JPH01177512A - Post-objective type optical scanner - Google Patents

Post-objective type optical scanner

Info

Publication number
JPH01177512A
JPH01177512A JP63001517A JP151788A JPH01177512A JP H01177512 A JPH01177512 A JP H01177512A JP 63001517 A JP63001517 A JP 63001517A JP 151788 A JP151788 A JP 151788A JP H01177512 A JPH01177512 A JP H01177512A
Authority
JP
Japan
Prior art keywords
scanning direction
scanning
axis
correction
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63001517A
Other languages
Japanese (ja)
Other versions
JP2530351B2 (en
Inventor
Yasuo Matsumoto
泰夫 松本
Kazunori Murakami
和則 村上
Tomonori Ikumi
智則 伊久美
Satoo Iwafune
岩舟 恵男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Tokyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Co Ltd filed Critical Tokyo Electric Co Ltd
Priority to JP63001517A priority Critical patent/JP2530351B2/en
Priority to DE3887610T priority patent/DE3887610T2/en
Priority to EP88308717A priority patent/EP0309205B1/en
Priority to US07/247,656 priority patent/US5064262A/en
Priority to KR1019880012267A priority patent/KR920005033B1/en
Publication of JPH01177512A publication Critical patent/JPH01177512A/en
Priority to US07/772,651 priority patent/US5153766A/en
Priority to US07/904,011 priority patent/US5204769A/en
Application granted granted Critical
Publication of JP2530351B2 publication Critical patent/JP2530351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To obtain the title scanner having a high performance, and also, consisting of an inexpensive and simple structure by combining the correction effects of the reflecting surface of a rotary reflecting mirror, and the incident surface and the emitting surface of a correction lens and executing a correction of an ftheta characteristic and a correction of the curvature of the sagittal image face and the meridional image face. CONSTITUTION:By forming the reflecting surface of a rotary reflecting mirror 7 to the curved surface on which the curvature is different in each part in its reflecting surface, the curvature of the image face (sagittal image face) in the scanning direction can be corrected more effectively than the spherical surface or the cylindrical surface whose curvature is constant. Also, since the incident surface 14 of a correction lens 9 has been formed to the rotation symmetrical curved surface 17 having a rotation symmetrical axis being parallel to the scanning direction, power in the sub-scanning direction being vertical to the scanning direction can be varied, and the curvature of the image face (meridional image face) in the sub-scanning direction can be corrected. Moreover, since the emitting surface 15 of the correction lens 9 has been formed to the curved surface having power in the scanning direction, a correction effect of an ftheta characteristic and a correction effect of the sagittal image of a higher level are obtained by this curved surface. In such a way, said scanner having a high performance, and also, consisting of an inexpensive and simple structure can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザープリンタ等に利用されるポストオブ
ジェクティブ型光走査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a post-objective optical scanning device used in laser printers and the like.

従来の技術 従来、レーザプリンタ等に用いられる光走査装置として
は、光ビームが回転多面鏡により偏向走査された後に収
束レンズを通るプレオブジェクティブ型の光走査装置と
、光ビームが収束レンズにより収束光とされた後に回転
反射鏡に入射されるポストオブジェクティブ型の光走査
装置との2種類に大きく分類される。
Conventional technology Conventionally, optical scanning devices used in laser printers and the like include pre-objective type optical scanning devices in which the light beam is deflected and scanned by a rotating polygon mirror and then passes through a converging lens, and a pre-objective type optical scanning device in which the light beam is deflected and scanned by a converging lens. There are two main types of optical scanning devices: post-objective type optical scanning devices, in which the optical beam is input to a rotating reflecting mirror after the beam is reflected.

まず、プレオブジェクティブ型の光走査装置は、収束レ
ンズにより像面湾曲やfθ特性を補正することが容易で
、しかも、収束位置を平面とすることも容易であるため
、近年多く用いられている。
First, pre-objective optical scanning devices have been widely used in recent years because it is easy to correct field curvature and fθ characteristics using a converging lens, and it is also easy to set the convergence position to a flat surface.

しかしながら、この収束レンズは偏向角をカバーした広
角レンズとして構成しなければならないことからその構
成が複雑となり高価になるという問題点がある。
However, since this converging lens must be configured as a wide-angle lens that covers the deflection angle, there is a problem that the configuration is complicated and expensive.

