JPH01175611A - Controller with force control function - Google Patents

Controller with force control function

Info

Publication number
JPH01175611A
JPH01175611A JP33436587A JP33436587A JPH01175611A JP H01175611 A JPH01175611 A JP H01175611A JP 33436587 A JP33436587 A JP 33436587A JP 33436587 A JP33436587 A JP 33436587A JP H01175611 A JPH01175611 A JP H01175611A
Authority
JP
Japan
Prior art keywords
force
control
control mode
value
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33436587A
Other languages
Japanese (ja)
Inventor
Takabumi Tetsuya
鉄矢 高文
Kazuyoshi Sato
佐藤 和克
Takeshi Shiraishi
白石 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33436587A priority Critical patent/JPH01175611A/en
Publication of JPH01175611A publication Critical patent/JPH01175611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To attain the stable and precise chamfering of an NC processed material by controlling the absolute value of force which extends to a force sensor, for an increased quantity at the time of a force control mode so that it coincides with a force instruction value. CONSTITUTION:A switch 17 changes over a position control mode and the force control mode by an external control signal. In the case of the position control mode, a motor 2 is controlled so that the command value Xc of the position coincides with the feedback value Xf of the position. In the case of the force control mode, the motor 2 is controlled so that the output Ff of an operation part 19 coincides with the command value Fc of force, and a uniaxial module 1 is positioned and controlled. The operation part 19 of force calculates the absolute value of the force of a signal F from the force sensor 3 for the increased quantity from the position control mode. Thus, the absolute value for the increased quantity of force extending to the NC processor becomes constant event if an end mill presses the NC processed material in the direction different from that of an Z axis, and stable chamfering is attained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は力制御に関し、特に力の増加分の絶対値を制御
する力制御機能を有する制御装置である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to force control, and in particular to a control device having a force control function for controlling the absolute value of an increase in force.

従来の技術 近年、力制御機能を有する制御装置については、ロボッ
トの高機能化の傾向と共に多(の研究がなされてきた。
BACKGROUND OF THE INVENTION In recent years, a lot of research has been carried out on control devices having a force control function, along with the trend toward higher functionality of robots.

以下第3図及び第4図を参照しながら、従来の力制御機
能を有する制御装置の一例について説明する。
An example of a conventional control device having a force control function will be described below with reference to FIGS. 3 and 4.

第3図において、1は1方向に動作する1軸モジュール
、2は1@モジュールlを駆動するモータ、3は1幀モ
ジュール1にかかる力を検出する力センサ、4は力セン
サ3からの信号を処理する力制御演算部、5はモータ2
の位置決めをする位置決め制御部、6はモータ2の速度
を制御するモータ制御部、7は外部制御信号発生部、D
Oは外部in信号発生部7から発生する外部制御信号、
8は位置検出器である。
In Fig. 3, 1 is a 1-axis module that operates in one direction, 2 is a motor that drives 1 @ module l, 3 is a force sensor that detects the force applied to the 1-axis module 1, and 4 is a signal from the force sensor 3. 5 is the motor 2
6 is a motor control unit that controls the speed of the motor 2; 7 is an external control signal generation unit; D
O is an external control signal generated from the external in signal generator 7;
8 is a position detector.

