JPH01176403A - Separation of organic solvent - Google Patents

Separation of organic solvent

Info

Publication number
JPH01176403A
JPH01176403A JP10588A JP10588A JPH01176403A JP H01176403 A JPH01176403 A JP H01176403A JP 10588 A JP10588 A JP 10588A JP 10588 A JP10588 A JP 10588A JP H01176403 A JPH01176403 A JP H01176403A
Authority
JP
Japan
Prior art keywords
separation
membrane
organic solvent
weight
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10588A
Other languages
Japanese (ja)
Inventor
Shigeru Tsurumaki
茂 弦巻
Masahito Shimomura
下村 雅人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10588A priority Critical patent/JPH01176403A/en
Publication of JPH01176403A publication Critical patent/JPH01176403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To practically separate the mixture of chlorine substitution products of hydrocarbon and fluorine/chlorine substitution products of hydrocarbon by utilizing a membrane consisting of polysulfone and performing osmotic gasification separation. CONSTITUTION:An amorphous nonporous separation membrane consisting of aromatic polysulfone shown by a formula I is utilized. In an osmotic gasification apparatus equipped with this membrane, the liquid mixture of an organic solvent such as mixed liquid of tetrachloroethylene/1,1,2-trichloro-1,2,2-trifluoroethane is fed to the primary side of the membrane and the secondary side is decompressed and sucked. Thereby substance low in molecular weight incorporated in the mixture is gasified to permeate the separation membrane and is transferred to the secondary side. This transferred gas is cooled, condensed and liquefied. In such a way, the organic liquid solvent having low molecular weight is separated from the organic liquid solvent having high molecular weight.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機溶剤液体混合物の分離法に関し、特に炭
化水素の塩素置換体類と炭化水素のフッ素・塩素置換体
類との液体混合物を浸透気化法によって分離する方法に
関する。この炭化水素の塩素置換体類や炭化水素のフッ
素・塩素置換体類は、ドライクリーニングの溶剤として
、また精密機械や精密電子部品の洗浄溶剤として広く利
用されていることから、本発明法はこれらの溶剤回収装
置に利用して好適である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for separating a liquid mixture of organic solvents, and particularly to a method for separating a liquid mixture of a chlorinated hydrocarbon and a fluorine/chlorinated hydrocarbon. This invention relates to a method for separating by pervaporation. These chlorinated hydrocarbons and fluorine/chlorine substituted hydrocarbons are widely used as dry cleaning solvents and as cleaning solvents for precision machinery and precision electronic parts. It is suitable for use in solvent recovery equipment.

〔従来の技術〕[Conventional technology]

従来、有機溶剤の液体混合物を分離する方法として蒸留
法が行われてきた。しかし、蒸留法では、エネルギー消
費量が多く、特に共沸混合物の場合は、精密蒸留が必要
であることから、省エネルギー的な分離方法として、最
近、浸透気化法(よる分離が検討されている。
Distillation has traditionally been used as a method for separating liquid mixtures of organic solvents. However, the distillation method consumes a lot of energy, and in particular, in the case of azeotropic mixtures, precision distillation is required.Recently, separation by pervaporation (separation by pervaporation) has been considered as an energy-saving separation method.

浸透気化法は、分離嘆を隔てた一次側に有機液体混合物
を供給し、二次側を減圧にして透過した蒸気を凝縮分離
する方法である。このため、分離模と親和性の大きい成
分が選択的に透過し、分離される。
The pervaporation method is a method in which an organic liquid mixture is supplied to the primary side across a separation wall, and the pressure of the secondary side is reduced to condense and separate the permeated vapor. Therefore, components with high affinity for the separation model selectively permeate and are separated.