また、ポストオブジェクティブ型の光走査装置は、収束
レンズの構成が簡単なので装置を小型低価格化しやすい
が、光ビームの収束点が湾曲した面上にあり、しかも、
走査速度も一定でないため、像面の湾曲やfθ特性の補
正が必要となる。このような補正をするために、「特開
昭61−156020」号公報に開示されているように
、回転反射鏡の反射面を球面又は円筒面とすることによ
り像面湾曲を補正することが提案されている。これによ
り、像面湾曲は実用上問題のない程度にまで軽減できる
が、しかし、fθ特性については10%〜15%程度の
非線形性が残存する。このため、高品位の印字が要求さ
れるレーザプリンタ等においてはこの非線形性を2%〜
3%程度にまで抑えることが要求されているので、従来
の技術においては電気的手段により非線形性の補正を行
ってりる。すなわち、fθ特性の非線形性に対応して印
字信号のクロックを連続的又は段階的に変化させること
によりfθ特性の非線形性に対する補正を2%〜3%に
まで抑え込んでいる。
In addition, post-objective type optical scanning devices have simple converging lens configurations, making it easy to make the devices smaller and cheaper; however, the convergence point of the light beam is on a curved surface, and
Since the scanning speed is also not constant, it is necessary to correct the curvature of the field and the fθ characteristics. In order to make such a correction, it is possible to correct the curvature of field by making the reflecting surface of the rotating reflecting mirror a spherical or cylindrical surface, as disclosed in Japanese Patent Application Laid-Open No. 156020/1982. Proposed. As a result, the curvature of field can be reduced to a level that poses no problem in practice, but nonlinearity of about 10% to 15% remains in the fθ characteristic. For this reason, in laser printers that require high-quality printing, this nonlinearity can be reduced to 2% or more.
Since it is required to suppress the nonlinearity to about 3%, in the conventional technology, nonlinearity is corrected by electrical means. That is, by changing the clock of the print signal continuously or stepwise in response to the nonlinearity of the fθ characteristic, the correction for the nonlinearity of the fθ characteristic is suppressed to 2% to 3%.

発明が解決しようとする問題点 しかし、従来のようなfθ特性の非線形性に対する補正
方法は電気的手段により行われている。
Problems to be Solved by the Invention However, conventional methods of correcting the nonlinearity of fθ characteristics are performed by electrical means.

このため、レーザプリンタ等では電気回路が複雑化し高
価なものになってしまうという問題点がある。
Therefore, in laser printers and the like, there is a problem that the electric circuit becomes complicated and expensive.

問題点を解決するための手段 そこで、このような問題点を解決するために、回転反射
鏡の反射面をその反射面内の各部分で曲率の異なる曲面
として形成し、反射面と走査面との間の光路上に、走査
方向に平行な回転対称軸を中心として副走査方向に描か
れた円弧状の回転対称曲面が、前記回転反射鏡の回転軸
を含み前記回転対称軸に垂□直な対称面を有するように
形成された走査方向及び副走査方向にパワーを有する入
射面と、この入射面の反対側に位置し走査方向に対して
左右対称に形成され走査方向にパワーを有する出射面と
からなる補正レンズを配設した。
Means for solving the problem In order to solve this problem, the reflecting surface of the rotating reflector is formed as a curved surface with different curvature at each part within the reflecting surface, and the reflecting surface and scanning surface are An arcuate rotationally symmetrical curved surface drawn in the sub-scanning direction with a rotationally symmetrical axis parallel to the scanning direction as the center is on the optical path between □, which includes the rotational axis of the rotary reflecting mirror and is perpendicular to the rotationally symmetrical axis. an entrance surface that is formed to have a plane of symmetry and has power in the scanning direction and the sub-scanning direction; and an exit surface that is located on the opposite side of this entrance surface and is formed symmetrically with respect to the scanning direction and has power in the scanning direction. A correction lens consisting of a surface is provided.

作用 従って、回転反射鏡の反射面をその反射面内の各部分で
曲率の異なる曲面とすることにより曲率の一定な球面や
円筒面に比べ一層効果的に走査方向の像面(サジタル像
面)の湾曲を補正することができる。また、補正レンズ
の入射面を走査方向に平行な回転対称軸を有する回転対
称曲面としたので走査方向に垂直な副走査方向のパワー
を変化させることができ、これにより、副走査方向の像
面(メリジオナル像面)の湾曲を補正することができる
(この場合、入射面は走査方向のパワーも有するのでf
θ特性、サジタル像面にも影響を与えることになるが、
前記回転反射鏡のサジタル像面の補正効果と、後述する
補正レンズの出射面におけるfθ特性およびサジタル像
面の補正効果とにより十分に補正を行うことができる)
。さらに、補正レンズの出射面を走査方向にパワーを有
する曲面としたので、この曲面によってfθ特性の補正
効果と一層高度なサジタル像面の補正効果とを得ること
ができる。
Therefore, by making the reflecting surface of the rotating reflecting mirror a curved surface with different curvatures at different parts within the reflecting surface, the image plane in the scanning direction (sagittal image plane) can be more effectively formed than a spherical or cylindrical surface with constant curvature. curvature can be corrected. In addition, since the entrance surface of the correction lens is a rotationally symmetric curved surface with an axis of rotational symmetry parallel to the scanning direction, it is possible to change the power in the sub-scanning direction perpendicular to the scanning direction. It is possible to correct the curvature of (meridional image plane) (in this case, since the entrance plane also has power in the scanning direction, f
This will also affect the θ characteristics and the sagittal image plane,
Sufficient correction can be made by the sagittal image plane correction effect of the rotating reflecting mirror, the fθ characteristic at the exit surface of the correction lens, and the sagittal image plane correction effect, which will be described later.)
. Furthermore, since the exit surface of the correction lens is a curved surface having power in the scanning direction, it is possible to obtain an effect of correcting the fθ characteristic and a more advanced correction effect of the sagittal image plane.

