JPH01176977A - Fuel rod and its manufacture - Google Patents

Fuel rod and its manufacture

Info

Publication number
JPH01176977A
JPH01176977A JP63000733A JP73388A JPH01176977A JP H01176977 A JPH01176977 A JP H01176977A JP 63000733 A JP63000733 A JP 63000733A JP 73388 A JP73388 A JP 73388A JP H01176977 A JPH01176977 A JP H01176977A
Authority
JP
Japan
Prior art keywords
nuclear fuel
fuel rod
current
gauss
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63000733A
Other languages
Japanese (ja)
Inventor
Emiko Higashinakagaha
東中川 恵美子
Kanemitsu Sato
佐藤 金光
Kunimichi Watanabe
渡辺 邦道
Keiji Chokai
鳥海 啓治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63000733A priority Critical patent/JPH01176977A/en
Publication of JPH01176977A publication Critical patent/JPH01176977A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To suppress the sticking of a clad and to reduce corrosion by setting the intensity of magnetism on the surface of a coating pipe to <=4 gauss with respect to a nuclear fuel rod. CONSTITUTION:When the nuclear fuel rod is manufactured by filling pellets 3 formed by mixing uranium oxide with gadolinium in the cladding pipe 1 made of zirconium alloy, the amount of the gadolinium oxide in the pellets 3 is inspected in a high magnetic field. Then, the nuclear fuel rod is inserted into a solenoid coil and a current of tens of ampere is supplied from the right side of the coil and stopped several seconds later. Then a current which is about 80% of said current value is supplied from the right side of the coil and stopped several seconds later. Then, a current which is 60% of the 1st current value is supplied from the right side of the coil successively. Thus, the currents are supplied alternately from the right and left sides while being reduced in current value to set the intensity of the magnetism on the surface of the cladding pipe 1 to <=4 gauss. Consequently, the sticking of the clad of magnetite is suppressed and the corrosion is precluded in long-time use in furnace water.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化がトリニウム(ガドリニア)を含んだ二
酸化ウランのペレットを被覆管に充填した核燃料棒及び
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a nuclear fuel rod in which a cladding tube is filled with pellets of uranium dioxide containing trinium (gadolinia) oxide, and a method for manufacturing the same.

(従来の技術) 原子炉発電は、二酸化ウランの燃焼による発電熱で水の
温度を上昇させ、高温蒸気として蒸気タービンを回して
発電するものである。原子炉運転の反応を制御するため
に制御棒が用いられたり、また特に初期の段階では二酸
化ウランペレットに中性子を吸収するガドリニアを混合
している。ガドリニアは、可燃前と呼ばれ、−炭中性子
を吸収するると中性子吸収能がなくなるため、運転初期
の反応度制御に欠かせないものである。通常、数パーセ
ントのガドリニアを二酸化ウランに混入したペレットを
全体或いは一部に充填した核燃料棒を燃料集合体1体(
63本の燃料棒)当り3〜4本使用している。かかる核
燃料棒は、第1図に示すようにジルカロイ−2等のジル
コニウム合金製の被覆管lと、この被覆管1の下部開口
部に挿着された下部端栓2bと、前記被覆管1に充填さ
れたペレット3 (少なくとも一部は数パーセントのガ
ドリニアを二酸化ウランに混入したものからなる)と、
前記被覆管1の上部開口部にスプリング4を介して挿着
された上部端栓2aとから構成されている。
(Prior Art) Nuclear power generation involves raising the temperature of water using the heat generated by the combustion of uranium dioxide, which generates high-temperature steam that rotates a steam turbine to generate electricity. Control rods are used to control reactions during reactor operation, and especially in the early stages, uranium dioxide pellets are mixed with gadolinia, which absorbs neutrons. Gadolinia is called pre-flammable, and loses its neutron absorption ability when it absorbs -carbon neutrons, so it is indispensable for reactivity control in the early stages of operation. Normally, a fuel assembly (1 fuel assembly) is made up of nuclear fuel rods that are partially or completely filled with pellets containing several percent of gadolinia mixed with uranium dioxide.
3 to 4 fuel rods are used per 63 fuel rods. As shown in FIG. 1, such a nuclear fuel rod includes a cladding tube l made of a zirconium alloy such as Zircaloy-2, a lower end plug 2b inserted into the lower opening of the cladding tube 1, and a lower end plug 2b inserted into the lower opening of the cladding tube 1. filled pellets 3 (at least in part consisting of a few percent of gadolinia mixed into uranium dioxide);
and an upper end plug 2a inserted into the upper opening of the cladding tube 1 via a spring 4.

