JPH01176201A - Generation of oxygen - Google Patents

Generation of oxygen

Info

Publication number
JPH01176201A
JPH01176201A JP33530087A JP33530087A JPH01176201A JP H01176201 A JPH01176201 A JP H01176201A JP 33530087 A JP33530087 A JP 33530087A JP 33530087 A JP33530087 A JP 33530087A JP H01176201 A JPH01176201 A JP H01176201A
Authority
JP
Japan
Prior art keywords
container
cylindrical body
water
oxygen
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33530087A
Other languages
Japanese (ja)
Other versions
JPH0432002B2 (en
Inventor
Masu Tsugeno
告野 牟
Kozo Nagai
永易 弘三
Shinsuke Minamoto
伸介 源
Kazuhiko Sugiyama
和彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP33530087A priority Critical patent/JPH01176201A/en
Publication of JPH01176201A publication Critical patent/JPH01176201A/en
Publication of JPH0432002B2 publication Critical patent/JPH0432002B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable generation of O2 or suspension by placing a specific container on a right position or laying down sideways to bring an adduct of Na2 CO3.H2O2 into contact with a decomposing enzyme (catalyst) or non-contact. CONSTITUTION:A given amount of an adduct 6 of Na2CO3.H2O2 is placed in a cylinder 5, air washing water 8 is added to an air washing cylinder 10, the upper part of the cylinder 5 is set, a cover part 3 of a closed container 1 is opened and this set is placed in the container 1. Then a given amount of an enzyme (catalyst) and a given amount of water are added to the container 1 and the cover part 3 is closed to generate an O2 gas. Then the prepared O2 gas is optionally sucked in an O2 suction tool 14. Then when generation of O2 is optionally suspended, the container is laid down sideways to make the side 17 of the container 1 on the bottom. When generation of O2 is restarted, the bottom 16 of the container is laid down and the container 1 is placed in a correct position.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭酸ナトリウム・過酸化水素付加物(過炭酸
ソーダとも言う)を水中へ溶出させ、分解酵素または分
解触媒と接触させて酸素を発生させる酸素発生方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention involves eluting a sodium carbonate/hydrogen peroxide adduct (also referred to as soda percarbonate) into water and contacting it with a decomposition enzyme or a decomposition catalyst to release oxygen. This invention relates to a method for generating oxygen.

〔従来の技術〕[Conventional technology]

従来、酸素発生方法としては、酸素ボンベそのものを組
み込んだものや、液体酸素を使う方法と過酸化水素や炭
酸す) IJウム・過酸化水素付加物を二酸化マンガン
などの無機触媒と混合させて分解反応により酸素を発生
させる方法などが知られている。
Conventional oxygen generation methods include methods that incorporate oxygen cylinders themselves, methods that use liquid oxygen, and methods that mix hydrogen peroxide and hydrogen peroxide adducts with inorganic catalysts such as manganese dioxide to decompose them. A method of generating oxygen through a reaction is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、酸素ボンベを組み込んだものは、使い捨
て方式であるためコストが高くつき、また過酸化水素や
炭酸ナトリウム・過酸化水素付加物を無機触媒と混合し
て分解する構造のものは、−度反応が始まると、過酸化
水素のある間は反応が続き中断できないなどの不都合な
点がある。
However, those with built-in oxygen cylinders are expensive because they are disposable, and those with a structure that decomposes hydrogen peroxide or sodium carbonate/hydrogen peroxide adducts by mixing them with inorganic catalysts are difficult to use. Once the reaction begins, the reaction continues as long as hydrogen peroxide is present and cannot be interrupted.

