JPH01176685A - Surge absorber - Google Patents

Surge absorber

Info

Publication number
JPH01176685A
JPH01176685A JP33451687A JP33451687A JPH01176685A JP H01176685 A JPH01176685 A JP H01176685A JP 33451687 A JP33451687 A JP 33451687A JP 33451687 A JP33451687 A JP 33451687A JP H01176685 A JPH01176685 A JP H01176685A
Authority
JP
Japan
Prior art keywords
electrode
discharge gap
surge absorber
electrodes
surge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33451687A
Other languages
Japanese (ja)
Inventor
Mikio Sumiyoshi
住吉 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33451687A priority Critical patent/JPH01176685A/en
Publication of JPH01176685A publication Critical patent/JPH01176685A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To enable a discharge gap tube to be protected from joule energy by limiting an AC current that flows continuously into a surge absorber using a positive characteristic thermister. CONSTITUTION:A positive characteristic thermister 14 which is, directly or through an electrode plate, combined thermally is joined to either electrode of the two electrodes 8a and 8b whose convexes are opposed, inside a hollow insulation cylinder 10, to each other at both ends of the hollow insulation cylinder 10, and an electric terminal is taken out from each of the common electrode for the discharge gap tube and the positive characteristic thermister 14, the other electrode of the discharge gap, and the other electrode of the positive characteristic thermister. Hereby, even if it becomes great joule energy as the time of AC current application, the discharge part of the electrode is never fused and broken, and when the AC overvoltage is gone the function as a surge absorber returns, and further the positive characteristic thermister works as a surge impedance, which enables decrease of limit voltage and break of dynamic current.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は雷サージを始めとする異常電極から通信設備や
電子機器を保護するためのサージ吸収器に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a surge absorber for protecting communication equipment and electronic equipment from abnormal electrodes such as lightning surges.

従来の技術 近年、電子機器の多機能化に伴い、家電機器、情報通信
機器、産業機器分野において電子化が推進されつつある
。この電子化に用いられるIC。
BACKGROUND OF THE INVENTION In recent years, as electronic equipment has become more multi-functional, computerization has been promoted in the fields of home appliances, information and communication equipment, and industrial equipment. IC used for this computerization.

LII(大規模集積回路)などは優れた機能をもつ反面
、サージ電極や交流過電極のような異常電極に対しては
極めて敏感であり、そのため電子機器の誤動作を招いた
り〜または破壊に至る場合も少なくない。このため、電
子機器の信頼性を確保、向上させる観点からも、これら
電子機器のサージ電極対策は極めて重要である。とシわ
け、電話通信分野においてはサージ吸収器に対し、静電
容量が小さく、まだ漏れ電流のないことが要求されるた
め、サージ吸収器として放電ギャップ式が数多く適用さ
れている。
Although LII (Large Scale Integrated Circuit) etc. have excellent functions, they are extremely sensitive to abnormal electrodes such as surge electrodes and AC overcurrent electrodes, which may cause electronic equipment to malfunction or even be destroyed. There are also quite a few. Therefore, from the viewpoint of ensuring and improving the reliability of electronic devices, measures against surge electrodes for these electronic devices are extremely important. In particular, in the field of telephone communications, surge absorbers are required to have small capacitance and no leakage current, so discharge gap type surge absorbers are often used as surge absorbers.

従来、この種のサージ吸収器の内部構造は、第4図に示
すような構成であった。第4図はサージ吸収器の断面を
示したもので、第4図において、1a、1bは中央部に
凸部をもった円板状の電極で、凸部は対向して位置して
いる。これら電極1a、1bは、通常、鉄、ニッケル、
コバルトなどの合金からなる。これは後述の中空絶縁筒
などと熱膨張率を合わすだめのものである。2は電極1
a。
Conventionally, the internal structure of this type of surge absorber was as shown in FIG. FIG. 4 shows a cross section of the surge absorber. In FIG. 4, reference numerals 1a and 1b are disc-shaped electrodes having a convex portion in the center, and the convex portions are located opposite to each other. These electrodes 1a, 1b are usually made of iron, nickel,
Made of alloys such as cobalt. This is to match the coefficient of thermal expansion with the hollow insulating cylinder described later. 2 is electrode 1
a.

1bの凸部の極間に形成されたギャップ部である。This is a gap portion formed between the poles of the convex portion of 1b.