ところで、原子炉の中に装荷される構造材は一般に苛酷
な検査が実施される。前述した第1図図示の核燃料棒も
製造後、MA P S (Magnetic and 
P asslve  S ccaner)と呼ばれる数
万ガウスの磁場を通過させてガドリニアがベレット中に
何パーセント混入されているか検査される。こうした検
査において、核燃料棒に充填されているベレット中のガ
ドリニアが磁化されるため、次のような問題が生じた。
By the way, structural materials loaded into a nuclear reactor are generally subjected to severe inspections. After manufacturing the nuclear fuel rod shown in FIG.
The pellet is passed through a magnetic field of several tens of thousands of Gauss called a magnetic field (Passlve Scaner) to examine the percentage of gadolinia mixed in the pellet. During these inspections, the gadolinia in the pellets filled in the nuclear fuel rods became magnetized, which caused the following problems.

即ち、原子炉の炉水中には長時間使用中にヘマタイト、
マグネタイトなどの浮遊物が発生して核燃料棒に付着し
、その表面を覆うことが考えられる。こうした核燃料棒
の外表面に前記浮遊物(クラッドと称される)が付着す
ると、核燃料棒の熱伝導性が妨げられ、その結果核燃料
棒を構成する被覆管の温度を上昇させて腐蝕を促進する
。前記浮遊物を構成成分であるマグネタイトは、磁性を
帯びた酸化鉄であるため、前述したように核燃料棒が磁
化されると、該マグネタイトがより一層付着し易くなり
、前記被覆管の腐蝕が顕著となる問題が生じる。
In other words, hematite,
It is thought that floating substances such as magnetite are generated and adhere to the nuclear fuel rods, covering their surfaces. When these floating substances (referred to as cladding) adhere to the outer surface of the nuclear fuel rod, the thermal conductivity of the nuclear fuel rod is obstructed, and as a result, the temperature of the cladding tube that makes up the nuclear fuel rod increases and corrosion is promoted. . The magnetite that constitutes the suspended matter is magnetic iron oxide, so when the nuclear fuel rod is magnetized as described above, the magnetite becomes even more likely to adhere, and the corrosion of the cladding becomes noticeable. A problem arises.

(発明が解決しようとする課題) 本発明は、上記従来の問題点を解決するためになされた
もので、原子炉炉水中での使用におけるクラッドの付着
を抑制して腐蝕を軽減した核燃料棒及びその製造方法を
提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and includes a nuclear fuel rod and a nuclear fuel rod that suppress the adhesion of crud and reduce corrosion when used in reactor water. This paper attempts to provide a manufacturing method for the same.

本願第1の発明は、酸化ウランと酸化ガドリニウムとを
混合したペレットをジルコニウム合金製の被覆管に充填
してなる核燃料棒において、前記被覆管表面での磁化の
強さを4ガウス以下としたことを特徴とする核燃料棒で
ある。
The first invention of the present application is a nuclear fuel rod in which a zirconium alloy cladding tube is filled with pellets containing a mixture of uranium oxide and gadolinium oxide, in which the strength of magnetization on the surface of the cladding tube is set to 4 Gauss or less. It is a nuclear fuel rod characterized by

上記被覆管表面での磁化の強さを限定した理由は、その
磁化が4ガウスを越えると前述した原子炉炉水中での長
時間での使用においてマグネタイト等のクラッドの付着
が顕著となり、腐蝕発生を防止できなくなるからである
The reason for limiting the strength of magnetization on the surface of the cladding tube is that if the magnetization exceeds 4 Gauss, the adhesion of cladding such as magnetite becomes noticeable during long-term use in the reactor water, which can lead to corrosion. This is because it becomes impossible to prevent.