本発明は上記の点を解決す・るためになされたもので、
密閉容器を横倒しすることで酸素発生を適宜中断し、密
閉容器を正位置にすることで酸素発生を再開することが
できる酸素発生方法の提供を目的とするものである。
The present invention has been made to solve the above points,
The object of the present invention is to provide an oxygen generation method in which oxygen generation can be appropriately interrupted by tipping the closed container sideways, and oxygen generation can be restarted by placing the closed container in the normal position.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の酸素発生方法を、図面を参照して説明すれば、
密閉容器1の上部に開口2を設け、この開口に着脱可能
な蓋部3を設け、この密閉容器内の端部に、周辺部およ
び底部に気体および液体が自由に通過できるように多孔
体4を設けた筒状体5を収納し、この筒状体内に炭酸ナ
トリウム・過酸化水素付加物6を収納し、筒状体を縦方
向の正位置に位置させて密閉容器内に所定量の水7を入
れた場合に、少なくとも筒状体5の一部が水7と接触し
、密閉容器を横倒しにすると筒状体5が水7と接触しな
いように筒状体を取り付け、密閉容器1を正位置にした
ときのみ、水中へ溶出した炭酸ナトリウム・過酸化水素
付加物と分解酵素または分解触媒とを接触させて、酸素
を発生させることからなっている。
The oxygen generation method of the present invention will be explained with reference to the drawings.
An opening 2 is provided in the upper part of the sealed container 1, a removable lid 3 is provided in this opening, and a porous body 4 is provided at the end of the sealed container so that gas and liquid can freely pass through the periphery and bottom. A cylindrical body 5 provided with this is housed, a sodium carbonate/hydrogen peroxide adduct 6 is housed in this cylindrical body, and a predetermined amount of water is poured into the airtight container by positioning the cylindrical body in the vertical position. Attach the cylindrical body so that at least a part of the cylindrical body 5 comes into contact with the water 7 when the cylindrical body 7 is put in the container, and the cylindrical body 5 does not come into contact with the water 7 when the closed container is turned sideways. Only when placed in the correct position, the sodium carbonate/hydrogen peroxide adduct eluted into water is brought into contact with a decomposition enzyme or a decomposition catalyst to generate oxygen.

過酸化水素を分解するための酵素としては、食品工業分
野で酵素剤として販売されているカタラーゼを用いる。
As an enzyme for decomposing hydrogen peroxide, catalase, which is sold as an enzyme agent in the food industry, is used.

カタラーゼは結晶化が容易で、肝臓、赤血球、細菌など
から結晶状に得られ、分子量約225.000の物質で
ある。
Catalase is easily crystallized, is obtained in crystal form from liver, red blood cells, bacteria, etc., and has a molecular weight of about 225,000.

カタラーゼの使用方法としては、(1)密閉容器内の水
に予め溶解させておく方法、(2)単純に紙、多孔質材
などへ付着させたものを筒状体内に収納する方法、(3
)各種の固定化法により固定した固定化酵素を筒状体内
に収納する方法などを挙げることができる。
Methods of using catalase include (1) dissolving it in water in a sealed container in advance, (2) simply attaching it to paper, porous material, etc. and storing it in a cylindrical body, (3)
) Examples include a method in which an immobilized enzyme fixed by various immobilization methods is housed in a cylindrical body.

上記のカタラーゼの固定化方法としては、+11共有結
合、イオン結合、物理的吸着、生化学的親和力などによ
り、不溶性の担体に固定化する担体結合法、(2)生体
触媒同士をグルタルアルデヒドのような多官能性試薬で
架橋する架橋法、(3)低分子化合物を重合あるいは会
合させるか、あるいは高分子化合物を可溶の状態から不
溶の状態に移すことによって生ずる高分子ゲル(格子型
)、マイクロカプセル、リポソームに包み込んだり、中
空繊維(ホローファイバ)、限外濾過膜に生体触媒を閉
じ込める包括法、(4)これら3方法を適宜組み合わせ
た複合法、が用いられる。
The above-mentioned methods for immobilizing catalase include the carrier binding method in which it is immobilized on an insoluble carrier by +11 covalent bond, ionic bond, physical adsorption, biochemical affinity, etc.; (3) a polymer gel (lattice type) produced by polymerizing or associating low-molecular compounds or transferring a polymer compound from a soluble state to an insoluble state; An entrapment method in which the biocatalyst is enclosed in microcapsules, liposomes, hollow fibers, or ultrafiltration membranes, and (4) a composite method in which these three methods are appropriately combined are used.

