JPH01176966A - Satellite communication/position measurement system - Google Patents

Satellite communication/position measurement system

Info

Publication number
JPH01176966A
JPH01176966A JP33610087A JP33610087A JPH01176966A JP H01176966 A JPH01176966 A JP H01176966A JP 33610087 A JP33610087 A JP 33610087A JP 33610087 A JP33610087 A JP 33610087A JP H01176966 A JPH01176966 A JP H01176966A
Authority
JP
Japan
Prior art keywords
communication
satellites
positioning
equator
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33610087A
Other languages
Japanese (ja)
Inventor
Osamu Ichiyoshi
市吉 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP33610087A priority Critical patent/JPH01176966A/en
Publication of JPH01176966A publication Critical patent/JPH01176966A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable communication of high quality and position measurement having no vagueness at any place on the earth by arranging >=1 communication satellite each on a stationary track on the equator and >=1 day-period track slanting to the equator surface. CONSTITUTION:The day period tracks 3 and 4 which slant at, for example, +60 deg. and -60 deg. to the equator surface are set in addition to the stationary track 2 on the equator of the earth 1, and six communication satellites S1-S6, Y1-Y6, and X1-X6 are arranged on those tracks in proper correlation. Then at least three communication satellites can easily be tracked and acquired within a 90 deg. visual field at any high-elevation position on the earth including an equator area and a polar region. Therefore, not only the communication, but also the position measurement are performed without any vagueness. At this time, those three satellites and a ground state are not on the same plane, so there is not any problem of vagueness.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、小容量固定局、移動体局を含む多数の小型地
球局が通信衛星を介して通信または測位もしくは双方を
行う衛星通信/測位方式に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to satellite communication/positioning where a large number of small earth stations including small capacity fixed stations and mobile stations perform communication and/or positioning via communication satellites. Regarding the method.

(従来の技術) 衛星通信技術の進展に伴い、個人専用の超小型局や船舶
、航空機、自動車および個人等の携帯用等の移動体局を
含めた衛星通信システムの構築が検討されている。特に
、移動体通信への適用では、通信のみならず移動体の地
理的位置を即時にかつ高精度に決定する測位サービスを
容易に提供できるので、大きな期待が寄せられており、
例えば第3図に示す如き移動体衛星通信/測位方式が提
案さ、れている。
(Prior Art) With the advancement of satellite communication technology, the construction of satellite communication systems including personal micro-stations and mobile stations such as ships, aircraft, automobiles, and personal portable stations is being considered. In particular, there are great expectations for its application to mobile communications, as it can easily provide not only communications but also positioning services that instantly and accurately determine the geographic location of a mobile object.
For example, a mobile satellite communication/positioning system as shown in FIG. 3 has been proposed.

第3図は米国のGEO5TAR社の提案(米国特許Na
4359733 Nov、1982>に係るもので、地
球1の赤道上にある静止軌道2に3個の静止衛星(St
、S2゜S3)を配置し、いずれか1つの静止衛星を介
した通信が可能であるとともに、第3図(b)に示す如
く3個の静止衛星(Sl、521S3)を利用して移動
体の測位を可能にする方式である。この測位方式は概路
次の通りである。
Figure 3 shows the proposal by GEO5TAR in the United States (US patent Na
4359733 Nov, 1982>, three geostationary satellites (St
, S2゜S3), communication is possible via any one of the geostationary satellites, and as shown in Figure 3(b), mobile objects can be This method enables positioning. The outline of this positioning method is as follows.

第3図(b)において、点Aに位置する移動体は自己の
位置を決定するために無指向性アンテナから短いバース
ト信号を送信する。このバースト信号は静止衛星Sl、
同S2.同S3を介して基地局に受信される。基地局は
その移動体と静止衛星S1+同S2+同83間の伝搬時
間tl、同t2.同t3をそれぞれ検出し、三角測量の
原理を用いて移動体の位置を算出する。
In FIG. 3(b), a mobile object located at point A transmits a short burst signal from an omnidirectional antenna to determine its position. This burst signal is transmitted to the geostationary satellite Sl,
Same S2. It is received by the base station via S3. The base station determines the propagation time tl, t2 . t3 is detected, and the position of the moving body is calculated using the principle of triangulation.