第4図において、9はモータ2のトルクを制御する電流
制御部、10のKbは速度誤差増幅ゲイン、11は微分
器、12は第1の減算器、13のK aは位置誤差増幅
ゲイン、14は第2の減算器、15のKfは力の誤差値
△Fを位置誤差値へ×に変換するコンプライアンス定数
、16は第3の減算器、17は外部制御信号Doによっ
て位置制御モードか力制御モードかを切り換える切り換
え器、18は力センサ3が検出した力FのZ軸方向成分
を取り出す演算部である。また、Fcは力指令値、Ff
は帰還してきた力の帰還値、Xcは位置指令値、Xsは
切り換え器17によって決まる位置指令値、Xfは位置
帰還値、Vcは速度指令値、Vfは速度帰還値、△Vは
速度誤差値、FzはZ軸方向の力の帰還値である。
In FIG. 4, 9 is a current control unit that controls the torque of the motor 2, 10 Kb is a speed error amplification gain, 11 is a differentiator, 12 is a first subtractor, 13 is Ka a position error amplification gain, 14 is a second subtractor, 15 Kf is a compliance constant that converts the force error value ΔF into a position error value A switch 18 for switching the control mode is a calculation unit that extracts the Z-axis direction component of the force F detected by the force sensor 3. In addition, Fc is the force command value, Ff
is the feedback value of the returned force, Xc is the position command value, Xs is the position command value determined by the switch 17, Xf is the position feedback value, Vc is the speed command value, Vf is the speed feedback value, △V is the speed error value , Fz is the feedback value of the force in the Z-axis direction.

第3図において外部制御信号発生部7の出力である外部
III御信号Doが0の場合には制御系は位置制御モー
ドになり、外部制御信号Doが1である場合は力制御モ
ードになる。位置制御モードにおいては位置決め制御部
5の位置指令値Xcと位置検出器8からの位置帰還値X
fとから演算を行い演算結果の指令値をモータ制御部6
に送る。
In FIG. 3, when the external III control signal Do, which is the output of the external control signal generator 7, is 0, the control system is in the position control mode, and when the external control signal Do is 1, the control system is in the force control mode. In the position control mode, the position command value Xc of the positioning control section 5 and the position feedback value X from the position detector 8
A calculation is performed from f and the command value of the calculation result is sent to the motor control unit 6.
send to

モータ制御部6では位置決め制御部5からの速度指令に
一致するようにモータ2を動かせ、位置指令値Xcに一
致するところで、1軸モジュール1を位置決めする。次
に、力制御モードの場合には、力制御演算部4の力指令
値Fcと力の帰還値Ffとから演算を行い位置指令値X
sを位置指令値として位置決め制御部5に送る。以下は
位置制御モードの場合と同じであり、1軸モジュール1
は力の指令値Fcに一致した力が力センサ3から検出さ
れるまで移動する。
The motor control unit 6 moves the motor 2 so as to match the speed command from the positioning control unit 5, and positions the single-axis module 1 when the speed command matches the position command value Xc. Next, in the case of force control mode, a calculation is performed from the force command value Fc of the force control calculation unit 4 and the force feedback value Ff, and the position command value
s is sent to the positioning control section 5 as a position command value. The following is the same as in the position control mode, 1-axis module 1
moves until the force sensor 3 detects a force that matches the force command value Fc.

詳細な説明については、第4図を使いながら説明する。A detailed explanation will be given using FIG. 4.

位置制御モードにおいては位置指令値Xcは切り換え器
17の出力Xsと等しくなり、第2の減算器14は位置
指令値Xsと位置の帰還値Xfとの差を計算し位置誤差
値△Xとして出力し、位置誤差値△Xは13で位置誤差
増幅ゲインKaを掛けて速度指令値Vcになる。第1の
減算器12では速度指令値Vcと速度の帰還値Vfとの
差を取り速度誤差値△Vを計算して10で速度誤差増幅
ゲインK bを掛けて電流制御部9に指令として送る。
In the position control mode, the position command value Xc is equal to the output Xs of the switch 17, and the second subtracter 14 calculates the difference between the position command value Xs and the position feedback value Xf and outputs it as a position error value ΔX. However, the position error value ΔX is multiplied by the position error amplification gain Ka by 13 to become the speed command value Vc. The first subtracter 12 takes the difference between the speed command value Vc and the speed feedback value Vf, calculates a speed error value ΔV, multiplies it by a speed error amplification gain Kb by 10, and sends it to the current controller 9 as a command. .