+1+の担体結合法における共有結合用の担体としては
、セルロース、アガロース、デキストラン、キチン、コ
ラーゲン、アミノ酸ポリマー、ポリスチレン、エチレン
−マレイン酸コポリマー、ポリアクリルアミド、ポリビ
ニルアルコール、ナイロン、4.6−ジクロロ−3−)
ジアゾニルイオン交換体、イオン交換樹脂、ガラスピー
ズ、ニッケルシリカアル゛ミナ、ジルコニア、セラミッ
クなどが用いられ、物理的吸着用の担体としては、砂(
アルキルアミノ化)、カーボン、活性炭、シリカゲル、
アルミナ、モレキエラーシープ、チタニア、ステンレス
スチール、リン酸カルシウムゲル、フェノキシアセチル
化物、キチン、アガロースゲル、セルロース、タンニン
、シリコンゴムなどが用いられ、イオン結合用担体とし
ては、アンバーライト(Amberlite) 、ダイ
アイオン(Diaion)、セファデックス(Seph
adex) sセルロースなどが用いられる。
Carriers for covalent bonding in the +1+ carrier bonding method include cellulose, agarose, dextran, chitin, collagen, amino acid polymer, polystyrene, ethylene-maleic acid copolymer, polyacrylamide, polyvinyl alcohol, nylon, 4,6-dichloro-3 −)
Diazonyl ion exchangers, ion exchange resins, glass beads, nickel silica alumina, zirconia, ceramics, etc. are used, and as carriers for physical adsorption, sand (
alkylaminated), carbon, activated carbon, silica gel,
Alumina, molecular sheep, titania, stainless steel, calcium phosphate gel, phenoxy acetylate, chitin, agarose gel, cellulose, tannin, silicone rubber, etc. are used, and as carriers for ion binding, Amberlite, Diaion are used. (Diaion), Sephadex (Seph)
adex) s cellulose, etc. are used.

(2)の架橋法における架橋剤としては、グルタルアル
デヒドのほか、マレインイミド誘導体、ハロゲン化アリ
ール、イソシアナート類、イミドエステル、クロロ−3
−1リアジン類、ヘキサメチレンジイソチオシアナート
、ビスジアゾベンジジンなどが用いられる。
In addition to glutaraldehyde, crosslinking agents used in the crosslinking method (2) include maleimide derivatives, aryl halides, isocyanates, imidoesters, chloro-3
-1 riazines, hexamethylene diisothiocyanate, bisdiazobenzidine, etc. are used.

(3)の包括法における格子型の包括用材料としては、
コラーゲン、フィブリン、アルブミン、カゼイン、セル
ロースファイバ、セルローストリアセテート、寒天、ア
ルギン酸カルシウム、カラギーナン、アガロース、ポリ
アクリルアミド、ポリ−2−ヒドロキシエチルメタクリ
ル酸、ポリビニルクロリド、γ−メチルポリグルタミン
酸、ポリスチレン、ポリビニルピロリドン、ポリジメチ
ルアクリルアミド、ポリウレタン、光架橋性樹脂などが
用いられ、マイクロカプセル用包括材料としては、コロ
ジオン、ナイロン、ポリスチレン、ポリウレア、エチル
セルロース、シリコン誘導体、フヱニルシロキサン、硝
酸セルロースなどが用いられ、リポソーム用包括材料と
しては、炭化水素、リン脂質などが用いられる。
As for the lattice-type inclusion material in the inclusion method (3),
Collagen, fibrin, albumin, casein, cellulose fiber, cellulose triacetate, agar, calcium alginate, carrageenan, agarose, polyacrylamide, poly-2-hydroxyethyl methacrylic acid, polyvinyl chloride, γ-methyl polyglutamic acid, polystyrene, polyvinylpyrrolidone, poly Dimethylacrylamide, polyurethane, photo-crosslinkable resins, etc. are used as enclosing materials for microcapsules, and collodion, nylon, polystyrene, polyurea, ethyl cellulose, silicone derivatives, phenylsiloxane, cellulose nitrate, etc. are used as enclosing materials for liposomes. Hydrocarbons, phospholipids, etc. are used as the material.