上述したように、回転反射鏡の反射面、補正レンズの入
射面及び出射面の補正効果を組み合わせることによりf
θ特性の補正や、サジタル像面及びメリジオナル像面の
湾曲の補正を行うことができ、これにより、従来、問題
とされていたfθ特性の補正を電気的手段によらず光学
的手段によって行うことができるため高性能で、しかも
、安価で簡単な構造にすることができる。
As mentioned above, f
It is possible to correct the θ characteristic and the curvature of the sagittal image plane and meridional image plane, and as a result, it is possible to correct the fθ characteristic, which has been a problem in the past, by optical means instead of electrical means. Because it can do this, it has high performance, and can also be made inexpensive and simple in structure.

実施例 本発明の第一の実施例を第1図及び第2図に基づいて説
明する。光源としての半導体レーザ1と、光を平行光に
するコリメータレンズ2と、シリンドリカルレンズ3と
、収束レンズ4とが同一光路上に順次設けられている。
Embodiment A first embodiment of the present invention will be explained based on FIGS. 1 and 2. A semiconductor laser 1 as a light source, a collimator lens 2 that converts light into parallel light, a cylindrical lens 3, and a converging lens 4 are sequentially provided on the same optical path.

また、その光路上にはモータ5上に固定された複数個の
反射面6を有する回転反射鏡としてのポリゴンミラー7
が設けられている。前記反射面6は、その反射面内の各
部分で曲率の異なる曲面8とされている。
Further, on the optical path, a polygon mirror 7 as a rotating reflecting mirror has a plurality of reflecting surfaces 6 fixed on the motor 5.
is provided. The reflective surface 6 is a curved surface 8 having a different curvature at each portion within the reflective surface.

そして、前記反射面6により反射された光路上には、補
正レンズ9が設けられており、さらに、この補正レンズ
9を透過した光ビームが照射される走査面10を有する
円筒状の感光体としての感光ドラム11が設けられてい
る。
A correction lens 9 is provided on the optical path reflected by the reflection surface 6, and a cylindrical photoreceptor having a scanning surface 10 on which the light beam transmitted through the correction lens 9 is irradiated. A photosensitive drum 11 is provided.

前記補正レンズ9は、走査方向(矢印方向)及び副走査
方向(走査方向に直交する方向)にパワー(このパワー
とは、光学面の屈折力若しくは結像力のことをいう)を
有し走査方向と平行な回転対称軸12を中心として副走
査方向に描かれた回転対称曲面13とされた入射面14
と、この入射面14と反対側に位置し走査方向に対して
左右対称に形成され走査方向にパワーを有する出射面1
5とからなっている。この出射面15は、前記入射面1
4の前記回転対称軸12に直交し走査方向に対して左右
対称に形成された形状の中心点02を回転対称軸16と
する回転対称曲面17とされている。
The correction lens 9 has power (this power refers to the refractive power or imaging power of the optical surface) in the scanning direction (arrow direction) and the sub-scanning direction (direction perpendicular to the scanning direction), and is capable of scanning. An entrance surface 14 that is a rotationally symmetrical curved surface 13 drawn in the sub-scanning direction about a rotationally symmetrical axis 12 parallel to the direction.
and an exit surface 1 located on the opposite side to the entrance surface 14, formed symmetrically with respect to the scanning direction, and having power in the scanning direction.
It consists of 5. This exit surface 15 is the entrance surface 1
The rotationally symmetrical curved surface 17 has a rotationally symmetrical axis 16 at the center point 02 of a shape that is orthogonal to the rotationally symmetrical axis 12 of No. 4 and is formed symmetrically with respect to the scanning direction.

ところで、第3図に示すように、前記感光ドラム11は
、前記ポリゴンミラー7の回転軸18からその走査面1
0までの距離がAになるように配設されている。また、
前記補正レンズ9は、前記ポリゴンミラー7の回転軸1
8からその入射面14までの距離がBになるように配設
されている。
By the way, as shown in FIG.
They are arranged so that the distance to 0 is A. Also,
The correction lens 9 is connected to the rotation axis 1 of the polygon mirror 7.
The distance from the incident surface 14 to the incident surface 14 is B.

これらの距離A、Bの具体的数値については後述する。Specific numerical values of these distances A and B will be described later.

また、前記半導体レーザ1と、前記コリメータレンズ2
と、前記シリンドリカルレンズ3と、前記収束レンズ4
とは、前記ポリゴンミラー7の前記反射面6からの垂直
な面に対して、下方にθ=3.4度傾斜した位置に配設
されており、これとは逆に、上方にθ=3.4度傾斜し
た位置に前記補正レンズ9と、前記感光ドラム11とが
配設されている。
Further, the semiconductor laser 1 and the collimator lens 2
, the cylindrical lens 3, and the convergent lens 4.
is disposed at a position inclined downward by θ=3.4 degrees with respect to a plane perpendicular to the reflective surface 6 of the polygon mirror 7, and conversely, θ=3 degrees is inclined upwardly. The correction lens 9 and the photosensitive drum 11 are arranged at a position inclined by .4 degrees.