(発明が解決しようとする問題点) しかし、このGEOSTAR方式においては、赤道上の
静止軌道を用いることから第3図(b)に示す如く赤道
面に関して点Aと丁度対称な点Bに同じ条件を満足する
点がある。即ち点Aと同Bとの区別ができない、従って
、移動体臼らが自己の位置が南半球にあるのか又は北半
球にあるのかを別の手段で知らない限り、上記あいまい
度を解消することはできない、そのため、赤道付近を移
動する移動体に対する測位サービスは極めて困難である
(Problems to be Solved by the Invention) However, in this GEOSTAR method, since a geostationary orbit on the equator is used, as shown in Figure 3 (b), the same conditions are applied to point B, which is exactly symmetrical to point A with respect to the equatorial plane. There are points that satisfy the following. In other words, it is impossible to distinguish between points A and B. Therefore, unless the mobile units know by other means whether their position is in the southern hemisphere or the northern hemisphere, the above ambiguity cannot be resolved. Therefore, positioning services for mobile objects moving near the equator are extremely difficult.

測位に関して前述した困難性を生じない方式として第4
図に示すG P S (General Positi
onningSystem)方式がある。このGPS方
式は、地球1の赤道上にある静止軌道2を用いるのでは
なく、この静止軌道2の半分の高度に設定された低高度
周回軌道5を用いる方式である。即ち、低高度周回軌道
5は合計18個設けられるが、移動体はこれら低高度周
回軌道5上の18個の通信衛星のうち4個の通信衛星か
ら信号を受信してその信号の伝搬時間差を検出し、自己
の位置を算出するのである。従って、前記あいまい度の
問題を生じさせることなく測位をなし得る。しかし、こ
のGPS方式の目的は測位にあり、通信機能は全くない
という問題点がある。
The fourth method does not cause the above-mentioned difficulties regarding positioning.
GPS (General Position) shown in the figure.
There is a system (onning system). This GPS system does not use a geostationary orbit 2 located on the equator of the earth 1, but uses a low-altitude orbit 5 set at half the altitude of this geostationary orbit 2. That is, a total of 18 low-altitude orbits 5 are provided, and a mobile object receives signals from 4 of the 18 communication satellites on these low-altitude orbits 5 and calculates the propagation time difference of the signals. It detects it and calculates its own position. Therefore, positioning can be performed without causing the problem of ambiguity. However, the purpose of this GPS system is positioning, and there is a problem in that it has no communication function at all.

また、従来の商用衛星通信は、すべて赤道上の静止軌道
を用いているので、同軌道は既に相当混雑し、衛星通信
の進歩の上で障壁となってきている。又、赤道上の静止
軌道は、高緯度地方では仰角が低くなるので、移動体の
ように低指向性アンテナを用いる場合にはマルチパスフ
ェージングによる回線品質の劣化や、あるいは木立や地
形等の遮蔽効果による通信の途絶等の問題を避けること
はできない、等の種々の問題点がある。
Furthermore, all conventional commercial satellite communications use geostationary orbits above the equator, which are already quite congested and have become a barrier to the advancement of satellite communications. Furthermore, since a geostationary orbit above the equator has a low elevation angle in high latitude regions, when using a low-directivity antenna like a mobile object, there may be deterioration in line quality due to multipath fading or shielding effects such as trees or topography. There are various problems such as unavoidable problems such as communication interruption due to

本発明は、このような問題点に鑑みなされたもので、そ
の目的は、衛星通信全体の通信収容能力を飛躍的に拡大
できるとともに、地球上至る所で高仰角で、即ち高品質
の通信が行え、併せてあいまい度のない測位を即時に実
行し得る衛星通信/測位方式を提供することにある。
The present invention was developed in view of these problems, and its purpose is to dramatically expand the communication capacity of satellite communication as a whole, and to enable high-angle, high-quality communication to be carried out anywhere on the earth. It is an object of the present invention to provide a satellite communication/positioning method that can perform positioning without any ambiguity.

(問題点を解決するための手段) 前記目的を達成するために、本発明の衛星通信/測位方
式は次の如き構成を有する。
(Means for Solving the Problems) In order to achieve the above object, the satellite communication/positioning system of the present invention has the following configuration.