電流制御部9においてはその指令に一致するようにモー
タ2に電流を流しモータを駆動する。
The current control unit 9 applies current to the motor 2 to drive the motor in accordance with the command.

位置検出器8からは位置の帰還値Xfが検出される。ま
た、微分器11では位置の帰還値Xfを微分して速度帰
還値Vfを作る。以上のように位置決めモードでは位置
指令値Xcに一致するようにモータを位置決めする。
The position detector 8 detects a position feedback value Xf. Further, the differentiator 11 differentiates the position feedback value Xf to generate a velocity feedback value Vf. As described above, in the positioning mode, the motor is positioned to match the position command value Xc.

次に、力制御モードでは、力指令値Fcと力帰還値Ff
とを第3の減算器16に入力しその差をとり力誤差値Δ
Fを計算し、15でその値にコンプライアンス定数Kf
を掛けて位置指令値Xsを作る。以下については位置制
御モードと同じ動作である。演算部18では力帰還値F
のZ軸方向の力Fzを計算する。第1式がその計算方法
である。
Next, in the force control mode, the force command value Fc and the force feedback value Ff
is input to the third subtractor 16 and the difference is taken to obtain the force error value Δ
Calculate F and apply the compliance constant Kf to that value in 15.
Multiply by to create the position command value Xs. The following operations are the same as in position control mode. The calculation unit 18 calculates the force feedback value F.
Calculate the force Fz in the Z-axis direction. The first formula is the calculation method.

Fz=Fzn−Fzo     (1)但し、Fznは
力の帰還値のF現在値のZ軸方向の力であり、Fzoは
外部制御信号Doが、0から1に変わる前の、即ち位置
制御モードの時の力の帰還値FのZ軸方向の力である。
Fz=Fzn-Fzo (1) However, Fzn is the force in the Z-axis direction of the current force feedback value F, and Fzo is the force before the external control signal Do changes from 0 to 1, that is, in the position control mode. This is the force in the Z-axis direction of the feedback value F of the force at the time.

よって、力制御モードにおいては、力の指令値Fcに一
致するような力が力センサ3のZ軸方向に働(ように1
軸モジュール1を制御する。
Therefore, in the force control mode, a force that matches the force command value Fc acts in the Z-axis direction of the force sensor 3 (like 1
Controls the axis module 1.

第2図に示すのは、力制御機能を有する制御装置の応用
例で、23は力の制御装置である。NC加工物20の面
取りを行うためにロボット21の先端にエンドミル22
を付けている。力制御装置23は外部制御信号Doによ
って、位置制御モードから力制御モードに切り換わり、
エンドミル22にかかる力を一定にするように1軸モジ
ュール1を制御する。
What is shown in FIG. 2 is an application example of a control device having a force control function, where 23 is a force control device. An end mill 22 is installed at the tip of the robot 21 to chamfer the NC workpiece 20.
is attached. The force control device 23 switches from the position control mode to the force control mode in response to the external control signal Do.
The uniaxial module 1 is controlled so that the force applied to the end mill 22 is constant.

発明が解決しようとする問題点 しかしながら、上記のような構成では、NC加工物にか
かる力を一定にする場合に、力Fの方向がZ軸方向と一
致すればよいが、NC加工物にかかる力Fの方向がZ軸
方向と違う場合にはZ軸方向の力は一定にできるが、N
C加工物にかかる力を一定にできないという欠点があり
、安定で高精度のNC加工物の面取りが出来ないという
問題点を有していた。
Problems to be Solved by the Invention However, in the above configuration, when the force applied to the NC workpiece is kept constant, it is sufficient that the direction of the force F coincides with the Z-axis direction, but the direction of the force F applied to the NC workpiece is If the direction of force F is different from the Z-axis direction, the force in the Z-axis direction can be kept constant, but N
This method has the disadvantage that the force applied to the C-processed workpiece cannot be made constant, and it is not possible to chamfer the NC-processed workpiece stably and with high precision.