このような構成において、半導体レーザ1により印字信
号に従って出射された光ビームは、コリメータレンズ2
により平行光とされ、副走査方向に対してパワーを有す
るシリンドリカルレンズ3を通過し、さらに、収束レン
ズ4を通過した後、ポリゴンミラー7の反射面6に照射
される。そして、このポリゴンミラー7の回転に伴°つ
て偏向走査された光ビームは、補正レンズ9を通過して
感光ドラム11の走査面10上で走査方向に走査され記
録が行われる。
In such a configuration, the light beam emitted by the semiconductor laser 1 according to the print signal is transmitted through the collimator lens 2.
The light is converted into parallel light, passes through a cylindrical lens 3 having power in the sub-scanning direction, and further passes through a converging lens 4 before being irradiated onto a reflective surface 6 of a polygon mirror 7. The light beam deflected and scanned as the polygon mirror 7 rotates passes through the correction lens 9 and is scanned in the scanning direction on the scanning surface 10 of the photosensitive drum 11 to perform recording.

次に、ポリゴンミラー7の反射面6の形状を楕円筒面1
9とした場合の様子を第4図及び第5図に基づいて説明
する。楕円筒面19の中心点0からの2つの楕円半径を
a、bとすると、一方の半径aの軌跡上に位置してポリ
ゴンミラー7の反射面6が形成されている。また、ポリ
ゴンミラー7の回転軸18は半径c(=16mm)の内
接円の中心点とされており、この回転軸18は中心点O
を通る軸に平行に設けられている。
Next, the shape of the reflective surface 6 of the polygon mirror 7 is changed to an elliptical cylindrical surface 1
9 will be explained based on FIGS. 4 and 5. If the two elliptical radii from the center point 0 of the elliptical cylindrical surface 19 are a and b, the reflective surface 6 of the polygon mirror 7 is located on the locus of one radius a. Further, the rotation axis 18 of the polygon mirror 7 is set at the center point of an inscribed circle with a radius c (=16 mm), and this rotation axis 18 is set at the center point O.
parallel to the axis passing through.

また、シリンドリカルレンズ3、収束レンズ4は、これ
らを透過した光ビームがポリゴンミラー7の回転軸18
の方向に投影した時には点Sで収束し、また、その光ビ
ームを走査方向に投影した時にはポリゴンミラー7の反
射面6上で収束するように配設されている。この場合、
ポリゴンミラー7の回転軸18と点Sとの距離はdとさ
れている。なお、半径a、b、距離dの具体的数値につ
いては後述する。
Further, the cylindrical lens 3 and the converging lens 4 allow the light beam transmitted through them to reach the rotation axis 18 of the polygon mirror 7.
The light beam is arranged so that it converges at a point S when projected in the direction of , and converges on the reflective surface 6 of the polygon mirror 7 when projected in the scanning direction. in this case,
The distance between the rotation axis 18 of the polygon mirror 7 and the point S is d. Note that specific numerical values for the radii a, b, and distance d will be described later.

次に、補正レンズ9の形状について説明する。Next, the shape of the correction lens 9 will be explained.

第6図は、補正レンズ9を走査方向に平行な面に切断し
た時の断面形状を示す。
FIG. 6 shows a cross-sectional shape of the correction lens 9 when cut into a plane parallel to the scanning direction.

入射面14は、回転対称軸12を有する回転対称曲面1
3とされており、中央点01における半径はeである。
The entrance surface 14 is a rotationally symmetric curved surface 1 having a rotationally symmetrical axis 12.
3, and the radius at the center point 01 is e.

この場合、中央点01を通り走査方向に平行にX1軸、
これと直角にY1軸をとって、X101Y□座標系を作
ると入射面14の断面形状は、次のように8次の多項式
で表わせる。
In this case, the X1 axis passes through the center point 01 and is parallel to the scanning direction,
If the Y1 axis is taken perpendicular to this to create an X101Y□ coordinate system, the cross-sectional shape of the entrance surface 14 can be expressed by an 8th-order polynomial as follows.

Y1=a、Xl”+ α4X1’+ α6X、s+aI
lX、!・・・(1) 出射面15は、前記Y□に対して左右対称(紙面上では
上下に対称)であり、このY1軸を回転対称軸16とす
る回転対称曲面17とされている。
Y1=a,Xl"+ α4X1'+ α6X,s+aI
lX,! (1) The exit surface 15 is symmetrical to the left and right (vertically symmetrical on the paper) with respect to the Y□, and is a rotationally symmetrical curved surface 17 with the Y1 axis as the axis of rotational symmetry 16.

この場合、中心点02 を通り走査方向に平行にX2軸
をとり、前記Y1と一致するY2軸をとって、X202
Y2座標系を作ると入射面14の断面形状は、次のよう
に8次の多項式で表わせる。
In this case, take the X2 axis passing through the center point 02 and parallel to the scanning direction, take the Y2 axis that coincides with Y1, and
When the Y2 coordinate system is created, the cross-sectional shape of the entrance surface 14 can be expressed by an 8th order polynomial as follows.

Y2=β2X2”+ β、X2’+ β。、x、’十/
11.X2’・・・(2) なお、補正レンズ9は、屈折率1.48のアクリル樹脂
で作成した。また、(1)式における半径e、係数α2
.α4.α6.α8、(2)式における係数β2.β4
.β6.β8の具体的数値については後述する。
Y2=β2X2”+ β, X2'+ β., x, 'ten/
11. X2' (2) Note that the correction lens 9 was made of acrylic resin with a refractive index of 1.48. Also, the radius e and the coefficient α2 in equation (1)
.. α4. α6. α8, coefficient β2 in equation (2). β4
.. β6. The specific value of β8 will be described later.