この極間の長さによって放電開始電極が決定される。3
は中空絶縁筒で、ガラス、セラミクスなどからなる。こ
の中空絶縁筒3は電極11L、Ib間を絶縁するもので
ある。またギャップ部2の空間の状態を安定にするため
に、中空絶縁筒3の端面部と電極1a、1k)はガラス
による融着や金属ロウ付けによって封止されている。さ
らに、ギャップ部2の内部の気体は、窒素、アルゴン、
ネオンなどの不活性ガスであり、1気圧もしくは1気圧
以下に設定されている。そして、前記の構成によって放
電ギャップ管が形成されている。4a、4bは電極1a
、1bから引き出されたリード端子であシ、電源線や通
信線に接続される端子である。
The discharge starting electrode is determined by the length between the electrodes. 3
is a hollow insulating tube made of glass, ceramics, etc. This hollow insulating cylinder 3 insulates between the electrodes 11L and Ib. Further, in order to stabilize the state of the space in the gap portion 2, the end face portion of the hollow insulating tube 3 and the electrodes 1a, 1k) are sealed by glass fusing or metal brazing. Furthermore, the gas inside the gap part 2 is nitrogen, argon,
It is an inert gas such as neon, and is set at 1 atmosphere or less than 1 atmosphere. A discharge gap tube is formed by the above configuration. 4a and 4b are electrodes 1a
, 1b, and is a terminal connected to a power supply line or a communication line.

第6図はサージ吸収器の電気回路への接続図の例である
。6は電話通信機、6は電話通信vA6に繋がる信号線
、7は信号線6の線間に接続されたサージ吸収器である
FIG. 6 is an example of a connection diagram of a surge absorber to an electric circuit. 6 is a telephone communication device, 6 is a signal line connected to the telephone communication vA6, and 7 is a surge absorber connected between the signal lines 6.

以上のように構成された従来の放電ギャップ式のサージ
吸収器のサージ電流吸収時の挙動について、以下その動
作を説明する。まず、雷サージ電極がサージ吸収器の電
Wi1a、1b間に印加され、その電極がギャップ部2
の放電開始電極より高い場合、ギャップ部2は放電を開
始し、それらの電極に伴うサージ電流がサージ吸収器に
流れ、サージ吸収器両端の電極が抑制される。また、サ
ージ電極だけでなく、交流過電極印加においてもサージ
吸収器は放電を生じ、サージ吸収器両端の電極を抑制す
る。
The behavior of the conventional discharge gap type surge absorber configured as described above when absorbing a surge current will be described below. First, a lightning surge electrode is applied between the voltage Wi1a and Wi1b of the surge absorber, and the electrode is connected to the gap portion 2.
When the voltage is higher than the discharge starting electrode, the gap portion 2 starts discharging, the surge current associated with those electrodes flows to the surge absorber, and the electrodes at both ends of the surge absorber are suppressed. In addition, the surge absorber generates discharge not only when the surge electrode is applied but also when an AC overcurrent electrode is applied, suppressing the electrodes at both ends of the surge absorber.

発明が解決しようとする問題点 しかしながら、このような従来の構成ではサージ吸収器
に交流過電極が印加され、交流電流が長時間印加された
場合、放電電流によるジュール熱によって電極11L、
1bが溶融し貫通孔を生じる。
Problems to be Solved by the Invention However, in such a conventional configuration, an AC overload electrode is applied to the surge absorber, and when AC current is applied for a long time, the electrode 11L,
1b melts to form a through hole.

そして、貫通孔を生じた電極側にはアークガスが吹き出
し、周辺機器、部品に多大な影・爵を与える。
Then, arc gas blows out on the side of the electrode where the through hole is formed, giving a great shadow to peripheral equipment and parts.

特に、電気接点、極間などにアークガスが吹けば、短絡
を生じ大きな事故となる可能性が大である。
In particular, if arc gas blows between electrical contacts or between poles, there is a high possibility that a short circuit will occur, resulting in a major accident.

本発明はこのような問題点を解決しようとするもので、
正特性サーミスタを用いてサージ吸収器へ連続的に流れ
込む交流電流を制限し、サージ吸収器を連続交流過電極
から守ろうとすることを目的とするものである。
The present invention aims to solve these problems,
The purpose of this is to limit the alternating current that continuously flows into the surge absorber using a positive characteristic thermistor to protect the surge absorber from continuous alternating current overcurrent.