これまでに検討された浸透気化法による分離は、主に、
水−有機液体混合物、特に水−エタノール系の分離が中
心である。また、有機溶剤同志の液体混合物を浸透気化
法で分離した例としては、シクロヘキサン−ベンゼン分
離(特開昭55−48205号、同62−49903号
公報参照)がある。
Separation by pervaporation methods that have been studied so far are mainly based on
The main focus is on the separation of water-organic liquid mixtures, especially water-ethanol systems. An example of separating a liquid mixture of organic solvents by pervaporation is cyclohexane-benzene separation (see JP-A-55-48205 and JP-A-62-49903).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これまでに提案された浸透気化法では、分離襖の分離係
数が小さく、高濃度の濃縮分離を行うためには数回の分
離が必要であることから、蒸留法と比較して有利とは言
えなかった。
In the pervaporation methods proposed so far, the separation coefficient of the separation fusuma is small and several separations are required to perform high concentration concentration separation, so they cannot be said to be advantageous compared to distillation methods. There wasn't.

また、分離嘆の透過係数も小さく、処理する液体混合物
の量が多い場合、必要とする膜面積が膨大となシ、実用
的な方法ではなかった。
In addition, the permeability coefficient for separation is small, and when a large amount of liquid mixture is to be treated, the membrane area required is enormous, making this method impractical.

更に、有機溶剤同志の液体混合物の浸透気化法による分
離例としての前記のシクロヘキサン−ベンゼン分離は、
分離性能と透過性能に問題があシ、実用に至ってかない
Furthermore, the above-mentioned cyclohexane-benzene separation as an example of separation of a liquid mixture of organic solvents by pervaporation method is as follows:
There are problems with separation performance and permeation performance, and it has not been put into practical use.

しかも、炭化水素の塩素置換体類と炭化水素のフッ素・
塩素置換体類との混合物を分離した例はない。
In addition, chlorine-substituted hydrocarbons and fluorine-substituted hydrocarbons
There are no examples of separation of mixtures with chlorinated compounds.

本発明は、有機溶剤液体混合物、特に上記の炭化水素の
塩素置換体類と炭化水素のフッ素・塩素置換体類との混
合物の浸透気化法による実用的な分離法を提案するもの
である。
The present invention proposes a practical method for separating organic solvent liquid mixtures, particularly mixtures of the above-mentioned chlorinated hydrocarbons and fluorine/chlorinated hydrocarbons, by pervaporation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、芳香族系ポリスNホンからなる分離嗅が、高
い分離性を維持したまま、高い透過性を示すとの知見に
基いてなされたものである。
The present invention was made based on the knowledge that a separation probe made of aromatic poly-N-phone exhibits high permeability while maintaining high separation performance.

すなわち本発明は、ポリスμホンからなる嘆を用いて、
有機溶剤液体混合物を浸透気化分離することを特徴とす
る有機溶剤分離法に関する。
That is, the present invention uses a microphone consisting of a polyphone to
The present invention relates to an organic solvent separation method characterized by pervaporative separation of an organic solvent liquid mixture.

本発明法における分離嘆は、一般式が CH3Q で示される芳香族系ポリスμホンである。The separation in the method of the present invention is based on the general formula CH3Q This is an aromatic polyphone shown by

この芳香族系ポリスNホンは、非晶質で、かつ非多孔質
の熱可塑性樹脂であシ、耐熱性、耐クリープ性、寸法精
度、耐熱水性、難燃性、電気的性質に優れた特徴をもち
、電気、電子分野(プリント基板、コネクター等)、熱
水分野(蒸気弁、防食電極の絶縁材等)、医療、食品工
業、自動車部品等に幅広く利用されている。
This aromatic poly-N phone is made of amorphous and non-porous thermoplastic resin, and has excellent heat resistance, creep resistance, dimensional accuracy, hot water resistance, flame retardancy, and electrical properties. It is widely used in the electrical and electronic fields (printed circuit boards, connectors, etc.), the hot water field (steam valves, insulation materials for anti-corrosion electrodes, etc.), medical care, food industry, automobile parts, etc.