次に、fθ特性、サジタル像面及びメリジオナル像面の
湾曲、感光ドラム11上での走査線の曲がりを実用上問
題のない程度にまで補正できるようにコンピュータシュ
ミレーションにより光線追    ”跡を行った結果水
められたパラメータの具体的数値例について示す。但し
、感光ドラム11上での走査線の曲がりは、光ビームを
ポリゴンミラー7の反射面6に対して垂直でない角度(
θ)で入射させるスキュー人射光学系において特に発生
しやすいのでこれを考慮にして設計した。
Next, we performed ray tracing using a computer simulation to correct the fθ characteristics, the curvature of the sagittal and meridional image planes, and the curvature of the scanning line on the photosensitive drum 11 to the extent that there are no practical problems. A specific numerical example of the parameter is shown below. However, the bending of the scanning line on the photosensitive drum 11 causes the light beam to be directed at an angle that is not perpendicular to the reflective surface 6 of the polygon mirror 7 (
Skew is particularly likely to occur in human-injection optical systems in which the light is incident at an angle of θ), so the design was designed with this in mind.

以下、具体的な数値を示す。Specific figures are shown below.

A=208.3  mm B=160.8  mm a=116.15mm b=125.52mm d=  33.76mm m=  16.33mm a2=  8.610 X 10−’  mu−”α、
=  4.336X10−’  mm−”a、=−5,
509X10−13 mm−5α、= −3,071X
 10−17  組17β2ニー4.389 X 10
−’  mm−1β、=   1.616X10−7 
+n+a−3βs= −6,542X 10−”  +
n+n−”βm= −2,689×10−”  mm−
’但し、有効走査長は220mmであり、これに対応し
たポリゴンミラー7の回転角は36”である。
A = 208.3 mm B = 160.8 mm a = 116.15 mm b = 125.52 mm d = 33.76 mm m = 16.33 mm a2 = 8.610 X 10-'mu-"α,
= 4.336X10-'mm-"a, =-5,
509X10-13 mm-5α, = -3,071X
10-17 Group 17β2 Knee 4.389 X 10
-' mm-1β, = 1.616X10-7
+n+a-3βs=-6,542X 10-"+
n+n-”βm=-2,689×10-” mm-
'However, the effective scanning length is 220 mm, and the corresponding rotation angle of the polygon mirror 7 is 36''.

ここで、fθ誤差、サジタル像面及びメリジオナル像面
の湾曲、走査線の曲がりの諸特性を第7図に示しておく
。図中の縦軸は走査方向に沿ってとり、横軸は各特性に
対応している。
Here, various characteristics of the fθ error, the curvature of the sagittal image plane and the meridional image plane, and the bending of the scanning line are shown in FIG. The vertical axis in the figure is taken along the scanning direction, and the horizontal axis corresponds to each characteristic.

fθ誤差=(感光ドラム上のビーム入射位置)−(線型
入射位置) ・・・(3) (線型入射位置)=(ポリゴンミラー回転角)x (2
20mm/ 36’ ) 但し、ポリゴンミラー7の回転角(度)は、第5図の状
態を0度と定めている。
fθ error = (Beam incident position on the photosensitive drum) - (Linear incident position) ... (3) (Linear incident position) = (Polygon mirror rotation angle) x (2
20 mm/36') However, the rotation angle (degrees) of the polygon mirror 7 is set to 0 degrees in the state shown in FIG.

次に、本発明の第二の実施例について説明する。Next, a second embodiment of the present invention will be described.

本実施例における構成およびその作用については第一の
実施例と同じなので、ここでは各パラメータの数値のみ
を示しておく。
The configuration and operation of this embodiment are the same as those of the first embodiment, so only the numerical values of each parameter are shown here.

以下、具体的な数値を示す。Specific figures are shown below.

A=210.’7  mm B=158.2    mm m=   68.84mm b=   9’1.OOmm d=   29.62mm m=   17.63mm a2=  9.’l’ 37 ×10−’  mm−1
a、=  7.725X10−9 mm−3a6= −
5,725X 10−13mm7’αg’ ==−L4
.355 X 10−” mm−’β、=−3.586
xlO−’  mm−1β4=  1.474 X 1
0−’  mm−3βG=  4.439 X 10−
13mm−’β++= −1,469X 10−” m
m−7但し、本実施例においても有効走査長は220m
mであり、これに対応したポリゴンミラー7の回転角は
36°である。
A=210. '7 mm B=158.2 mm m=68.84 mm b=9'1. OOmm d= 29.62mm m= 17.63mm a2= 9. 'l' 37 ×10-' mm-1
a, = 7.725X10-9 mm-3a6=-
5,725X 10-13mm7'αg' ==-L4
.. 355 x 10-"mm-'β, = -3.586
xlO-' mm-1β4= 1.474 X 1
0-' mm-3βG= 4.439 X 10-
13mm-'β++=-1,469X 10-" m
m-7 However, in this example as well, the effective scanning length is 220 m.
m, and the corresponding rotation angle of the polygon mirror 7 is 36°.