問題点を解決するための手段 本発明は前記問題点を解決するために、サージ吸収器の
放電ギャップ管を形成する2個の電極のいずれか一方の
電極に正特性サーミスタを熱的に結合させ、サージ吸収
器へ連続的に流れ込む交流電流を制限し、サージ吸収器
を連続交流過電極から守ろうとするものである。
Means for Solving the Problems In order to solve the above problems, the present invention thermally couples a positive temperature coefficient thermistor to one of the two electrodes forming the discharge gap tube of the surge absorber. This is intended to limit the AC current that continuously flows into the surge absorber and protect the surge absorber from continuous AC overload.

作用 本発明は前記した構成により、交流電流通電時のように
大きなジュールエネルギーによって電極の凸部が発熱さ
れ、貫通に至るまでの時間の間に、電極の熱を正特性サ
ーミスタに伝え、その熱によって信号線に直列に接続さ
れた正特性サーミスタの抵抗を急激に高くし、放電ギャ
ップ管に流れ込む連続の交流電流を制限し、そして放電
ギャップ管をジュールエネルギーから守るものである。
Effect of the present invention With the above-described configuration, the convex portion of the electrode is heated by large Joule energy as when AC current is applied, and during the time until penetration, the heat of the electrode is transferred to the PTC thermistor, and the heat is absorbed. This rapidly increases the resistance of the positive temperature coefficient thermistor connected in series with the signal line, limits the continuous alternating current flowing into the discharge gap tube, and protects the discharge gap tube from Joule energy.

実施例 第1図は本発明のサージ吸収器の一実施例を示し、同図
はサージ吸収器の断面図である。第1図において、aa
 、sbは電極、9はギャップ部、10は中空絶縁筒で
、これらで放電ギャップ管を形成し、そしてこれらはそ
れぞれ従来の電[jl 1Lt1b、ギャップ部2、中
空絶縁筒3に対応するものである。また、中空絶縁筒1
0と電極sa、sbは従来と同様にガラス融着や金属ロ
ウ付けが施され、ギャップ部の密封が保たれている。さ
らに、封入ガスも従来と同様な不活性ガスが用いられて
いる。
Embodiment FIG. 1 shows an embodiment of the surge absorber of the present invention, and this figure is a sectional view of the surge absorber. In Figure 1, aa
, sb is an electrode, 9 is a gap portion, and 10 is a hollow insulating tube, which form a discharge gap tube, and these correspond to the conventional electric discharge tube, gap portion 2, and hollow insulating tube 3, respectively. be. In addition, hollow insulating tube 1
0 and the electrodes sa and sb are glass fused or metal brazed as in the past, and the gap portion is kept sealed. Furthermore, the same inert gas as in the past is used as the filler gas.

11.12.13はそれぞれバネ性を有した電極板で、
14は板状をなした正特性サーミスタである。そして、
電極板11と電極板12は放電ギャップ管を挾み込み、
また電極板12と電極板13は正特性サーミスタ14を
挾み込んでいる。これらの挾み込みは圧接または半田付
けのいずれでもよい。15は電極板11.12.13を
それぞれ固定する端子台で、樹脂などの絶縁物からなっ
ている。通常、電極板11.12.13の電気回路への
接続は端子台16の裏面でプリント基板などに取付けら
れる。第2図は本発明のサージ吸収器1 の電気回路へ
の接続図の例である。16は電話通信機、17は電話通
信111eに繋がる信号線、18は信号線17の線間に
接続されたサージ吸収器である。
11, 12, and 13 are electrode plates with spring properties, respectively.
14 is a plate-shaped positive temperature coefficient thermistor. and,
The electrode plate 11 and the electrode plate 12 sandwich the discharge gap tube,
Further, a positive temperature coefficient thermistor 14 is sandwiched between the electrode plate 12 and the electrode plate 13. These insertions may be done by pressure welding or soldering. 15 is a terminal block for fixing the electrode plates 11, 12, and 13, respectively, and is made of an insulating material such as resin. Normally, the electrode plates 11, 12, 13 are connected to the electric circuit by being attached to a printed circuit board or the like on the back side of the terminal block 16. FIG. 2 is an example of a connection diagram of the surge absorber 1 of the present invention to an electric circuit. 16 is a telephone communication device, 17 is a signal line connected to the telephone communication 111e, and 18 is a surge absorber connected between the signal lines 17.