なお、上記の非多孔質とは、膜を構成する高分子の熱振
動で生成する分子間隙以外に孔のないことをいい、分子
間隙は直径約10λ以下であシ、この分子間隙を低分子
が移動する。
Note that the above-mentioned non-porous means that there are no pores other than the molecular gaps generated by thermal vibration of the polymer that makes up the membrane, and the molecular gaps are approximately 10λ or less in diameter. moves.

また、ポリスルホン喚け、気体分離用の支持嘆(多孔質
模)として、また血液浄化、果汁濃縮、チーズホエーの
処理、ヨーグルト製造、純水製造等の医療、食品工業分
野で限外濾過膜として、利用されているが、本発明法で
使用する上記非晶質、非多孔質嘆とは、膜の透過機構が
木質的に異なるものである。
In addition, it can be used as an ultrafiltration membrane in the medical and food industry fields such as polysulfone, gas separation, blood purification, fruit juice concentration, cheese whey processing, yogurt production, and pure water production. However, the membrane permeation mechanism is different from the above-mentioned amorphous and non-porous membranes used in the method of the present invention.

すをわち、限外−過膜や透析膜などの多孔賞嘆は、嘆を
透過する低分子の大きさと、孔の大きさとの違い(物理
的な因子)によって分離を行うが、本発明法で使用する
非晶質・非多孔質嘆け、上記のように低分子が透過する
孔(分子間隙)が小さいため、膜を構成する材質と低分
子との間の化学的親和性や電気的な影響(物理化学的な
因子)を受けて、分離が行われる。従って、現在市販さ
れているポリスルホン製の限外濾過膜と、本発明法で使
用する芳香族系ポリスルホン喚とは、透過機構が異なる
In other words, with porous membranes such as ultrafiltration membranes and dialysis membranes, separation is performed based on the difference (physical factor) between the size of the low molecules that permeate the membrane and the size of the pores. The amorphous/non-porous materials used in this method have small pores (molecular gaps) through which small molecules can pass through, as mentioned above, so the chemical affinity and electrical Separation takes place under the influence of physicochemical factors. Therefore, the permeation mechanism is different between the currently commercially available ultrafiltration membrane made of polysulfone and the aromatic polysulfone membrane used in the method of the present invention.

本発明法により分離することのできる有機溶剤液体混合
物としては、炭化水素の塩素置換体類と炭化水素のフッ
素・塩素置換体類の混合物があり、これ以外に炭化水素
の塩素置換体類と、メタノール、エタノ−μ、エチレン
グリコ−〜、プロパン−1,2−ジオール、n−ブタノ
ールまたはへブタン等との混合物等がある。
Organic solvent liquid mixtures that can be separated by the method of the present invention include mixtures of chlorinated hydrocarbons and fluorine/chlorinated hydrocarbons; in addition to these, chlorinated hydrocarbons; Examples include mixtures with methanol, ethanol-μ, ethylene glycol, propane-1,2-diol, n-butanol, hebutane, and the like.

〔作用〕[Effect]

本発明法では、ポリスルホンからなる分離嘆を隔たてた
一次側に有機溶剤液体混合物を供給し、二次側を減圧に
する。
In the method of the present invention, an organic solvent liquid mixture is supplied to the primary side across a polysulfone separation membrane, and the pressure is reduced on the secondary side.

すると、この有機溶剤液体混合物中の分子量の低いもの
が気化し、上記の分mWを透過して二次側に移行する。
Then, those with low molecular weights in this organic solvent liquid mixture are vaporized, transmit the above amount of mW, and migrate to the secondary side.

この二次側に移行した気体を凝縮液化する。このように
して低分子量の有機溶剤液体と高分子量の有機溶剤液体
とが分離される。
The gas transferred to the secondary side is condensed and liquefied. In this way, the low molecular weight organic solvent liquid and the high molecular weight organic solvent liquid are separated.