次に、上述した第一の実施例および第二の実施例、さら
に、従来技術で述べた「特開昭6l−15602OJ号
公報の光走査装置におけるサジタル像面及びメリジオナ
ル像面の湾曲、fθ特性のりニアリテイ、走査線の曲が
り量の諸特性を第1表に示す。また、第一の実施例にお
ける諸特性を第7図に示す。
Next, the first embodiment and the second embodiment described above, as well as the curvature and fθ characteristics of the sagittal image plane and meridional image plane in the optical scanning device of Japanese Patent Application Laid-Open No. 61-15602OJ described in the prior art. Table 1 shows the characteristics of the linearity and the amount of bending of the scanning line.Furthermore, the characteristics of the first embodiment are shown in FIG.

なお、■、■、■は従来例の値を示し、■は本発明の第
一の実施例、■は本発明の第二の実施例を示す。■、■
におけるリニアリティは走査線の中央部における走査速
度に対する最大値で示した。
Note that ■, ■, and ■ indicate the values of the conventional example, ■ indicates the first embodiment of the present invention, and ■ indicates the second embodiment of the present invention. ■、■
The linearity in is shown as the maximum value for the scanning speed at the center of the scanning line.

上述した第1表の値から本実施例は従来例に比較して、
サジタル像面の湾曲が2倍程度、メリジオナル像面の湾
曲が同等若しくはそれ以上、リニアリティが4〜5倍程
度にそれぞれ改善できることがわかる。特に、リニアリ
ティについては、本実施例の値は、電気的補正手段のよ
うな付加的な補正手段が不必要な2〜3%以下の値にす
ることができる。さらに、走査線の曲がりについても実
用上問題のない程度にまで補正することができる。
From the values in Table 1 mentioned above, this example has the following characteristics compared to the conventional example:
It can be seen that the curvature of the sagittal image plane can be improved by about twice, the curvature of the meridional image plane can be improved by the same or more, and the linearity can be improved by about 4 to 5 times. In particular, regarding linearity, the value in this embodiment can be set to a value of 2 to 3% or less, which does not require additional correction means such as electrical correction means. Furthermore, the bending of the scanning line can be corrected to the extent that there is no problem in practical use.

なお、本発明における第一の実施例及び第二の実施例に
おいては、補正レンズ9を1枚で構成したが、これに限
るものではなく加工成形等種々の事情を鑑み複数枚で構
成してもよい。例えば、2枚構成の補正レンズ9を考え
第一レンズ、第二レンズとすると、第一レンズの入射面
を1枚構成の時の入射面と同一の形状としその出射面を
球面とし、第二レンズの入射面を球面としその出射面を
1枚構成の時の出射面と同一の形状としてもよい。
In the first and second embodiments of the present invention, the correction lens 9 is composed of one lens, but it is not limited to this, and may be composed of a plurality of lenses in consideration of various circumstances such as processing and molding. Good too. For example, if we consider a two-lens correction lens 9 and designate it as a first lens and a second lens, the first lens' entrance surface is the same shape as the one-lens entrance surface, its exit surface is a spherical surface, and the second lens is The entrance surface of the lens may be a spherical surface, and the exit surface thereof may have the same shape as the exit surface in the case of a single lens configuration.

効果 本発明は、回転反射鏡の反射面をその反射面内の各部分
で曲率の異なる曲面として形成し、反射面と走査面との
間の光路上に、走査方向に平行な回転対称軸を中心とし
て副走査方向に描かれた円弧状の回転対称曲面が、前記
回転反射鏡の回転軸を含み前記回転対称軸に垂直な対称
面を有するように形成された走査方向及び副走査方向に
パワーを有する入射面と、この入射面の反対側に位置し
走査方向に対して左右対称に形成され走査方向にパワー
を有する出射面とからなる補正レンズを配設したので、
回転反射鏡の反射面をその反射面内の各部分で曲率の異
なる曲面とすることにより曲率の一定な球面や円筒面に
比べ一層効果的に走査方向の像面(サジタル像面)の湾
曲を補正することができる。また、補正レンズの入射面
を走査方向に平行な回転対称軸を有する回転対称曲面と
したので走査方向に垂直な副走査方向のパワーを変化さ
せることができ、これにより、副走査方向の像面(メリ
ジオナル像面)の湾曲を補正することができる。さらに
、補正レンズの出射面を走査方向にパワーを有する曲面
としたので、この曲面に一16= よってfθ特性の補正効果と一層高度なサジタル像面の
補正効果とを得ることができる。
Effects The present invention forms the reflective surface of a rotating reflective mirror as a curved surface with different curvatures in each part of the reflective surface, and creates a rotational symmetry axis parallel to the scanning direction on the optical path between the reflective surface and the scanning surface. A circular arc-shaped rotationally symmetrical curved surface drawn in the sub-scanning direction as a center includes a rotational axis of the rotary reflecting mirror and has a symmetrical plane perpendicular to the rotational symmetrical axis. A correction lens is provided, which consists of an entrance surface having a power of
By making the reflecting surface of the rotating reflector a curved surface with different curvatures in each part of the reflecting surface, the curvature of the image plane (sagittal image plane) in the scanning direction can be more effectively reduced compared to spherical or cylindrical surfaces with constant curvature. Can be corrected. In addition, since the entrance surface of the correction lens is a rotationally symmetric curved surface with an axis of rotational symmetry parallel to the scanning direction, it is possible to change the power in the sub-scanning direction perpendicular to the scanning direction. (meridional image plane) can be corrected. Furthermore, since the exit surface of the correction lens is a curved surface having power in the scanning direction, it is possible to obtain an effect of correcting the fθ characteristic and a more advanced correction effect of the sagittal image plane.