即ち、本発明の衛星通信/測位方式は、小容量固定局、
移動体局を含む多数の小型地球局が通信衛星を介して通
信または測位もしくは双方を行う衛星通信/測位方式で
あって; この衛星通信/測位方式は、赤道上の日周期
軌道である静止軌道と赤道面に対して傾斜している1つ
又は複数の日周期軌道とのそれぞれに1個又は複数個の
通信衛星を配置し、各小型地球局は自局に対し高仰角の
位置にある1個又は複数個の通信衛星を介して通信また
は測位もしくは双方を行うことを特徴とするものである
In other words, the satellite communication/positioning system of the present invention is applicable to small-capacity fixed stations,
A satellite communication/positioning method in which a large number of small earth stations, including mobile stations, perform communication and/or positioning via communication satellites; and one or more diurnal orbits that are inclined with respect to the equatorial plane, and one or more communication satellites are placed in each of the orbits, and each small earth station is located at a high elevation angle with respect to the own station. It is characterized by performing communication and/or positioning via one or more communication satellites.

(作 用) 次に、前記の如く構成される本発明の衛星通信/測位方
式の作用を説明する。
(Function) Next, the function of the satellite communication/positioning system of the present invention configured as described above will be explained.

本発明に係る通信衛星は、赤道上の日周期軌道である静
止軌道と赤道面に対して傾斜している1つ又は複数の日
周期軌道とのそれぞれに配置される1個又は複数個の通
信衛星からなる。つまり、各軌道上の通信衛星は地球か
ら等距離にあり、しかも赤道面に対して傾斜している日
周期軌道上の通信衛星は地上から見ると南北方向のゆっ
くりした日周運動を行う。従って、衛星追尾が容易であ
るから、高緯度地方においても高仰角で通信衛星を捕捉
できる。そして、複数の日周期軌道上の通信衛星のうち
少なくとも3個を高仰角視野内に捕捉できるようにする
ことによりあいまい度のない測位を即時になし得ること
になる。
The communication satellite according to the present invention has one or more communication satellites arranged in each of a geosynchronous orbit that is a diurnal orbit on the equator and one or more diurnal orbits that are inclined with respect to the equatorial plane. Consists of satellites. In other words, communication satellites on each orbit are equidistant from the earth, and communication satellites on diurnal orbits that are inclined to the equatorial plane move slowly in a north-south direction when viewed from the ground. Therefore, since satellite tracking is easy, communication satellites can be captured at high elevation angles even in high latitude regions. By making it possible to capture at least three of the communication satellites on a plurality of diurnal orbits within a high elevation field of view, unambiguous positioning can be performed instantly.

斯くして、本発明の衛星通信/測位方式によれば、多数
の日周期軌道上に通信衛星を配置するから、衛星通信全
体の通信収容能力を飛躍的に増大させ得る。また、地球
上至る所で高仰角通信が可能となるから、マルチパスフ
ェージングや木立、地形等の遮蔽効果の影響のない高品
位の通信が可能となる。さらに、移動体衛星通信に適用
すれば、従来のGEOSTAR方式で生じたあいまい度
を生じさせずに赤道地方や極地方も含めて地球上型る所
で即時に高精度の測位が可能となる、等の効果がある。
Thus, according to the satellite communication/positioning system of the present invention, communication satellites are arranged on a large number of diurnal orbits, so that the communication capacity of the entire satellite communication can be dramatically increased. Furthermore, since high-elevation angle communication is possible anywhere on the earth, high-quality communication is possible without the influence of multipath fading or the shielding effects of trees, topography, etc. Furthermore, if applied to mobile satellite communications, it will become possible to perform instant high-precision positioning anywhere on the globe, including equatorial and polar regions, without causing the ambiguity that occurs with the conventional GEOSTAR method. There are other effects.

(実 施 例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係る衛星通信/測位方式を
示す6本実施例では、地球1の赤道上にある日周期軌道
たる静止軌道2の他、赤道面に対し+60度傾斜した日
周期軌道4と一60度傾斜した日周期軌道3をそれぞれ
設定し、これらの軌道上には6個の通信衛星(st〜S
 6.Y 、〜Y6゜X1〜X6)が適当な相対関係で
配置されている。
Figure 1 shows a satellite communication/positioning system according to an embodiment of the present invention.6 In this embodiment, in addition to the geostationary orbit 2 which is a diurnal orbit above the equator of the earth 1, the A diurnal orbit 4 and a diurnal orbit 3 tilted by 160 degrees are set respectively, and six communication satellites (st to S
6. Y, ~Y6°X1~X6) are arranged in an appropriate relative relationship.