なお、二次側の減圧度は、二次側に透過した溶剤蒸気の
凝縮温度によって二次側の圧力が大きく左右されるため
、実際の操作において最適圧変が定められるが、一般に
は、工業的に1〜500 mHt程度の範囲で減圧する
ことが好ましい。
The degree of pressure reduction on the secondary side is largely determined by the condensation temperature of the solvent vapor that has permeated into the secondary side, so the optimum pressure change is determined in actual operation, but in general, it is Generally, it is preferable to reduce the pressure in the range of about 1 to 500 mHt.

〔実施例〕〔Example〕

実施例を 前記一般式のnが50゛〜80のポリスルホン10重量
部をジメチμホyムアミド90道量部に溶解させたポリ
マー溶液を、ガラス板上に500μmの厚さで流延し、
80″Cで1時間乾燥後、ILOμmの均質透明な膜を
得た。
In an example, a polymer solution prepared by dissolving 10 parts by weight of polysulfone having the above general formula with n of 50° to 80 in 90 parts of dimethyl μformamide was cast onto a glass plate to a thickness of 500 μm.
After drying for 1 hour at 80″C, a homogeneous transparent film of ILO μm was obtained.

該喚を装着した浸透気化装置(有効模面積27、 Oe
x;’ )にテトラクロロエチレン/LL2−)ジクロ
ロ−L2.2−)リフルオロエタン(so/s。
A pervaporation device (effective simulated area 27, Oe
x;') with tetrachlorethylene/LL2-)dichloro-L2.2-)lifluoroethane (so/s.

重量比)混合液を供給し、透過側を1.0 mHfに減
圧吸引した。嘆を透過した蒸気を冷却凝縮させた後、透
過量と透過液成分を分析した。
(weight ratio) mixed solution was supplied, and the permeate side was vacuumed to 1.0 mHf. After cooling and condensing the vapor that passed through the filtrate, the amount of permeation and the components of the permeate were analyzed.

該嘆の透過速度はt46×10 t/−書式%式%()
) は2&5であった。このとき50重量%のテトラクロロ
エチレンを9&4重量%に濃縮分離°できた。
The permeation rate is t46×10 t/- format % formula %()
) were 2 & 5. At this time, 50% by weight of tetrachlorethylene could be concentrated and separated to 9&4% by weight.

実施例λ 実施例1と同じポリスyホン3重量部をジメチルホルム
アミド9フ重量部に溶解させたポリマー溶液を、ガラス
板上に500μmの厚さで流延し、80℃で1時間乾燥
後、cL5μmの均質透明な嘆を得た。
Example λ A polymer solution prepared by dissolving 3 parts by weight of the same polyyphon as in Example 1 in 9 parts by weight of dimethylformamide was cast onto a glass plate to a thickness of 500 μm, and after drying at 80° C. for 1 hour, A homogeneous transparent layer with a cL of 5 μm was obtained.

該嘆を用いて実施例1と同様に分離試験を行ったところ
、透過速度はt 6 X 10  t / 511”・
5ec(透過係数はλS X 1 G−” f−ex 
/ ag” ・sec )となり、分離係数は2&0で
あった。このとき150重量%のテトラクロロエチレン
を、9&3重量%に濃縮分離できた。
When a separation test was conducted in the same manner as in Example 1 using this solution, the permeation rate was t 6 × 10 t / 511”.
5ec (transmission coefficient is λS X 1 G-” f-ex
/ag”・sec), and the separation coefficient was 2&0. At this time, 150% by weight of tetrachlorethylene could be concentrated and separated to 9&3% by weight.

実施例五 実施例2と同じ嘆を用いて、実施例1と同じ浸透気化装
置にテトラクロロエチレン/ 1.1.2゜2−テトラ
クロロ−12−ジフルオロエタン(50/s o重量比
)混合液を供給し、実施例1と同様に分離試験を行った
。ところ、透過速度は11×10″″’ f /esi
 拳sec (透aimはz b x 1o −10t
−es /−・気)となシ、分離係数は、190であっ
た。このとき、50重量%のテトラクロロエチレンを9
50重量%に濃縮分離できた。
Example 5 Using the same specifications as in Example 2, a mixture of tetrachlorethylene/1.1.2°2-tetrachloro-12-difluoroethane (50/so weight ratio) was fed to the same pervaporation device as in Example 1. Then, a separation test was conducted in the same manner as in Example 1. However, the permeation rate is 11×10″″ f /esi
fist sec (transparent aim is z b x 1o -10t
The separation coefficient was 190. At this time, 50% by weight of tetrachlorethylene was added to 9
It was possible to concentrate and separate the product to 50% by weight.