また分解触媒としては、(1)二酸化マンガン、(2)
鉄、銅、i艮、ニッケル、コバルト、マンガン、クロム
、鉛、バナジウム、タングステンなどの単独または化合
物が用いられる。
In addition, as a decomposition catalyst, (1) manganese dioxide, (2)
Iron, copper, iron, nickel, cobalt, manganese, chromium, lead, vanadium, tungsten, and the like may be used alone or in combination.

〔作用〕[Effect]

密閉容器1を正位置にすると、筒状体5内の炭酸ナトリ
ウム・過酸化水素付加物6が水7と接触して水中に徐々
に溶解し、予め水中に溶解または懸濁している分解酵素
もしくは分解触媒、または筒状体5内から水中に溶出ま
たは移行する分解酵素もしくは分解触媒と接触して、ま
たは筒状体内にある固定化酵素もしくは固定化分解触媒
と接触して酸素を発生する。
When the airtight container 1 is placed in the correct position, the sodium carbonate/hydrogen peroxide adduct 6 in the cylindrical body 5 comes into contact with the water 7 and gradually dissolves in the water, and the decomposing enzyme or Oxygen is generated by contacting with a decomposition catalyst, a decomposition enzyme or decomposition catalyst that is eluted or transferred from inside the cylindrical body 5 into water, or with an immobilized enzyme or immobilized decomposition catalyst within the cylindrical body.

この時の反応式はつぎの通りである。The reaction formula at this time is as follows.

NaxCOz’3/211zOt”NatCOs + 
3/21bO+ 3/40x  ↑(1+3/2LO□
→3/2HJ +3/40t  ↑      (3)
以下、本発明の構成を図面に基づいて説明する。
NaxCOz'3/211zOt"NatCOs +
3/21bO+ 3/40x ↑(1+3/2LO□
→3/2HJ +3/40t ↑ (3)
Hereinafter, the configuration of the present invention will be explained based on the drawings.

第1図〜第4図は本発明の方法を実施する装置の一例を
示している。1は密閉容器で、上部に開口2を有し、こ
の開口に着脱可能な蓋部(柱部)3を有している。蓋部
3は、ねじ込み、さし込み、はめ込みなどにより、密閉
できるものとする。
1 to 4 show an example of an apparatus for carrying out the method of the invention. Reference numeral 1 denotes a closed container, which has an opening 2 at the top and a lid (column) 3 that is detachable from the opening. The lid part 3 can be sealed tightly by screwing, inserting, fitting, etc.

密閉容器1内の端部に、周辺部および底部に気体および
液体が自由に通過できるように孔径0.O1〜31の網
材などの多孔体4を設けた筒状体5を収納し、この筒状
体内に炭酸ナトリウム・過酸化水素付加物6を収納する
。したがって、筒状体5を第3図に示すように、縦方向
の正位置に位置させて密閉容器1内に所定量の水7を入
れた場合に、少なくとも筒状体5の一部が水7と接触し
、密閉容器1を第4図に示すように横倒しにすると、筒
状体5が水7と接触しないようになっている。
The ends inside the closed container 1 are provided with a pore size of 0.5 mm to allow free passage of gas and liquid to the periphery and bottom. A cylindrical body 5 provided with a porous body 4 such as a mesh material of O1 to 31 is housed, and a sodium carbonate/hydrogen peroxide adduct 6 is housed in this cylindrical body. Therefore, as shown in FIG. 3, when a predetermined amount of water 7 is put into the closed container 1 with the cylindrical body 5 positioned in the correct position in the vertical direction, at least a part of the cylindrical body 5 is filled with water. When the closed container 1 is turned sideways as shown in FIG. 4, the cylindrical body 5 does not come into contact with the water 7.

水7中には、予め分解酵素を溶解させるか、または分解
触媒を懸濁もしくは溶解させているので、水中へ溶出し
た炭酸ナトリウム・過酸化水素付加物は、分解酵素また
は分解触媒と接触して、酸素を発生する。
Since the degrading enzyme or the decomposing catalyst is suspended or dissolved in water 7 in advance, the sodium carbonate/hydrogen peroxide adduct eluted into the water comes into contact with the degrading enzyme or the decomposing catalyst. , generates oxygen.