周知のように、日周期軌道はいわゆる公転周期が一日に
一致する軌道であって、静止軌道はその一種でありその
軌道面が赤道面と一致する特殊なものである。一般に、
日周期軌道上の通信衛星は、地上からみると南北方向の
日周運動を行い、しかもその動きはゆっくりしたもので
ある。従って、赤道地方や極地方も含めて地球上型る所
で高仰角の位置で通信衛星を容易に追尾捕捉できる。
As is well known, a diurnal orbit is an orbit whose revolution period coincides with one day, and a geostationary orbit is one type of this orbit, which is special in that its orbital plane coincides with the equatorial plane. in general,
Communication satellites in diurnal orbits move slowly in a north-south direction when viewed from the ground. Therefore, communication satellites can be easily tracked and captured at high elevation angle positions anywhere on the earth, including equatorial and polar regions.

そして、第1図に示す如くに各軌道に6個の通信衛星を
配置すれば、地球上型る所で90度の視野内に少なくと
も3個の通信衛星が入ることになり、通信のみならず測
位も従来の如きあいまい度を生じさせずに行うことが可
能となる。
If six communication satellites are placed in each orbit as shown in Figure 1, at least three communication satellites will be within a 90-degree field of view in a place on the earth, and not only communication but also Positioning can also be performed without creating ambiguity as in the conventional method.

次に、第2図を参照して本発明に係る測位方式を説明す
る。第2図は日周期軌道3の軌道面の法線方向から見る
通信衛星の位置関係を示す。
Next, the positioning method according to the present invention will be explained with reference to FIG. FIG. 2 shows the positional relationship of the communication satellites as seen from the normal direction of the orbital plane of the diurnal orbit 3.

従って、日周期軌道3は円に、静止軌道2は楕円にそれ
ぞれ見えている。
Therefore, the diurnal orbit 3 appears to be a circle, and the geostationary orbit 2 appears to be an ellipse.

第2図において、地上の点Fから点Gに至る領域におい
ては、通信衛星X 1 +同x2と静止衛星Slが視野
に入っている。従って図の点Aにある移動体はX 1 
+ 81 + X 2の各衛星からの信号の伝搬時間t
1+同t2.同t3間の時間差を検出することにより自
己の位置を算出できる。この時、これら3つの衛星は同
一平面上にはないので、従来方式で生じたあい丈い度の
問題は生じない。
In FIG. 2, in the area from point F to point G on the ground, communication satellites X 1 + x2 and geostationary satellite Sl are in the field of view. Therefore, the moving body at point A in the diagram is
Propagation time t of signals from each satellite + 81 + X 2
1+same t2. The own position can be calculated by detecting the time difference between t3. At this time, since these three satellites are not on the same plane, the problem of the degree of overlap that occurs in the conventional method does not occur.

以上の説明から明らかなように、地球上型る所で高い仰
角の位置にある衛星を用いて通信ができるので、日周期
軌道上の衛星の数を十分大きくすることにより従来の移
動体衛星通信で大きな問題であったマルチパスフェージ
ング、木立や地形等の遮蔽効果の問題は生じない、即ち
、本発明により地球上型る所で高品質な通信および測位
を行うことができる。
As is clear from the above explanation, communication is possible using satellites located at high elevation angles on the earth, so by increasing the number of satellites in diurnal orbits sufficiently, conventional mobile satellite communication The problems of multipath fading and shielding effects of trees, topography, etc., which were major problems in the past, do not occur.In other words, the present invention allows high-quality communication and positioning to be performed anywhere on the earth.

(発明の効果) 以上説明したように、本発明の衛星通信/測位方式によ
れば、多数の日周期軌道上に通信衛星を配置するから、
衛星通信全体の通信収容能力を飛躍的に増大させ得る。
(Effects of the Invention) As explained above, according to the satellite communication/positioning method of the present invention, since communication satellites are placed on a large number of diurnal orbits,
The communication capacity of the entire satellite communication system can be dramatically increased.