実施例歳 実施例2と同じ膜を用いて、実施例1と同じ浸透気化装
置にテトラクロロエチレン/12−ジクロロ−tt2.
2−テトラフルオロエタン(50150重量比)混合液
を供給し、実施例1と同様に分離試験を行ったところ、
透過速度は4.Ox 10−6t /d @sec (
透過係数は2− OX 10−”f−ex / 51”
・sec )と唸り、分離係数は315であった。この
とき、50重量%のテトラクロロエチレンを97.0重
量Xに濃縮分離できた。
EXAMPLE Using the same membrane as in Example 2, tetrachlorethylene/12-dichloro-tt2.
When a 2-tetrafluoroethane (50,150 weight ratio) mixed solution was supplied and a separation test was conducted in the same manner as in Example 1,
The permeation rate is 4. Ox 10-6t /d @sec (
The transmission coefficient is 2-OX 10-"f-ex/51"
・sec) and the separation coefficient was 315. At this time, 50% by weight of tetrachlorethylene could be concentrated and separated to 97.0% by weight.

実施例i 実施例2と同じ嘆を用いて、実施例1と同じ浸透気化装
置に四塩化炭素/i、t2−トリクロロ−1,2,2−
)ジフルオロエタン(50150重量比)混合液を供給
し、実施例1と同様に分離試験を行ったところ、透過速
度は4.8X10  f/1−5ec(透過係数は2.
4 X 10−” f ・ex/lx’・5ec)とな
り、分離係数は21.4であった。このとき、50重量
%の四塩化炭素を9!L5重量%に濃縮分離できた。
Example i Carbon tetrachloride/i,t2-trichloro-1,2,2-
) Difluoroethane (50150 weight ratio) mixed liquid was supplied and a separation test was conducted in the same manner as in Example 1. The permeation rate was 4.8X10 f/1-5ec (permeation coefficient was 2.
4 x 10-''f.ex/lx'.5ec), and the separation coefficient was 21.4.At this time, 50% by weight of carbon tetrachloride could be concentrated and separated into 9!L5% by weight.

実施例& 実施例2と同じ嘆を用いて、実施例1と同じ浸透気化装
置にLLt2−テトラクロロエタン/ t、 1.2−
 )ジクロロ−1,2,2−)ジフルオロエタン(50
/so重量比)混合液を供給し、実施例1と同様に分離
試験を行ったところ、透過速度は& 3 X 10−’
 f /ex;’−5ee (透過係数は瓜2×10 
?・ex /aJ・気)となシ、分離係数は1S、7で
あった。このとき、50重量%の11゜1.2−テトラ
クロロエタンを940重量%に濃縮分離できた。
Example & Using the same specifications as Example 2, LLt2-tetrachloroethane/t, 1.2- in the same pervaporator as Example 1.
) dichloro-1,2,2-)difluoroethane (50
/so weight ratio) was supplied and a separation test was conducted in the same manner as in Example 1, and the permeation rate was &3
f /ex;'-5ee (transmission coefficient is 2×10
?・ex /aJ・ki) and the separation coefficient was 1S, 7. At this time, 50% by weight of 11°1.2-tetrachloroethane could be concentrated and separated to 940% by weight.