発生した酸素は、筒状体5上部の内部に設定している洗
気用水8を入れた洗気筒10の側面に筒状体5と同位置
に開口した導入管11へ流入し、導入管の下端のフィル
タからなる散気管12から流出して、洗気用水8により
洗浄された後、ホース13を通って酸素吸入具14へ送
られる。15は容器上面、16は容器底面、17は容器
側面、18は発生酸素ガス、20は開口部、22はネジ
、23はバッキングである。
The generated oxygen flows into the introduction pipe 11 opened at the same position as the cylinder 5 on the side of the washing cylinder 10 containing air washing water 8 set inside the upper part of the cylinder 5. The air flows out from the air diffuser 12 consisting of a filter at the lower end, is washed with air washing water 8, and is then sent to the oxygen inhaler 14 through the hose 13. 15 is a top surface of the container, 16 is a bottom surface of the container, 17 is a side surface of the container, 18 is a generated oxygen gas, 20 is an opening, 22 is a screw, and 23 is a backing.

つぎに第1図〜第4図に示す酸素発生器を用いて酸素を
発生させる操作の一例を説明する。まず蓋部3を開け、
洗気筒10および筒状体5を抜き出す、外部で筒状体5
内に所定量の炭酸ナトリウム・過酸化水素付加物6を入
れ、洗気筒10内に洗気用水8を入れ、筒状体5上部内
部にセットし、密閉容器1内にも所定量の水7を入れる
とともに、この水内に所定量の酵素水溶液または触媒を
添加する。ついで筒状体5を密閉容器1内にセットし、
蓋部3を閉める0発生した酸素ガスは、酸素吸入具14
から吸入される。
Next, an example of an operation for generating oxygen using the oxygen generator shown in FIGS. 1 to 4 will be explained. First, open the lid part 3,
The washing cylinder 10 and the cylindrical body 5 are extracted, and the cylindrical body 5 is removed from the outside.
Put a predetermined amount of sodium carbonate/hydrogen peroxide adduct 6 into the container, put air washing water 8 into the washing cylinder 10, set it inside the upper part of the cylindrical body 5, and put a predetermined amount of water 7 into the closed container 1. At the same time, a predetermined amount of enzyme aqueous solution or catalyst is added to this water. Next, the cylindrical body 5 is set in the airtight container 1,
Close the lid 3. The generated oxygen gas is transferred to the oxygen inhaler 14.
It is inhaled from

酸素発生を中断したいときは、第4図に示すように、容
器側面17が底になるように横倒しにする。酸素発生を
再開したいときは、再度、第3図に示すように、容器底
面16を下にする。反応が終了すると、内部の反応終了
液および洗気用水を廃棄する。
When it is desired to interrupt oxygen generation, as shown in FIG. 4, the container is placed sideways so that the side surface 17 is at the bottom. When it is desired to restart oxygen generation, turn the bottom surface 16 of the container downward again as shown in FIG. When the reaction is completed, the internal reaction completion liquid and air washing water are discarded.

ついで本発明の方法の他の例を第5図および第6図に基
づいて説明する。本例は、分解酵素または分解触媒を固
定物に付着または固定化して筒状体5内の下部に収納し
、筒状体5内の上部に炭酸ナトリウム・過酸化水素付加
物6を収納し、密閉容器1内の水には酵素または触媒を
添加しない場合である。
Next, another example of the method of the present invention will be explained based on FIGS. 5 and 6. In this example, a decomposition enzyme or a decomposition catalyst is attached or fixed to a fixed object and stored in the lower part of the cylindrical body 5, and a sodium carbonate/hydrogen peroxide adduct 6 is stored in the upper part of the cylindrical body 5. This is a case where no enzyme or catalyst is added to the water in the closed container 1.