本発明は、上記問題点に鑑み、力制御モードにおいて、
力の帰還値として力の増加量の絶対値を取り力センサに
かかる力を制御する力制御機能を有する制御装置を提供
することを目的とするもの上記目的を達成するために本
発明の力制御機能を有する制御装置は、一方向に動作す
る1軸モジュールと、前記1軸モジュールを駆動するモ
ータと、前記1軸モジュールにかかる力を検出する為の
力センサと、前記力センサからの信号を処理する力制御
演算部と、前記力制御演算部からの指令に基づいて位置
決めをする位置決め制御部と、前記位置決め制御部の指
令に基づいて前記モータを制御するモータ制御部とを覚
えた力制御機能を有する制御装置において、前記力制御
演算部が外部からの信号によって位置制御モードと力制
御モードを切り換え、力制御モード時には前記力センサ
にかかる力の増加分の絶対値を力指令値に一致させるよ
うに制御を行うように構成したことを特徴とする力制御
機能を有する制御装置を特徴とする。
In view of the above problems, the present invention provides, in force control mode,
An object of the present invention is to provide a control device having a force control function that takes the absolute value of an increase in force as a force feedback value and controls the force applied to a force sensor. The functional control device includes a one-axis module that operates in one direction, a motor that drives the one-axis module, a force sensor that detects the force applied to the one-axis module, and a signal from the force sensor. A force control unit that includes a force control calculation unit that performs processing, a positioning control unit that performs positioning based on commands from the force control calculation unit, and a motor control unit that controls the motor based on commands from the positioning control unit. In the control device having this function, the force control calculation section switches between a position control mode and a force control mode based on an external signal, and when in the force control mode, the absolute value of the increase in the force applied to the force sensor matches the force command value. A control device having a force control function is characterized in that the control device is configured to perform control so as to cause the force to be controlled.

作   用 本発明は上記した構成によって、外部からの信号に基づ
き位置制御と力制御を切り換え、力制御の時には力セン
サにかかる力の増加分の絶対値が力指令値に一致するよ
うに制御を行うことによって、1軸モジュールにかかる
力のZ軸方向を制御できるので、従来の力制御機能を有
する制御装置が持っていたZ軸方向に一致しない方向の
力は一定に制御できないという欠点を直すことができる
Effect: With the above-described configuration, the present invention switches between position control and force control based on an external signal, and during force control, controls so that the absolute value of the increase in force applied to the force sensor matches the force command value. By doing this, it is possible to control the force applied to the single-axis module in the Z-axis direction, which solves the drawback that conventional control devices with force control functions cannot consistently control forces in directions that do not match the Z-axis direction. be able to.

実施例 以下本発明の一実施例の力制御機能を有する制御装置に
ついて、第1図及び第2図を参照しながら説明する。な
お、全体の構成は、従来の力制御機能を有する制御装置
(第3図)の構成図と同じである。本実施例が従来と異
なる点は第1図に示すように力センサ3によって検出し
た力Fを用いて力の増加分の絶対値を求める演算部19
を備えていることである。
EXAMPLE Hereinafter, a control device having a force control function according to an example of the present invention will be described with reference to FIGS. 1 and 2. Note that the overall configuration is the same as the configuration diagram of a conventional control device (FIG. 3) having a force control function. This embodiment is different from the conventional one as shown in FIG. 1, as shown in FIG.
It is important to have the following.