また、地球上型る所で高仰角通信が可能となるから、マ
ルチパスフェージングや木立、地形等の遮蔽効果の影響
のない高品位の通信が可能となる。さらに、移動体衛星
通信に適用すれば、従来のGEOSTAR方式で生じた
あいまい度を生じさせずに赤道地方や極地方も含めて地
球上型る所で即時に高精度の測位が可能となる、等の効
果がある。
Furthermore, since high-elevation angle communication is possible in places on the earth, high-quality communication is possible without the influence of multipath fading or shielding effects such as trees and topography. Furthermore, if applied to mobile satellite communications, it will become possible to perform instant high-precision positioning anywhere on the globe, including equatorial and polar regions, without causing the ambiguity that occurs with the conventional GEOSTAR method. There are other effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の衛星通信/測位方式の構成概念図、第
2図は本発明による測位の原理説明図、第3図は従来の
移動体衛星通信/測位方式の構成および測位方式を示す
図、第4図は従来の衛星測位方式(GPS)を示す図で
ある。 1・・・・・・地球、 2・・・・・・静止軌道、 3
.4・・・・・・赤道面に対して傾斜した日周期軌道、 S1〜S 6.X 1〜X6.Y、〜Y6・・・・・・
通信衛星。 代理人 弁理士  八 幡  義 博 オザ爺明n劉′星通傳/y佃Iグに0七1或′神j第 
l 図 2ネ、発明による測位の歴12也明図 挙 2 図 5EO3丁ARづ)K (a) Δ シ2JイfL6す7ケ罠埋亡ヲt、柄図(b) /−−1−刀乞i1ζ、  2−、、  壷?5ヒ啼大
二!、S+〜53−−・−−3熟じ仁Iネ拳丁星ば5昶
/l蔚(が伴4酊星u/;刻位オ犬多 3 図 、ゴー・−一一イ斥高り周1巨〕軽 1×ピlt /) #L 31すmyA’(GPSオに
) 第4図
Fig. 1 is a conceptual diagram of the structure of the satellite communication/positioning method of the present invention, Fig. 2 is an explanatory diagram of the principle of positioning according to the present invention, and Fig. 3 shows the structure and positioning method of the conventional mobile satellite communication/positioning method. 4 are diagrams showing the conventional satellite positioning system (GPS). 1...Earth, 2...Geostationary orbit, 3
.. 4...Diurnal orbit inclined with respect to the equatorial plane, S1 to S6. X1 to X6. Y, ~Y6...
communication satellite. Agent: Patent Attorney Yoshihiro Hachiman
l Figure 2, History of positioning by invention 12 illustrations 2 Figure 5 EO 3 ARzu) K (a) Δ shi 2 J I f L 6 7 traps, pattern (b) /--1- Sword begging i1ζ, 2-,, pot? 5 Hee Dai Ni! , S+~53--・--3 matured Jin Ine Kencho Hoshiba 5 昚/l 蔚(gaban 4 酊星 u/; carved oinuta 3 fig., Go--11 I expulsion) Shu 1 Giant] Light 1 x Pilt /) #L 31 SumyA' (GPS O) Figure 4

Claims (1)

【特許請求の範囲】[Claims]  小容量固定局、移動体局を含む多数の小型地球局が通
信衛星を介して通信または測位もしくは双方を行う衛星
通信/測位方式であって;この衛星通信/測位方式は、
赤道上の日周期軌道である静止軌道と赤道面に対して傾
斜している1つ又は複数の日周期軌道とのそれぞれに1
個又は複数個の通信衛星を配置し、各小型地球局は自局
に対し高仰角の位置にある1個又は複数個の通信衛星を
介して通信または測位もしくは双方を行うことを特徴と
する衛星通信/測位方式。
A satellite communication/positioning method in which a large number of small earth stations, including small-capacity fixed stations and mobile stations, perform communication and/or positioning via communication satellites;
1 for each of a geostationary orbit that is a diurnal orbit on the equator and one or more diurnal orbits that are inclined with respect to the equatorial plane.
A satellite characterized in that one or more communication satellites are arranged, and each small earth station performs communication or positioning, or both, via one or more communication satellites located at a high elevation angle relative to its own station. Communication/positioning method.
JP33610087A 1987-12-30 1987-12-30 Satellite communication/position measurement system Pending JPH01176966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33610087A JPH01176966A (en) 1987-12-30 1987-12-30 Satellite communication/position measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33610087A JPH01176966A (en) 1987-12-30 1987-12-30 Satellite communication/position measurement system

Publications (1)

Publication Number Publication Date
JPH01176966A true JPH01176966A (en) 1989-07-13

Family

ID=18295694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33610087A Pending JPH01176966A (en) 1987-12-30 1987-12-30 Satellite communication/position measurement system

Country Status (1)

