly reduced, and operation is possible even under conditions with strict NO8υ1 output regulations. The broken line in Figure 4 indicates the amount of NO8 emitted after the start of steam injection.
The solid line [indicates the NO8 emission amount when ammonia is injected into the exhaust gas after the start of steam injection.

〔発明の効果] 以上のにうに、この発明に係るガスタービンの蒸気噴射
装置によれば、ガスタービンへの蒸気配管を蒸気噴射開
始前から暖めることができるので、蒸気噴射開始時にお
りる噴射蒸気の液化を防止でき、噴射蒸気の液化によっ
て生じる燃焼器内における燃焼火炎の吹き消えを防止で
きる。
[Effects of the Invention] As described above, according to the steam injection device for a gas turbine according to the present invention, the steam piping to the gas turbine can be warmed before the start of steam injection, so that the injected steam flowing at the start of steam injection can be heated. It is possible to prevent the combustion flame from blowing out in the combustor, which is caused by the liquefaction of the injected steam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るガスタービンの蒸気噴射装置の
一実施例が適用されたガスタービンプラン1〜の一部を
示づ系統図、第2図は第1図の実施例の構成を示す斜視
図、第3図はこの実施例におt−Jる蒸気配管とヒータ
線との密着固定構造を示す斜視図、第4図はこの実施例
にお(づるガスタービン着火から定格運転まで゛のNO
xυ1出吊を示す図、第5図は従来のガスタービンの蒸
気噴射装置が適用されたガスタービンプラントを示づ系
統図、第6図は第5)図のガスタービンプラントにお(
)るガスタービシ着火から定格運転までのNO排出量を
示ず図である。 2・・・燃焼器、3・・・ガスタービン、7・・・排熱
回収熱交換器、8・・・蒸気タービン、11・・・蒸気
流量調節弁、12・・・蒸気マニホールド、23・・・
蒸気配管、24・・・ヒータ線、25・・・電源装置。
FIG. 1 is a system diagram showing a part of gas turbine plan 1 to which an embodiment of the gas turbine steam injection device according to the present invention is applied, and FIG. 2 shows the configuration of the embodiment of FIG. 1. FIG. 3 is a perspective view showing the tight fixation structure of the steam piping and heater wire in this embodiment, and FIG. NO
Fig. 5 is a system diagram showing a gas turbine plant to which a conventional gas turbine steam injection device is applied, and Fig. 6 is a diagram showing the gas turbine plant shown in Fig. 5).
) is a diagram that does not show the amount of NO emissions from gas turbine ignition to rated operation. 2... Combustor, 3... Gas turbine, 7... Exhaust heat recovery heat exchanger, 8... Steam turbine, 11... Steam flow rate control valve, 12... Steam manifold, 23...・・・
Steam piping, 24... Heater wire, 25... Power supply device.

Claims (1)

【特許請求の範囲】[Claims] 蒸気タービンまたは排熱回収熱交換器から抽気した蒸気
を燃焼器内へ導くための蒸気配管と、この蒸気配管に介
装され、この蒸気配管内を流れる蒸気の流量を調節する
蒸気流量調節弁とを備え、上記燃焼器内の燃焼火炎に上
記蒸気配管から導いた蒸気を噴射させてタービン排ガス
中の窒素酸化物を低減させるガスタービンの蒸気噴射装
置において、上記蒸気流量調節弁下流側と上記燃焼器と
の間の蒸気配管にヒータ線を配設し、このヒータ線を加
熱して上記蒸気配管の温度調節を行なうよう構成された
ことを特徴とするガスタービンの蒸気噴射装置。
A steam pipe for guiding steam extracted from a steam turbine or an exhaust heat recovery heat exchanger into a combustor, and a steam flow rate control valve installed in the steam pipe to adjust the flow rate of steam flowing in the steam pipe. A steam injection device for a gas turbine, which injects steam guided from the steam piping into a combustion flame in the combustor to reduce nitrogen oxides in turbine exhaust gas, wherein the downstream side of the steam flow rate control valve and the combustion 1. A steam injection device for a gas turbine, characterized in that a heater wire is disposed in a steam pipe between the steam pipe and the steam pipe, and the temperature of the steam pipe is adjusted by heating the heater wire.
JP4088A 1988-01-04 1988-01-04 Steam injection equipment for gas turbine Pending JPH01178728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4088A JPH01178728A (en) 1988-01-04 1988-01-04 Steam injection equipment for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4088A JPH01178728A (en) 1988-01-04 1988-01-04 Steam injection equipment for gas turbine

Publications (1)

Publication Number Publication Date
JPH01178728A true JPH01178728A (en) 1989-07-14

Family

ID=11463202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4088A Pending JPH01178728A (en) 1988-01-04 1988-01-04 Steam injection equipment for gas turbine

Country Status (1)

Country Link
JP (1) JPH01178728A (en)

Similar Documents

Publication Publication Date Title
US20040119291A1 (en) Method and apparatus for indirect catalytic combustor preheating
US4233811A (en) Exhaust gas reaction control system
CA2096011A1 (en) Gas generators
EP2236937A2 (en) Turbine Fuel Nozzle Having Heat Control
JP2710269B2 (en) A catalytic heating burner for a spark ignition engine that does not require a fuel supply device and an air blower
JPH01178728A (en) Steam injection equipment for gas turbine
JP3558016B2 (en) Internal combustion engine having a combustion heater
JPS63215838A (en) Steam injection equipment for gas turbine
JPS60135612A (en) Exhaust particulate treater of internal-combustion engine
JPS63205424A (en) Gas turbine vapor injection device
JPH05248262A (en) Gas turbo group
JPH0549856A (en) Ammonia injection device for denitration apparatus
JP2001349206A (en) Denitration control method and device of combined cycle power generation plant
Vorotyntsev et al. Features of commissioning a gas turbine unit with a low-emission combustion chamber
SU1768785A1 (en) Manner of starting of gas-turbine engine
KR840001374Y1 (en) Device for heating and feeding fuel for diesel engine
GB2305215A (en) Spark ignition engine air induction and fuel injection system
KR19990048492A (en) Humidity regulator of car intake
JPH0414319Y2 (en)
JP3281674B2 (en) Denitration equipment
JPH0262762B2 (en)
RU98119127A (en) METHOD FOR STARTING AND MAINTAINING TURNS OF A GAS-TURBINE AIRCRAFT ENGINE WITH A FREE TURBINE OPERATING ON A STEAM-GAS CYCLE, AND A DEVICE FOR ITS IMPLEMENTATION
JPH03260313A (en) Nox removal method of exhaust gas for internal combustion engine
JPH0552123A (en) Control device for gas turbine
RU1235271C (en) Method of heating fuel-control apparatus of gas-turbine engine