本願第2の発明は、酸化ウランと酸化ガドリニウムとを
混合したペレットをジルコニウム合金製の被覆管に充填
してなる核燃料棒の製造において、前記ペレット中の酸
化ガドリウムの量を高磁場中で検査した後、消磁して前
記被覆管表面での磁化の強さを4ガウス以下とすること
を特徴とする核燃料棒の製造方法である。 。
The second invention of the present application is to inspect the amount of gadolinium oxide in the pellets in a high magnetic field in the production of a nuclear fuel rod in which a zirconium alloy cladding tube is filled with pellets containing a mixture of uranium oxide and gadolinium oxide. Thereafter, the method of manufacturing a nuclear fuel rod is characterized in that the strength of magnetization on the surface of the cladding tube is reduced to 4 Gauss or less by demagnetizing the cladding tube. .

上記消磁手段としては、例えばベレット中のガドリニア
の量を検査するための高磁場を通過させた後の核燃料棒
をソレノイドコイル内に挿入し、交換減衰電流を流す方
法を採用し得る。具体的な交換減衰電流の供給操作は、
次のようにして行なう。即ち、核燃料棒が挿入されたソ
レノイドコイルの右側から数十アンペアの電流を流し、
数秒後に電流を止める。つづいて、ソレノイドコイルの
左側から先の電流値の約80%の電流を流し、数秒後に
電流を止める。ひきつづき、コイルの右側から最初の電
流値の60%の電流を流す。このように順次電流値を下
げながら左右交換に電流を流すことによって、核燃料棒
の磁化の強さは小さくなって零に近付けることができる
As the degaussing means, for example, a method may be adopted in which a nuclear fuel rod that has been passed through a high magnetic field for testing the amount of gadolinia in the pellet is inserted into a solenoid coil and an exchange damping current is caused to flow therein. The specific exchange decay current supply operation is as follows:
Do it as follows. In other words, a current of several tens of amperes is passed from the right side of the solenoid coil into which the nuclear fuel rod is inserted.
Stop the current after a few seconds. Next, a current of about 80% of the previous current value is applied from the left side of the solenoid coil, and the current is stopped after a few seconds. Continuing, a current of 60% of the initial current value is applied from the right side of the coil. By passing current alternately between the left and right sides while gradually lowering the current value in this way, the strength of magnetization of the nuclear fuel rod can be reduced and approached to zero.

(作用) 本願第1の発明によれば、被覆管表面での磁化の強さ所
定値以下に規定することによって、原子炉炉水中での長
時間での使用においてマグネタイト等のクラッドの付着
を防止し、該クラッドの付着に伴う腐蝕発生を軽減した
核燃料棒を得ることができる。
(Function) According to the first invention of the present application, by regulating the strength of magnetization on the surface of the cladding tube to a predetermined value or less, the adhesion of cladding such as magnetite is prevented during long-term use in reactor water. However, it is possible to obtain a nuclear fuel rod in which corrosion caused by the adhesion of the cladding is reduced.

また、本願第2の発明方法によれば簡単な操作によりベ
レット中の酸化ガドリウムの量を高磁場中で検査した後
、被覆管表面の磁化の強さを簡単な操作により4ガウス
以下に低減して、腐蝕発生を軽減した核燃料棒を製造で
きる。
Furthermore, according to the second invention method of the present application, after the amount of gadolinium oxide in the pellet is inspected in a high magnetic field by a simple operation, the strength of magnetization on the surface of the cladding tube is reduced to 4 Gauss or less by a simple operation. As a result, nuclear fuel rods with reduced corrosion can be manufactured.

(発明の実施例) 以下、本発明の実施例を詳細に説明する。(Example of the invention) Examples of the present invention will be described in detail below.

実施例 前述した第1図図示の構造をなし、外径12.5ma+
s長さ約40cmの短尺核燃料棒をそのベレット中のガ
ドリニアの混入量をi’lN定、検査するために7万ガ
ウスのMAPSを通過させた。MAPS通過後の被覆管
表面での磁化強さを測定したところ、約iooガウスで
あった。
Example: It has the structure shown in Fig. 1 described above, and has an outer diameter of 12.5 ma+.
A short nuclear fuel rod with a length of approximately 40 cm was passed through a MAPS of 70,000 Gauss in order to determine the amount of gadolinia mixed in its pellet. When the magnetization strength on the surface of the cladding tube after passing through MAPS was measured, it was approximately IOO Gauss.

次いで、前記磁化された核燃料棒を内径約20聞、長さ
50Gのソレノイドコイルの中央部に挿入、設置した。
Next, the magnetized nuclear fuel rod was inserted and installed in the center of a solenoid coil with an inner diameter of about 20 mm and a length of 50 G.