次に、以上のように構成されたサージ吸収器の動作を説
明する。従来例と同様に雷サージ電極が放電ギャップ管
の電極sa 、sb間に印加され、その電極がギャップ
部9の放電開始電極より高い場合、ギャップ部9は放電
を開始し、それらの電極に伴うサージ電流が正特性サー
ミスタ14を介して放電ギャップ管に流れ、放電ギャッ
プ管両端の電極が抑制される。また、サージ電極だけで
なく、交流過電極印加においても放電ギャップ管は放電
を生じ、放電ギャップ管両端の電極を抑制する。これら
はサージ電流が正特性サーミスタ14を介して流れるこ
と以外、従来の放電ギャップ管の作用と異なるものでは
ない。しかしながら、交流電流などの電流が長時間にわ
たって放電を継続した場合、そのアーク熱、ジュールエ
ネルギーによって電I#isa、sbは発熱しはじめる
。ここで、電極81Lは電極板12に圧接しており、電
極8ILの熱は直ちに電極板12に伝わり、そしてさら
に正特性サーミスタ14に伝わる。このように正特性サ
ーミスタ14が熱せられれば、正特性サーミスタ14は
急激にその抵抗が高くなシ、正特性サーミスタ14を通
過する電流は制限され、その電流値は極めて低い値に制
限される。ここで、正特性サーミスタ14は信号線17
に直列に、しかも放電ギャップ管の前段に接続されてい
るため、放電ギャップ管に流れ込む電流も抑制される。
Next, the operation of the surge absorber configured as above will be explained. Similar to the conventional example, when a lightning surge electrode is applied between the electrodes sa and sb of the discharge gap tube, and that electrode is higher than the discharge starting electrode of the gap section 9, the gap section 9 starts discharging, and the voltage accompanying those electrodes increases. A surge current flows into the discharge gap tube via the positive temperature coefficient thermistor 14, and the electrodes at both ends of the discharge gap tube are suppressed. Further, the discharge gap tube generates discharge not only when a surge electrode is applied but also when an AC overcurrent electrode is applied, and the electrodes at both ends of the discharge gap tube are suppressed. These do not differ from the operation of conventional discharge gap tubes, except that the surge current flows through the positive temperature coefficient thermistor 14. However, when a current such as an alternating current continues to discharge for a long time, the electric current I#isa, sb starts to generate heat due to the arc heat and Joule energy. Here, the electrode 81L is in pressure contact with the electrode plate 12, and the heat of the electrode 8IL is immediately transmitted to the electrode plate 12 and further to the positive temperature coefficient thermistor 14. When the PTC thermistor 14 is heated in this way, the resistance of the PTC thermistor 14 suddenly increases, and the current passing through the PTC thermistor 14 is limited, and the current value is limited to an extremely low value. Here, the positive temperature coefficient thermistor 14 is connected to the signal line 17.
Since the discharge gap tube is connected in series with the discharge gap tube and at the front stage of the discharge gap tube, the current flowing into the discharge gap tube is also suppressed.

そして、電極8L 、8bの発熱も大きく低減され、放
電ギャップ管の貫通破壊などを回避することができる。
Moreover, the heat generation of the electrodes 8L and 8b is also greatly reduced, and it is possible to avoid penetration failure of the discharge gap tube.

また、交流過電極がなくなり、通常の回路電極に復帰す
れば、正特性サーミスタ14の温度も低くなり、もとの
サージ吸収器の機能が回復する。さらに、正特性サーミ
スタ14はサージインピーダンスとして働き、従来より
も優れたサージ抑制効果と、放電ギャップ管の続流の遮
断効果も有するものである。
Further, when the AC over-electrode disappears and the normal circuit electrode returns, the temperature of the positive temperature coefficient thermistor 14 also decreases, and the original function of the surge absorber is restored. Furthermore, the positive temperature coefficient thermistor 14 acts as a surge impedance, and has a surge suppressing effect superior to the conventional one and an effect of blocking follow-on current from the discharge gap tube.