従って、回転反射鏡の反射面、補正レンズの入射面及び
出射面の補正効果を組み合わせることによりfθ特性の
補正や、サジタル像面及びメリジオナル像面の湾曲の補
正を行うことができ、これにより、従来、問題とされて
いたfθ特性の補正を電気的手段によらず光学的手段に
よって行うことができるため高性能で、しかも、安価で
簡単な構造にすることができるものである。
Therefore, by combining the correction effects of the reflection surface of the rotating reflector and the entrance and exit surfaces of the correction lens, it is possible to correct the fθ characteristic and the curvature of the sagittal and meridional image surfaces. Since correction of the fθ characteristic, which has hitherto been considered a problem, can be performed by optical means rather than electrical means, the present invention has high performance, and can be constructed at low cost and simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例を示す斜視図、第2図は
その平面図、第3図は第1図の側面図、第4図及び第5
図はポリゴンミラーの反射面を円筒面とした場合の説明
図、第6図は補正レンズを走査方向に平行な平面、に沿
って切断した場合の断面形状を示す説明図、第7図は第
1図における光学装置の諸特性を示す説明図である。 1・・・半導体レーザ、6・・・反射面、7・・・回転
反射鏡、8・・・曲面、9・・・補正レンズ、10・・
・走査面、11・・・感光体、12・・・回転対称軸、
13・・・回転対称曲面、14・・・入射面、15・・
・出射面、16・・・回転対称軸、17・・・回転対称
曲面、18・・・回転軸、02・・・中心点 出 願 人    東京電気株式会社 J U図
FIG. 1 is a perspective view showing a first embodiment of the present invention, FIG. 2 is a plan view thereof, FIG. 3 is a side view of FIG. 1, and FIGS.
The figure is an explanatory diagram when the reflective surface of the polygon mirror is a cylindrical surface, FIG. 6 is an explanatory diagram showing the cross-sectional shape when the correction lens is cut along a plane parallel to the scanning direction, and FIG. 2 is an explanatory diagram showing various characteristics of the optical device in FIG. 1. FIG. DESCRIPTION OF SYMBOLS 1... Semiconductor laser, 6... Reflecting surface, 7... Rotating reflecting mirror, 8... Curved surface, 9... Correction lens, 10...
・Scanning surface, 11... Photoreceptor, 12... Rotational symmetry axis,
13...Rotationally symmetric curved surface, 14...Incidence surface, 15...
- Output surface, 16... Rotationally symmetrical axis, 17... Rotationally symmetrical curved surface, 18... Rotation axis, 02... Center point Applicant Tokyo Electric Co., Ltd. J U diagram

Claims (1)