したがって、密閉容器を第5図に示すように正位置にす
ると、炭酸ナトリウム・過酸化水素付加物および酵素ま
たは触媒が水7中に移行し、接触・反応して酸素を発生
する。21は固定化酵素または触媒である。
Therefore, when the closed container is placed in the correct position as shown in FIG. 5, the sodium carbonate/hydrogen peroxide adduct and the enzyme or catalyst migrate into the water 7 and come into contact and react to generate oxygen. 21 is an immobilized enzyme or catalyst.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

実施例1 水11に二酸化マンガン1gを懸濁させた1夜を、・第
4図に示す密閉容器に入れ、一方、粉粒状の炭酸ナトリ
ウム・過酸化水素付加物100gを網材を張った筒状体
内に入れて、密閉容器内にセットした。
Example 1 A suspension of 1 g of manganese dioxide in 11 water was placed in a sealed container as shown in Figure 4, while 100 g of powdered sodium carbonate/hydrogen peroxide adduct was placed in a tube lined with mesh material. It was placed in a sealed container.

密閉容器を第3図に示す正位置にすると、酸素が発生し
始めた0発生酸素量の経時変化は第7図の如くであった
When the airtight container was placed in the normal position shown in FIG. 3, oxygen began to be generated, and the amount of oxygen generated changed over time as shown in FIG.

実施例2 水11を第6図に示す密閉容器に入れ、一方、アクリル
アミド法により固定化したカタラーゼ固定化ゲル5gを
25aJの不織布に包み込んだものを筒状体の下部に収
納し、筒状体の上部の網材を張った部分に、粉粒状の炭
酸ナトリウム・過酸化水素付加物100gを収納して、
この筒状体を密閉容器内にセットした。密閉容器を第5
図に示す正位置にすると、酸素が発生し第6図に示すよ
うに横倒しするとガス発生が中断し、再度正位置にする
とガス発生が再開した0発生酸素量の経時変化は第8図
の如くであった。
Example 2 Water 11 was placed in the airtight container shown in FIG. Store 100g of granular sodium carbonate/hydrogen peroxide adduct in the upper part covered with mesh material,
This cylindrical body was set in a closed container. 5th sealed container
When placed in the correct position as shown in the figure, oxygen is generated, and when it is placed on its side as shown in Fig. 6, gas generation is interrupted, and when placed in the correct position again, gas generation resumes. 0 The change in the amount of generated oxygen over time is shown in Fig. 8. Met.

実施例3 水IEにカタラーゼ原液2tdを溶解させた水溶液を、
第4図に示す密閉容器に入れ、一方、粉粒状の炭酸ナト
リウム・過酸化水素付加物100gを網材を張った筒状
体に入れて、密閉容器内にセットした。密閉容器を第3
図に示す正位置にすると、酸素が発生し第4図に示すよ
うに横倒しするとガス発生が中断し、再度正位置にする
とガス発生が再開した。発生酸素量の経時変化は第8図
の如くであった。
Example 3 An aqueous solution in which 2td of catalase stock solution was dissolved in water IE,
The mixture was placed in a closed container shown in FIG. 4, and 100 g of powdered sodium carbonate/hydrogen peroxide adduct was placed in a cylindrical body covered with a mesh material and set in the closed container. Place a third airtight container
When the device was placed in the normal position shown in the figure, oxygen was generated, and when the device was turned sideways as shown in FIG. 4, gas generation was interrupted, and when the device was placed in the normal position again, gas generation resumed. The temporal change in the amount of oxygen generated was as shown in Figure 8.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように構成されているので、つぎのよう
な効果を有している。
Since the present invention is configured as described above, it has the following effects.

(11密閉容器を横倒しにすることで、酸素発生を適宜
中断することができ、密閉容器を正位置に戻すことで、
酸素発生を再開することができる。
(11 By turning the sealed container on its side, oxygen generation can be interrupted as appropriate, and by returning the sealed container to its normal position,
Oxygen generation can be resumed.

(2)正位置では、接液部に全く開閉部がない構造にす
ることができ、液もれのおそれがきわめて少なくなる。
(2) In the normal position, it is possible to have a structure in which there is no opening/closing part in the liquid contact part, and the risk of liquid leakage is extremely reduced.