次に、本発明の第二の実施例について第3図と共に説明
する。同図には第二の実施例のサージ吸収器の断面図を
示した。前記第一の実施例との違いは、電極板11.1
2の働きを放電ギャップ管の電極がなし、さらに正特性
サーミスタが直接放電ギャップ管の電極に接している点
である。第3図において、19&、19bは放電ギャッ
プ管の電極と回路への接続のための電極板の機能を兼ね
備えた電極端子である。この電極端子19a。
Next, a second embodiment of the present invention will be described with reference to FIG. The figure shows a sectional view of the surge absorber of the second embodiment. The difference from the first embodiment is that the electrode plate 11.1
The second function is performed by the electrode of the discharge gap tube, and furthermore, the positive temperature coefficient thermistor is in direct contact with the electrode of the discharge gap tube. In FIG. 3, reference numerals 19&, 19b are electrode terminals which have the functions of electrodes of the discharge gap tube and electrode plates for connection to the circuit. This electrode terminal 19a.

19bは電極sa 、sbと同様な金属材料で構成され
る。このように構成されたサージ吸収器の作用も第一の
実施例と同様である。しかしながら、電極板11.12
が省略でき、また正特性サーミスタ14が直接放電ギャ
ップ管の電極端子19aに接しているため、電極端子1
9I!Lからの熱の伝導がよくなり、前記の効果の発揮
スピードが速くなるという効果をもつものである。
19b is made of the same metal material as the electrodes sa and sb. The operation of the surge absorber constructed in this way is also similar to that of the first embodiment. However, electrode plate 11.12
can be omitted, and since the positive temperature coefficient thermistor 14 is in direct contact with the electrode terminal 19a of the discharge gap tube, the electrode terminal 1
9I! This has the effect of improving the conduction of heat from L and increasing the speed at which the above-mentioned effects are exerted.

なお、前記実施例では放電ギャップ管ならびに正特性サ
ーミスタを覆う絶縁ケースや樹脂コートを付与しなかっ
たが、これらがあっても機能、効果は同様である。
In the above embodiment, an insulating case and a resin coating covering the discharge gap tube and the positive temperature coefficient thermistor were not provided, but the functions and effects are the same even if these are provided.

発明の効果 以上のように本発明によれば、中空絶縁筒の両端に凸部
を前記中空絶縁筒内で対向させた2個の電極のいずれか
一方の電極に、直接または電極板を介して熱的に結合し
た正特性サーミスタを接合し、放電ギャップ管と正特性
サーミスタの共通電極、放電ギャップ管の他方の電極、
ならびに正特性サーミスタの他方の電極から、それぞれ
電気端子を取出したサージ吸収器は、交流電流通電時の
ように大きなジュールエネルギーによっても、電極の放
電部が溶融破壊することなく、また交流過電極がなくな
ればサージ吸収器としての機能が復帰し、さらに正特性
サーミスタはサージインピダンスとして働き、制限電極
の低減や続流の遮断の効果を呈するものである。
Effects of the Invention As described above, according to the present invention, the convex portions at both ends of a hollow insulating cylinder are attached to either one of the two electrodes facing each other in the hollow insulating cylinder, either directly or through an electrode plate. A thermally coupled positive temperature coefficient thermistor is joined, a common electrode of the discharge gap tube and the positive coefficient thermistor, the other electrode of the discharge gap tube,
In addition, the surge absorber has electrical terminals taken out from the other electrode of the positive temperature coefficient thermistor, and the discharge part of the electrode does not melt and break even when exposed to large Joule energy such as when AC current is applied, and the AC over-electrode does not melt. When it disappears, the function as a surge absorber is restored, and the positive temperature coefficient thermistor also acts as a surge impedance, exhibiting the effect of reducing the limiting electrode and blocking the following current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例を示すサージ吸収器の断
面図、第2図は本発明の第一の実施例におけるサージ吸
収器の接続回路を示す回路図、第3図は本発明の第二の
実施例を示すサージ吸収器の断面図、第4図は従来のサ
ージ吸収器の断面図、第6図は従来のサージ吸収器の接
続回路を示す回路図である。 8a、8b・・・・・・電極、9・・・・・・ギャップ
部、1゜・・・・・中空絶縁筒、11.12.13・・
・・・・電極板、14・・・・・正特性サーミスタ、1
6・・・・・・端子台、16・・・・電話通信機、17
・・・・・信号線、191L。 19b・・・・・電極端子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名3α
、δb−電取 17一−拮号簾 第2図
Fig. 1 is a sectional view of a surge absorber according to a first embodiment of the present invention, Fig. 2 is a circuit diagram showing a connection circuit of a surge absorber according to a first embodiment of the present invention, and Fig. 3 is a cross-sectional view of a surge absorber according to a first embodiment of the present invention. FIG. 4 is a sectional view of a conventional surge absorber, and FIG. 6 is a circuit diagram showing a connection circuit of the conventional surge absorber. 8a, 8b... Electrode, 9... Gap portion, 1°... Hollow insulating cylinder, 11.12.13...
... Electrode plate, 14 ... Positive characteristic thermistor, 1
6...Terminal block, 16...Telephone communication device, 17
...Signal line, 191L. 19b... Electrode terminal. Name of agent: Patent attorney Toshio Nakao and 1 other person 3α
, δb-Dentori 171-Anonymous Blind Figure 2