Country Link
JP (1) JPH01176966A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619211A (en) * 1994-11-17 1997-04-08 Motorola, Inc. Position locating and communication system using multiple satellite constellations
US6328264B1 (en) 1997-05-21 2001-12-11 Hitachi, Ltd. Artificial satellite with an orbit having a long staying time in a zenith direction, an orbit control method and a communication system therewith
US6695259B1 (en) 1997-05-21 2004-02-24 Hitachi, Ltd. Communication system, communication receiving device and communication terminal in the system
JP2013539539A (en) * 2010-08-24 2013-10-24 ザ・ボーイング・カンパニー Method and apparatus for expanding positioning function execution range of mobile receiver

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193421A (en) * 1986-02-18 1987-08-25 エルノ・ラウムフア−ルトテヒニク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Composite earth satellite for supplying information on earthand/or position measurement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193421A (en) * 1986-02-18 1987-08-25 エルノ・ラウムフア−ルトテヒニク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Composite earth satellite for supplying information on earthand/or position measurement

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619211A (en) * 1994-11-17 1997-04-08 Motorola, Inc. Position locating and communication system using multiple satellite constellations
US6328264B1 (en) 1997-05-21 2001-12-11 Hitachi, Ltd. Artificial satellite with an orbit having a long staying time in a zenith direction, an orbit control method and a communication system therewith
US6422516B1 (en) 1997-05-21 2002-07-23 Hitachi, Ltd. Artificial satellite with an orbit having a long staying time in a zenith direction, an orbit control method and a communication system therewith
US6499698B2 (en) 1997-05-21 2002-12-31 Hitachi, Ltd. Satellite, satellite control method and satellite communication system
US6634602B2 (en) 1997-05-21 2003-10-21 Hitachi, Ltd. Artificial satellite with an orbit having a long staying time in a zenith direction, an orbit control method and a communication system therewith
US6695259B1 (en) 1997-05-21 2004-02-24 Hitachi, Ltd. Communication system, communication receiving device and communication terminal in the system
US6764049B1 (en) 1997-05-21 2004-07-20 Hitachi, Ltd. Artificial satellite with an orbit having a long staying time in a zenith direction, an orbit control method and a communication system therewith
US6824107B2 (en) 1997-05-21 2004-11-30 Hitachi, Ltd. Artificial satellite with an orbit having a long staying time in a zenith direction, an orbit control method and a communication system therewith
JP2013539539A (en) * 2010-08-24 2013-10-24 ザ・ボーイング・カンパニー Method and apparatus for expanding positioning function execution range of mobile receiver

Similar Documents

Publication Publication Date Title
US4502051A (en) Telecommunication system with satellites positioned in geostationary positional loops
US4652884A (en) Satellite navigational system and method
US5959575A (en) Interior GPS navigation
US8255149B2 (en) System and method for dual-mode location determination
US8775078B1 (en) Vehicle navigation using cellular networks
US7065373B2 (en) Method of steering smart antennas
JPS6148781A (en) Positioning and message transmission system and method usingsatellite and storage terrain figure
US10903900B2 (en) Non-geosynchronous orbit satellite constellations
KR20010012194A (en) High latitude geostationary satellite system
Levanon Quick position determination using 1 or 2 LEO satellites
US11735818B2 (en) One-dimensional phased array antenna and methods of steering same
CN109413662B (en) Low-earth-orbit communication satellite constellation and user station communication planning method
Dureppagari et al. NTN-based 6G localization: Vision, role of LEOs, and open problems
JPH01176966A (en) Satellite communication/position measurement system
US6195042B1 (en) Method of locating a fixed terminal using a constellation of satellites
US20230370156A1 (en) Geolocation of radio frequency devices using spaceborne phased arrays
CN113820733A (en) Moving carrier navigation method and device based on directional antenna and Doppler information
KR100520303B1 (en) Apparatus for measuring location using wireless communication network and method thereof
US20230305094A1 (en) Doppler nulling spatial awareness (dnsa) solutions for non-terrestrial networks
JP3416703B2 (en) Design method of satellite orbit arrangement that can switch satellites within the same antenna beam and satellite system using the orbit
JPH03270422A (en) Mobile object satellite communicating/position measuring system
JP3961395B2 (en) Information processing apparatus, orbit control apparatus, artificial satellite, communication apparatus, and communication method
SU1314968A3 (en) Satellite communication system
JPH0544855B2 (en)
JPH0295291A (en) Moving body satellite communication and position measurement system