【特許請求の範囲】 1、半導体レーザからの光ビームを回転反射鏡の反射面
に照射し、この反射面により偏向走査された光ビームを
感光体の走査面に照射することにより光ビームを走査す
るポストオブジエクテイブ型光ビーム走査装置において
、前記回転反射鏡の前記反射面をその反射面内の各部分
で曲率の異なる曲面として形成し、前記反射面と前記走
査面との間の光路上に、走査方向に平行な回転対称軸を
中心として副走査方向に描かれた円弧状の回転対称曲面
が、前記回転反射鏡の回転軸を含み前記回転対称軸に垂
直な対称面を有するように形成された走査方向及び副走
査方向にパワーを有する入射面と、この入射面の反対側
に位置し走査方向に対して左右対称に形成され走査方向
にパワーを有する出射面とからなる補正レンズを配設し
たことを特徴とするポストオブジエクテイブ型光走査装
置。 2、補正レンズの入射面は、回転対称軸を中心として副
走査方向に描かれた円弧状の回転対称曲面内で偶数次の
多項式で表わせる形状としたことを特徴とする請求項1
記載のポストオブジエクテイブ型光走査装置。 3、補正レンズの出射面は、入射面の回転対称軸に直交
し走査方向に対して左右対称に形成された形状の中心点
を回転対称軸とする回転対称曲面としたことを特徴とす
る請求項1記載のポストオブジエクテイブ型光走査装置
。 4、補正レンズの出射面は、出射面の回転対称軸を含む
回転対称曲面内で偶数次の多項式で表わせる形状とした
ことを特徴とする請求項1記載のポストオブジエクテイ
ブ型光走査装置。
[Claims] 1. Scanning the light beam by irradiating a light beam from a semiconductor laser onto a reflecting surface of a rotating reflecting mirror, and irradiating the scanning surface of a photoreceptor with the light beam deflected and scanned by the reflecting surface. In the post-objective type optical beam scanning device, the reflecting surface of the rotating reflecting mirror is formed as a curved surface having a different curvature at each part within the reflecting surface, and the optical path between the reflecting surface and the scanning surface is , an arc-shaped rotationally symmetric curved surface drawn in the sub-scanning direction about a rotationally symmetrical axis parallel to the scanning direction includes a rotational axis of the rotary reflecting mirror and has a symmetrical plane perpendicular to the rotationally symmetrical axis. A correction lens consisting of an entrance surface that is formed and has power in the scanning direction and the sub-scanning direction, and an exit surface that is located on the opposite side of the entrance surface and is formed bilaterally symmetrically with respect to the scanning direction and has power in the scanning direction. A post-objective optical scanning device characterized by the following: 2. Claim 1, wherein the entrance surface of the correction lens has a shape that can be expressed by an even-order polynomial within an arc-shaped rotationally symmetric curved surface drawn in the sub-scanning direction with the rotationally symmetric axis as the center.
The post-objective optical scanning device described above. 3. The exit surface of the correction lens is a rotationally symmetrical curved surface whose axis of rotational symmetry is the center point of a shape that is orthogonal to the axis of rotational symmetry of the entrance surface and symmetrical with respect to the scanning direction. 2. The post-objective optical scanning device according to item 1. 4. The post-objective optical scanning device according to claim 1, wherein the exit surface of the correction lens has a shape that can be expressed by an even-order polynomial within a rotationally symmetric curved surface that includes the rotationally symmetric axis of the exit surface. .
JP63001517A 1987-09-22 1988-01-07 Post-objective optical scanning device Expired - Lifetime JP2530351B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63001517A JP2530351B2 (en) 1988-01-07 1988-01-07 Post-objective optical scanning device
EP88308717A EP0309205B1 (en) 1987-09-22 1988-09-20 Postobjective optical deflector
DE3887610T DE3887610T2 (en) 1987-09-22 1988-09-20 Optical deflector arranged behind a lens.
KR1019880012267A KR920005033B1 (en) 1987-09-22 1988-09-22 Post objective optical deflector
US07/247,656 US5064262A (en) 1987-09-22 1988-09-22 Postobjective optical deflector
US07/772,651 US5153766A (en) 1987-09-22 1991-10-07 Postobjective optical scanner
US07/904,011 US5204769A (en) 1987-09-22 1992-06-25 Postobjective optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63001517A JP2530351B2 (en) 1988-01-07 1988-01-07 Post-objective optical scanning device

Publications (2)

Publication Number Publication Date
JPH01177512A true JPH01177512A (en) 1989-07-13
JP2530351B2 JP2530351B2 (en) 1996-09-04

Family

ID=11503684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63001517A Expired - Lifetime JP2530351B2 (en) 1987-09-22 1988-01-07 Post-objective optical scanning device

Country Status (1)

Country Link
JP (1) JP2530351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211520A (en) * 1990-01-17 1991-09-17 Matsushita Electric Ind Co Ltd Post objective type scanning optical system and image forming device using this system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156020A (en) * 1984-12-28 1986-07-15 Ricoh Co Ltd Post objective type light deflecting system
JPS61170715A (en) * 1985-01-24 1986-08-01 Konishiroku Photo Ind Co Ltd Scanning optical system
JPS62182709A (en) * 1985-09-30 1987-08-11 Toshiba Corp Image forming device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156020A (en) * 1984-12-28 1986-07-15 Ricoh Co Ltd Post objective type light deflecting system
JPS61170715A (en) * 1985-01-24 1986-08-01 Konishiroku Photo Ind Co Ltd Scanning optical system
JPS62182709A (en) * 1985-09-30 1987-08-11 Toshiba Corp Image forming device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211520A (en) * 1990-01-17 1991-09-17 Matsushita Electric Ind Co Ltd Post objective type scanning optical system and image forming device using this system

Also Published As

Publication number Publication date
JP2530351B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
JP3453737B2 (en) Scanning imaging optical system / optical scanning device and image forming apparatus
JPS61196222A (en) Polyhedron scanner
EP0386226B1 (en) Optical scanner
JP2003149573A (en) Scanning optical system
KR910002009B1 (en) Polygon mirror
JPS63141020A (en) Optical scanning device
KR100335624B1 (en) Laser beam scanning apparatus
JP3943820B2 (en) Optical scanning device, multi-beam optical scanning device, and image forming apparatus
CN106680993B (en) Optical scanner
EP0629891B1 (en) Beam scanning apparatus
JPH07174997A (en) Optical scanner
JPH01177512A (en) Post-objective type optical scanner
KR920005033B1 (en) Post objective optical deflector
JPH01169422A (en) Post-objective type optical scanner
JPH07174998A (en) Scanning lens and optical scanner
JP2005173221A (en) Optical scanning device and image forming apparatus
JP2527453B2 (en) Post-objective optical scanning device
JPH07191272A (en) Reflection type scanning optical system
US5204769A (en) Postobjective optical deflector
KR100445128B1 (en) laser scanning apparatus
JP4359003B2 (en) Optical deflection apparatus, optical scanning method, optical scanning apparatus, and image forming apparatus
JP3639097B2 (en) Optical scanning device
JP3680893B2 (en) Optical scanning device
JPH1152277A (en) Optical scanner
JP5765926B2 (en) Optical scanning device and image forming apparatus using the same