本実施例の動作については従来例の動作とほぼ同じであ
り、外部制御信号DOによって位置制御モードと力制御
モードとに分かれ、切り換え器17により位置制御モー
ドと力制御モードとを切り換える。外部制御信号DOが
Oの場合には位置制御モードで有り、位置の指令値Xc
に位置の帰還値Xfが一致するようにモータを制御する
。外部制御信号Doが1の場合には力制御モードであり
力の指令値Fcに演算部19の出力Ffが一致するよう
に制御する。力の演算部19においては第2式の計算に
示す様に力センサ3からの信号Fの位置制御時からの力
の増加分の絶対値を計算している。
The operation of this embodiment is almost the same as that of the conventional example, and is divided into a position control mode and a force control mode by an external control signal DO, and a switch 17 switches between the position control mode and force control mode. When the external control signal DO is O, it is the position control mode, and the position command value Xc
The motor is controlled so that the feedback value Xf of the position coincides with the positional feedback value Xf. When the external control signal Do is 1, it is the force control mode, and control is performed so that the output Ff of the calculation unit 19 matches the force command value Fc. The force calculation section 19 calculates the absolute value of the increase in force of the signal F from the force sensor 3 from the time of position control, as shown in the calculation of the second equation.

Ff =lFn−Fo l     (2)但し、Fn
は力の帰還値の現在値であり、FOは外部制御信号Do
が0から1に変わる前の、即ち位置制御モードの時の力
の帰還値である。よって力の指令値Fcに力の演算部1
9の出力Ffが一致するようにモータ2を制御する。即
ち、外部制御信号Doによって力制御モードになった時
は位置制御モード時の力の帰還値FOから現在の力Fn
の絶対値での増加値が力の指令値Fcに一致するように
モータ2を制御し1軸モジュール1を位置決めする。
Ff =lFn-Fol (2) However, Fn
is the current value of the force feedback value, and FO is the external control signal Do
This is the feedback value of the force before it changes from 0 to 1, that is, in the position control mode. Therefore, the force calculation unit 1 is calculated as the force command value Fc.
The motor 2 is controlled so that the outputs Ff of the motors 9 and 9 coincide with each other. That is, when the force control mode is entered by the external control signal Do, the current force Fn is calculated from the force feedback value FO during the position control mode.
The motor 2 is controlled so that the increase in the absolute value of Fc matches the force command value Fc, and the one-axis module 1 is positioned.

さて、第2図に示す応用例においては従来例の所で説明
したように、外部制御信号DOが1のときには力制御モ
ードであり位置決めモードでの力の帰還値Foから現在
の力の帰還値Fnの絶対値での増加値が力の指令値Fc
に一致するようにモータを制御し、1軸モジュール1を
移動させる。これにより、エンドミル22がNC加工物
20をZ軸方向とは異なる方向に押してもNC加工物2
0にかかる力の増加分の絶対値は一定になり安定な面取
りができる。
Now, in the application example shown in FIG. 2, as explained in the conventional example, when the external control signal DO is 1, it is the force control mode, and the current force feedback value is calculated from the force feedback value Fo in the positioning mode. The increase in the absolute value of Fn is the force command value Fc
The motor is controlled to match the 1-axis module 1, and the 1-axis module 1 is moved. As a result, even if the end mill 22 pushes the NC workpiece 20 in a direction different from the Z-axis direction, the NC workpiece 2
The absolute value of the increase in force applied to zero becomes constant, allowing stable chamfering.

以上のように本実施例によれば、力制御モード時に力の
帰還値を演算する演算部を設けることにより、力の増加
分の絶対値を制御できるようにし、従来の制御装置が持
っていたエンドミルによるNC加工物への押し付は方向
とZ軸方向とが異なる場合に起こる安定で高精度のNC
加工物の面取りが出来ないという欠点を補うことができ
る。
As described above, according to this embodiment, by providing a calculation unit that calculates the feedback value of force during the force control mode, it is possible to control the absolute value of the increase in force, which is different from the conventional control device. Stable and high-precision NC occurs when the direction of pressing the NC workpiece with an end mill is different from the Z-axis direction.
This can compensate for the drawback of not being able to chamfer the workpiece.

なお、本実施例においては、外部制御信号り。In this embodiment, an external control signal is used.