(3)  酵素または分解触媒を水に予め溶解させてお
く方法と、酵素または分解触媒を筒状体内に収納してお
く方法との両方式を採用することができる。
(3) Both methods can be adopted, including a method in which the enzyme or decomposition catalyst is dissolved in water in advance, and a method in which the enzyme or decomposition catalyst is stored in a cylindrical body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の酸素発生方法を実施する酸素発生器の
一例を示す斜視図、第2図は同縦断面説明図、第3図は
分解酵素または分解触媒を水に懸濁または溶解した場合
の酸素発生器の反応時(正位置)の状態を示す斜視図、
第4図は酸素発生中断時(横倒し位置)を示す斜視図、
第5図は分解酵素または分解触媒を固定物に付着または
固定化して筒状体内の下部に収納した場合の酸素発生器
の反応時(正位置)の状態を示す斜視図、第6図は酸素
発生中断時(横倒し位置)を示す斜視図、第7図は実施
例1における発生酸素量の経時変化を示すグラフ、第8
図は実施例2.3における発生酸素量の経時変化を示す
グラフである。 1・・・密閉容器、2・・・開口、3・・・蓋部、4・
・・多孔体、5・・・筒状体、6・・・炭酸ナトリウム
・過酸化水素付加物、7・・・水、8・・・洗気用水、
1o・・・洗気筒、11・・・導入管、12・・・散気
管、13・・・ホース、14・・・酸素吸入具、15・
・・容器上面、16・・・容器底面、17・・・容器側
面、18・・・発生酸素ガス、20・・・開口部、21
・・・固定化酵素または触媒、22・・・ネジ、23・
・・パッキング 第4図 第7図 E+閉(ト) 第0図 角閉(ケ)
Fig. 1 is a perspective view showing an example of an oxygen generator for carrying out the oxygen generation method of the present invention, Fig. 2 is an explanatory longitudinal cross-sectional view of the same, and Fig. 3 is a diagram showing an example of an oxygen generator in which a decomposition enzyme or a decomposition catalyst is suspended or dissolved in water. A perspective view showing the state of the oxygen generator at the time of reaction (normal position),
Figure 4 is a perspective view showing when oxygen generation is interrupted (sideways position);
Figure 5 is a perspective view showing the state of the oxygen generator during reaction (in the normal position) when the degrading enzyme or decomposition catalyst is attached to or immobilized on a fixed object and stored in the lower part of the cylindrical body, and Figure 6 is the oxygen generator. FIG. 7 is a perspective view showing when generation is interrupted (sideways position); FIG. 7 is a graph showing changes over time in the amount of oxygen generated in Example 1; FIG.
The figure is a graph showing changes over time in the amount of oxygen generated in Example 2.3. 1... Airtight container, 2... Opening, 3... Lid, 4...
Porous body, 5 Cylindrical body, 6 Sodium carbonate/hydrogen peroxide adduct, 7 Water, 8 Air washing water,
1o... Washing cylinder, 11... Introduction pipe, 12... Diffusion pipe, 13... Hose, 14... Oxygen inhaler, 15...
... Container top surface, 16... Container bottom surface, 17... Container side surface, 18... Generated oxygen gas, 20... Opening, 21
...immobilized enzyme or catalyst, 22...screw, 23.
...Packing Fig. 4 Fig. 7 E + Closed (G) Fig. 0 Corner closed (Ke)

Claims (1)