実施例1 実施例2と同じ嘆を用いて、実施例1と同じ浸透気化装
置にLt、2.2−テ)サクロロエタン/212−トリ
クロロ−1,2,2−)リフルオロエタン(50750
重量比)混合液を供給し、実施例1と同様に分離試験を
行ったところ、透過速度は& 2 X 10−’ ? 
151”・式(透過係数は五1X10  t−es/e
x”・sec )となり、分離係数は1五9であった。
Example 1 Lt,2,2-te)sachloroethane/212-trichloro-1,2,2-)lifluoroethane (50750
When the mixture (weight ratio) was supplied and a separation test was conducted in the same manner as in Example 1, the permeation rate was &2 x 10-'?
151”・Formula (transmission coefficient is 51×10 t-es/e
x”·sec), and the separation coefficient was 159.

このとき、50重量%のtl。At this time, tl of 50% by weight.

2.2−テトラクロロエタンを9S3重量%に濃縮分離
できた。
2.2-Tetrachloroethane could be concentrated and separated to 3% by weight of 9S.

実施例& 実施例2と同じ膜を用いて、実施例1と同じ浸透気化装
置に1.1.1− )リクロロエタン/1゜tl−トリ
クロロ−tl、2−)リフルオロエタン(50150重
量比)混合液を供給し、実施例1と同様に分離試験を行
ったところ、透過速度は?、7X 10−6f151+
2−5ec<透過係数は4.9×10−” f−国/i
・気)となり、分離係数はjOとなった。このとき、5
0重量%の1. i、 1−)リクロロエタンを9[L
O重量%Kl縮分唯できた。
Example & Using the same membrane as Example 2, 1.1.1-)lichloroethane/1°tl-trichloro-tl, 2-)lifluoroethane (50150 weight ratio) in the same pervaporation apparatus as Example 1. ) When the mixed solution was supplied and a separation test was conducted in the same manner as in Example 1, what was the permeation rate? , 7X 10-6f151+
2-5ec<transmission coefficient is 4.9×10-” f-country/i
・Ki), and the separation coefficient was jO. At this time, 5
0% by weight of 1. i, 1-) Lichloroethane to 9[L
Only 0 weight % Kl reduction was possible.

実施例j 実施例2と同じ嘆を用いて、実施例1と同じ浸透気化装
置にi、1.2−)リクロロエタン/′1゜tl−トリ
クロロ−1,z2− )リフルオロエタン(50150
重量比)混合液を供給し、実施例1と同様に分離試験を
行ったところ、透過速度は9、4 X 10″″6t1
5g2@5ec(透過係数はt7X10−10t −e
x / aw” ・式)となシ、分i係lf&ハ9.2
となった。このとき、50重量%のt 1.2− )リ
クロロエタンを9CL2重量%にIIk縮分離できた。
Example j Using the same specifications as in Example 2 and in the same pervaporation apparatus as in Example 1, i, 1.2-)lichloroethane/'1゜tl-trichloro-1,z2-)lifluoroethane (50150
When the mixed liquid (weight ratio) was supplied and a separation test was conducted in the same manner as in Example 1, the permeation rate was 9.4 x 10''''6t1
5g2@5ec (permeability coefficient is t7X10-10t -e
x / aw” ・Formula)tonashi, minute i section lf&ha 9.2
It became. At this time, 50% by weight of t1.2-)lichloroethane could be condensed and separated into 2% by weight of 9CL.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明法によれば炭化水素の塩素置換体
類と炭化水素のフッ素、塩素置換体類との液体混合物を
高濃度に4縮分離でき、かつ本発明法で用いる嘆は単位
面積当りの透過量が大きいため、本発明法は、分Ii1
!嘆モジュールのコンパクト化、分離プロセスの省エネ
ルギー化等に極めて有効である。
As described above, according to the method of the present invention, a liquid mixture of chlorine-substituted hydrocarbons and fluorine- and chlorine-substituted hydrocarbons can be separated by four condensations at a high concentration, and the concentration used in the method of the present invention is unit Since the amount of permeation per area is large, the method of the present invention
! This is extremely effective in making the separation module more compact and saving energy in the separation process.