つづいて、ソレノイドコイルの右側から1OAの電流を
10秒間流し、電流を止めて10秒間後に、左側から8
Aの電流を流た。ひきつづき、電流を止めて10秒間後
、更に右側から6Aの電流を、次に左側から4Aの電流
を、次に右側から2Aの電流を、次に右側からIAの電
流を流した。このように順次電流値を下げながら左右交
換に電流を流した後、ソレノイドコイルから核燃料棒を
取出して被覆管表面での磁化の強さを測定したところ、
2ガウスになっていた。
Next, apply a current of 1 OA from the right side of the solenoid coil for 10 seconds, stop the current, and after 10 seconds, 8 OA from the left side.
A current of A was passed. Subsequently, 10 seconds after stopping the current, a current of 6 A was applied from the right side, then a current of 4 A was applied from the left side, then a current of 2 A was applied from the right side, and then a current of IA was applied from the right side. After passing current alternately between the left and right sides while gradually lowering the current value in this way, the nuclear fuel rod was removed from the solenoid coil and the strength of magnetization on the surface of the cladding tube was measured.
It was 2 Gauss.

しかして、本実施例の核燃料棒及び100ガウスの磁化
をもつ消磁処理を施していない短尺核燃料棒(比較例)
について次のような条件で腐蝕試験を行なった。まず、
蒸気発生器に水4000 cc sヘマタイト((Z−
Fe 203 ) 50g、酸化銅(Cu O)5 g
及びマグネタイト(Fe 304 )1gの粉末を入れ
、一方該蒸気発生器とバルブを介して連結された腐蝕試
験層内に試験対象である実施例及び比較例の核燃料棒を
挿入設置した。つづいて、前記蒸気発生器の温度を30
0℃に保持してその蒸気を腐蝕試験槽内に流入させると
共に、該試験槽を500℃、105気圧に保持した。2
4時間の試験経過後、各核燃料棒の状態を調べた。その
結果、本実施例の核燃料棒ではへマタイトを主成分とす
るクラッドの付着は全く認められなかった。
Therefore, the nuclear fuel rod of this example and the short nuclear fuel rod with magnetization of 100 Gauss and not subjected to demagnetization treatment (comparative example)
Corrosion tests were conducted under the following conditions. first,
4000 cc of water and hematite ((Z-
Fe203) 50g, copper oxide (CuO) 5g
and 1 g of magnetite (Fe 304 ) powder were placed therein, and the nuclear fuel rods of Examples and Comparative Examples to be tested were inserted into the corrosion test layer connected to the steam generator via a valve. Next, the temperature of the steam generator was increased to 30
The temperature was maintained at 0°C and the steam was allowed to flow into the corrosion test tank, and the test tank was maintained at 500°C and 105 atm. 2
After 4 hours of testing, the condition of each nuclear fuel rod was examined. As a result, in the nuclear fuel rod of this example, no cladding mainly composed of hematite was observed.

これに対し、消磁処理を施さない比較例の核燃料棒では
前記クラッドが全面に付着されていた。また、クラッド
が付着された比較例の核燃料棒について、クラッドを除
去したところ、本実施例の核燃料棒に比べて酸化が加速
されていることが確認された。
On the other hand, in the nuclear fuel rod of the comparative example which was not subjected to demagnetization treatment, the cladding was adhered to the entire surface. Further, when the cladding was removed from the nuclear fuel rod of the comparative example to which the cladding was attached, it was confirmed that oxidation was accelerated compared to the nuclear fuel rod of the present example.