Claims (1)

【特許請求の範囲】[Claims] 中空絶縁筒と、前記中空絶縁筒の両端に凸部を前記中空
絶縁筒内で対向させた2個の電極とからなり、前記中空
絶縁筒の端部は前記電極と接合、封止されて放電ギャッ
プ管が構成され、いずれか一方の前記電極に直接または
電極板を介して熱的に結合した正特性サーミスタを接合
し、前記放電ギャップ管と前記正特性サーミスタの共通
電極、前記放電ギャップ管の他方の電極、ならびに前記
正特性サーミスタの他方の電極から、それぞれ電気端子
を取出したことを特徴とするサージ吸収器。
It consists of a hollow insulating cylinder and two electrodes, each having a convex portion at both ends of the hollow insulating cylinder and facing each other within the hollow insulating cylinder, and the ends of the hollow insulating cylinder are joined and sealed with the electrodes to generate a discharge. A gap tube is configured, a positive temperature coefficient thermistor is thermally coupled to one of the electrodes directly or through an electrode plate, and a common electrode of the discharge gap tube and the positive coefficient thermistor is connected to the discharge gap tube. A surge absorber characterized in that electrical terminals are respectively taken out from the other electrode and the other electrode of the positive temperature coefficient thermistor.
JP33451687A 1987-12-29 1987-12-29 Surge absorber Pending JPH01176685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33451687A JPH01176685A (en) 1987-12-29 1987-12-29 Surge absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33451687A JPH01176685A (en) 1987-12-29 1987-12-29 Surge absorber

Publications (1)

Publication Number Publication Date
JPH01176685A true JPH01176685A (en) 1989-07-13

Family

ID=18278279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33451687A Pending JPH01176685A (en) 1987-12-29 1987-12-29 Surge absorber

Country Status (1)

Country Link
JP (1) JPH01176685A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144542A (en) * 1991-11-22 1993-06-11 Okaya Electric Ind Co Ltd Discharge type surge absorbing element
WO2002071416A1 (en) * 2001-03-02 2002-09-12 Suk-Tae Gong A hollow type surge absorber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144542A (en) * 1991-11-22 1993-06-11 Okaya Electric Ind Co Ltd Discharge type surge absorbing element
WO2002071416A1 (en) * 2001-03-02 2002-09-12 Suk-Tae Gong A hollow type surge absorber

Similar Documents

Publication Publication Date Title
CA1137544A (en) Line protector for a communications circuit
KR960003200B1 (en) Surge absorber
KR960004665B1 (en) Surge absorer for protecting telecommunication apparatus
WO2009089799A1 (en) New voltage dependent resistor with overheated protection structure
JPS60258905A (en) Electric device
JPH01176685A (en) Surge absorber
JPH024478Y2 (en)
JPH01176686A (en) Surge absorber
JP3088588U (en) Fuse composite varistor
JP2003203803A (en) Thermal runaway prevention method for zinc oxide lighting protection element and zinc oxide arrester with thermal runaway prevention function
JPH02267902A (en) Surge absorber
JPS6074370A (en) Electric constituent
JPH0748928B2 (en) Surge absorber
JPH0733353Y2 (en) Fuse resistor
JPS5882439A (en) Safety device for communication
JP3829692B2 (en) Current limiter
JP3092926B2 (en) Contact protection circuit
JP2513087B2 (en) Surge absorber for communication line
JPH071748Y2 (en) Substrate resistance and surge absorber with safety mechanism
JPH0715116Y2 (en) Arrestor device
JP3149089U (en) Surge absorber
JPH1145802A (en) Communication circuit protecting resistor and communication circuit protector
CN116936208A (en) Thermal link for thermally protecting metal oxide varistors
JPH03169222A (en) Protective circuit
JPH0453105A (en) Surge absorber with safety function