【特許請求の範囲】[Claims] 1 密閉容器の上部に開口を設け、この開口に着脱可能
な蓋部を設け、この密閉容器内の端部に、周辺部および
底部に気体および液体が自由に通過できるように多孔体
を設けた筒状体を収納し、この筒状体内に炭酸ナトリウ
ム・過酸化水素付加物を収納し、筒状体を縦方向の正位
置に位置させて密閉容器内に所定量の水を入れた場合に
、少なくとも筒状体の一部が水と接触し、密閉容器を横
倒しにすると筒状体が水と接触しないように筒状体を取
り付け、密閉容器を正位置にしたときのみ、水中へ溶出
した炭酸ナトリウム・過酸化水素付加物と分解酵素また
は分解触媒とを接触させて、酸素を発生させることを特
徴とする酸素発生方法。
1 An opening is provided at the top of the sealed container, a removable lid is provided on this opening, and a porous body is provided at the end of the sealed container so that gas and liquid can freely pass through the periphery and bottom. When a cylindrical body is stored, a sodium carbonate/hydrogen peroxide adduct is stored in the cylindrical body, the cylindrical body is placed in the vertical position, and a predetermined amount of water is poured into the airtight container. , at least a part of the cylindrical body came into contact with water, and the cylindrical body was attached so that the cylindrical body would not come into contact with water when the closed container was turned sideways, and it was only eluted into the water when the closed container was placed in the upright position. An oxygen generation method characterized by bringing a sodium carbonate/hydrogen peroxide adduct into contact with a decomposition enzyme or a decomposition catalyst to generate oxygen.
JP33530087A 1987-12-30 1987-12-30 Generation of oxygen Granted JPH01176201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33530087A JPH01176201A (en) 1987-12-30 1987-12-30 Generation of oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33530087A JPH01176201A (en) 1987-12-30 1987-12-30 Generation of oxygen

Publications (2)

Publication Number Publication Date
JPH01176201A true JPH01176201A (en) 1989-07-12
JPH0432002B2 JPH0432002B2 (en) 1992-05-28

Family

ID=18286978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33530087A Granted JPH01176201A (en) 1987-12-30 1987-12-30 Generation of oxygen

Country Status (1)

Country Link
JP (1) JPH01176201A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788806A3 (en) * 1996-01-22 1998-04-22 Gertraud Canavate Riera Agent for releasing oxigen in an oxigen generator
JP2020033193A (en) * 2018-08-27 2020-03-05 衣枝 古内 Oxygen generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115792A (en) * 1976-03-26 1977-09-28 Nippon Peroxide Co Ltd Oxygen generator
JPS54142896A (en) * 1978-04-28 1979-11-07 Kimimichi Monma Portable oxygen generator
JPS6259503A (en) * 1985-09-06 1987-03-16 Shinji Ueno Method of generating oxygen gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115792A (en) * 1976-03-26 1977-09-28 Nippon Peroxide Co Ltd Oxygen generator
JPS54142896A (en) * 1978-04-28 1979-11-07 Kimimichi Monma Portable oxygen generator
JPS6259503A (en) * 1985-09-06 1987-03-16 Shinji Ueno Method of generating oxygen gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788806A3 (en) * 1996-01-22 1998-04-22 Gertraud Canavate Riera Agent for releasing oxigen in an oxigen generator
JP2020033193A (en) * 2018-08-27 2020-03-05 衣枝 古内 Oxygen generator

Also Published As

Publication number Publication date
JPH0432002B2 (en) 1992-05-28

Similar Documents

Publication Publication Date Title
US5792090A (en) Oxygen generating wound dressing
US4640778A (en) Fibrin gel-containing filter
JP4903583B2 (en) Portable personal dialysis dialysate regeneration system
US4826658A (en) Contact lens cleaning and disinfection
JP3454824B2 (en) Method for producing and storing a stable bicarbonate solution
ATE195891T1 (en) SORBENT AGENT AND PRODUCTION PROCESS THEREOF
JPH01176201A (en) Generation of oxygen
EP0085166B1 (en) A filter and a process for the preparation thereof
JPH01242076A (en) Oxygen generation
JPH0620543Y2 (en) Oxygen generator
JPH0310679A (en) Cell culture bag
JPH0370469B2 (en)
EP0354916B1 (en) Neutralization of heparin
JPS6287172A (en) Method for generating air for breathing
Song Immobilized carbonic anhydrase in a membrane lung for enhanced carbon dioxide removal
JPH01148269A (en) Selective hemoglobin adsorber
JPH0372309B2 (en)
JP2000154003A (en) Method for generating gas having sterilizing effect
JPH0310794U (en)
Chang Artificial Cells and Microcapsules: Comparision of Structural and Functional Differences
JPH0716038A (en) Oxygen generator
JPH02147217U (en)
JPS6424999U (en)
JPH0237796U (en)
JPH01170498U (en)