[発明の効果] 以上詳述した如く、本発明によれば原子炉炉水中での使
用におけるクラッドの付着を抑制して腐蝕を軽減した核
燃料棒、並びにかかる核燃料棒を簡単な操作により製造
し得る方法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to produce a nuclear fuel rod that suppresses the adhesion of crud and reduces corrosion during use in reactor water, and such a nuclear fuel rod by simple operations. I can provide a method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、−膜内な核燃料棒を示す概略断面図である。 1・・・被覆管、2a・・・上部端栓、2b・・・下部
端栓、3・・・ペレット、4・・・スプリング。 出願人代理人 弁理士 鈴江武彦 ゛ 第1図
FIG. 1 is a schematic cross-sectional view showing an intra-membrane nuclear fuel rod. DESCRIPTION OF SYMBOLS 1... Cladding tube, 2a... Upper end plug, 2b... Lower end plug, 3... Pellet, 4... Spring. Applicant's agent Patent attorney Takehiko Suzue Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)、酸化ウランと酸化ガドリニウムとを混合したペ
レットをジルコニウム合金製の被覆管に充填してなる核
燃料棒において、前記被覆管表面での磁化の強さを4ガ
ウス以下としたことを特徴とする核燃料棒。
(1) A nuclear fuel rod in which a zirconium alloy cladding tube is filled with pellets containing a mixture of uranium oxide and gadolinium oxide, characterized in that the strength of magnetization on the surface of the cladding tube is 4 Gauss or less. nuclear fuel rods.
(2)、酸化ウランと酸化ガドリニウムとを混合したペ
レットをジルコニウム合金製の被覆管に充填してなる核
燃料棒の製造において、前記ペレット中の酸化ガドリウ
ムの量を高磁場中で検査した後、消磁して前記被覆管表
面での磁化の強さを4ガウス以下とすることを特徴とす
る核燃料棒の製造方法。
(2) In the manufacture of nuclear fuel rods in which pellets containing a mixture of uranium oxide and gadolinium oxide are filled into a zirconium alloy cladding tube, the amount of gadolinium oxide in the pellets is inspected in a high magnetic field and then demagnetized. A method for manufacturing a nuclear fuel rod, characterized in that the strength of magnetization on the surface of the cladding tube is 4 Gauss or less.
JP63000733A 1988-01-07 1988-01-07 Fuel rod and its manufacture Pending JPH01176977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63000733A JPH01176977A (en) 1988-01-07 1988-01-07 Fuel rod and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63000733A JPH01176977A (en) 1988-01-07 1988-01-07 Fuel rod and its manufacture

Publications (1)

Publication Number Publication Date
JPH01176977A true JPH01176977A (en) 1989-07-13

Family

ID=11481928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63000733A Pending JPH01176977A (en) 1988-01-07 1988-01-07 Fuel rod and its manufacture

Country Status (1)

Country Link
JP (1) JPH01176977A (en)

Similar Documents

Publication Publication Date Title
Allen et al. 5.03 corrosion of zirconium alloys
KR102104711B1 (en) Sintered nuclear fuel pellet with localized burnable absorber
US3787761A (en) Method of detecting magnetic additives in nuclear fuel material by noting change in weight of material when weighed in a magnetic field
JPH0262028B2 (en)
JPH01176977A (en) Fuel rod and its manufacture
JPH09264988A (en) Method for decreasing stress corrosion cracking of metal in high-temperature water by controlling ph of tip of crack
US5030414A (en) Nuclear fuel rod
Mogard et al. The Studsvik inter-ramp project
Mogard et al. The Studsvik inter-ramp project. An international power ramp experimental study
Rubin et al. Examination of Fuel and Cladding in PWR-1 Blanket Rods
Necib et al. Overview OF 14C release from irradiated zircaloys in geological disposal conditions
Goodin MHTGR fuel performance and supporting data base
Marmier et al. Preliminary Results of the HFR-EU1 Fuel Irradiation of INET and AVR Pebbles in the HFR Petten
Moan Zirconium in the nuclear industry: thirteenth international symposium
Anada et al. Chemical State Analysis of Sn and Fe in ZrO~ 2 by Mossbauer Spectroscopy
JPS58124985A (en) Double pellet built-in type nuclear fuel rod
JPS61235791A (en) Fuel aggregate
Deryugin et al. Behaviour of HTGR coated particles and fuel elements under normal and accident conditions
Ferrari et al. Fuel-Element Experience in Pressurized-Water Reactors
Konoplev et al. LEU WWR-M2 fuel qualification
Mishima Study on the influence of water chemistry on fuel cladding behaviour of LWR in Japan
Kirsanov et al. Tests of pin-type fuel elements in the WWR-M reactor
JPS6352092A (en) Fuel rod for nuclear reactor
Verfondern et al. Qualification of pebble fuel for HTGRs
Conrad et al. Irradiation performance of advanced coated particles for high-temperature gas-cooled reactor fuel cycles