Claims (2)

【特許請求の範囲】[Claims] (1)ポリスルホンからなる膜を用いて、有機溶剤液体
混合物を浸透気化分離することを特徴とする有機溶剤分
離法。
(1) An organic solvent separation method characterized by permeating and vaporizing an organic solvent liquid mixture using a membrane made of polysulfone.
(2)一般式 ▲数式、化学式、表等があります▼ で示されるポリスルホンからなる膜を用いる特許請求範
囲第1項記載の有機溶剤分離法。(3)有機溶剤液体混
合物が炭化水素の塩素置換体類と炭化水素のフッ素・塩
素置換体類との液体混合物である特許請求範囲第1項又
は第2項記載の有機溶剤分離法。
(2) An organic solvent separation method according to claim 1 using a membrane made of polysulfone represented by the general formula ▲ Numerical formula, chemical formula, table, etc. ▼. (3) The organic solvent separation method according to claim 1 or 2, wherein the organic solvent liquid mixture is a liquid mixture of chlorinated hydrocarbons and fluorine/chlorine substituted hydrocarbons.
JP10588A 1988-01-05 1988-01-05 Separation of organic solvent Pending JPH01176403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10588A JPH01176403A (en) 1988-01-05 1988-01-05 Separation of organic solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10588A JPH01176403A (en) 1988-01-05 1988-01-05 Separation of organic solvent

Publications (1)

Publication Number Publication Date
JPH01176403A true JPH01176403A (en) 1989-07-12

Family

ID=11464809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10588A Pending JPH01176403A (en) 1988-01-05 1988-01-05 Separation of organic solvent

Country Status (1)

Country Link
JP (1) JPH01176403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466469A2 (en) * 1990-07-11 1992-01-15 Exxon Research And Engineering Company Aromatics/saturates separation using membranes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466469A2 (en) * 1990-07-11 1992-01-15 Exxon Research And Engineering Company Aromatics/saturates separation using membranes

Similar Documents

Publication Publication Date Title
Wang et al. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations
CA2679444C (en) Liquid-phase and vapor-phase dehydration of organic/water solutions
Zhang et al. Pervaporation membranes
US4925562A (en) Pervaporation process and membrane
Iyer et al. Hydrocarbon separations by glassy polymer membranes
JPH0365214A (en) Gas separation method and membrane used therein
Kujawski et al. Dewatering of 2, 2, 3, 3-tetrafluoropropan-1-ol by hydrophilic pervaporation with poly (vinyl alcohol) based Pervap™ membranes
Sudhakar et al. Pervaporation separation of IPA‐water mixtures through 4A zeolite‐filled sodium alginate membranes
JP2841698B2 (en) Separation method of lower alcohol
JPH01176403A (en) Separation of organic solvent
JPH03284335A (en) Asymmetric separation membrane and separation by pervaporization
Syrtsova et al. Fluorinated hollow fiber membranes based on Matrimid 5218 and their application in the process of helium recovery from natural gas
Li et al. Dehydration of ethanol/water mixtures by pervaporation using soluble polyimide membranes
EP0778077A2 (en) New polymer membranes prepared from polysulfone and polyimide blends for the separation of industrial gas mixtures
Polotskaya et al. Pervaporation membranes based on imide‐containing poly (amic acid) and poly (phenylene oxide)
JPH022820A (en) Separation of mixed solution
JPS63143923A (en) Concentration of organic substance aqueous solution
JPH0338230A (en) Polyallylene sulfide film for separating gas
Xie et al. Dehydration of amines and diamines by pervaporation with ionomer and PVA-based membranes
JPS63209730A (en) Process for separating steam
US5292963A (en) Process for producing ether compound
JPH0459004B2 (en)
Meireles et al. Membranes for ethanol dehydration
JPH03284334A (en) Separation of lower alcohol
Pulyalina et al. Highly selective polybenzoxazinoneimide vs. its nonselective prepolymer in separation of water-ethanol mixture: Role of sorption parameters in pervaporation performance