は0のとき位置制御モードで、1のとき力制御モードで
あったが、DoがOのときに力制御モードでDoが1の
ときに位置制御モードであってもよい。
When Do is 0, it is the position control mode, and when it is 1, it is the force control mode, but when Do is O, it is the force control mode, and when Do is 1, it is the position control mode.

発明の効果 以上のように本発明は、力制御モード時には力センサに
かかる力の増加分の絶対値が力指令値に一致するように
制御を行うことができるので、従来の制御装置が持って
いたエンドミルによるNC加工物への押し付は方向とZ
軸方向とが異なる場合に起こる安定で高精度のNC加工
物の面取りが出来ないという欠点を補うことができ、そ
の効果は大なるものがある。
Effects of the Invention As described above, the present invention is capable of performing control so that the absolute value of the increase in force applied to the force sensor matches the force command value in the force control mode, and therefore has advantages that conventional control devices do not have. The pressing of the NC workpiece by the end mill is based on the direction and Z.
This method can compensate for the drawback that stable and highly accurate chamfering of NC workpieces cannot be performed when the axial directions are different, and the effect is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は具体的な
応用例の構成図、第3図は従来の力制御機能を有する制
御装置の構成図、第4図はその具体的な構成図である。 1・・・・・・1軸モジュール、2・・・・・・モータ
、3・・・・・・力センサ、4・・・・・・力制御演算
部、5・・・・・・位置決め制御部、6・・・・・・モ
ータ制御部、17・・・・・・切り換え器、19・・・
・・・力の絶対値演算部。
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a block diagram of a specific application example, Fig. 3 is a block diagram of a conventional control device having a force control function, and Fig. 4 is a specific diagram of the control device. This is a typical configuration diagram. 1...1 axis module, 2...motor, 3...force sensor, 4...force control calculation section, 5...positioning Control unit, 6...Motor control unit, 17...Switcher, 19...
...Force absolute value calculation section.

Claims (1)

【特許請求の範囲】[Claims] 一方向に動作する1軸モジュールと、前記1軸モジュー
ルを駆動するモータと、前記1軸モジュールにかかる力
を検出する為の力センサと、前記力センサからの信号を
処理する力制御演算部と、前記力制御演算部からの指令
に基づいて位置決めをする位置決め制御部と、前記位置
決め制御部の指令に基づいて前記モータを制御するモー
タ制御部とを備えた力制御機能を有する制御装置におい
て、前記力制御演算部が外部からの信号によって位置制
御モードと力制御モードを切り換え、力制御モード時に
は前記力センサにかかる力の増加分の絶対値を力指令値
に一致させるように制御を行うように構成したことを特
徴とする力制御機能を有する制御装置。
a 1-axis module that operates in one direction; a motor that drives the 1-axis module; a force sensor that detects the force applied to the 1-axis module; and a force control calculation unit that processes signals from the force sensor. , a control device having a force control function, including a positioning control unit that performs positioning based on a command from the force control calculation unit, and a motor control unit that controls the motor based on a command from the positioning control unit, The force control calculation section switches between a position control mode and a force control mode in response to an external signal, and in the force control mode performs control so that the absolute value of the increase in the force applied to the force sensor matches the force command value. 1. A control device having a force control function, characterized in that the control device is configured to have a force control function.
JP33436587A 1987-12-29 1987-12-29 Controller with force control function Pending JPH01175611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33436587A JPH01175611A (en) 1987-12-29 1987-12-29 Controller with force control function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33436587A JPH01175611A (en) 1987-12-29 1987-12-29 Controller with force control function

Publications (1)

Publication Number Publication Date
JPH01175611A true JPH01175611A (en) 1989-07-12

Family

ID=18276559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33436587A Pending JPH01175611A (en) 1987-12-29 1987-12-29 Controller with force control function

Country Status (1)

Country Link
JP (1) JPH01175611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6412640B1 (en) 1999-03-12 2002-07-02 L'oreal Make-up compact comprising at least two products of different types
JP2002307336A (en) * 2001-04-17 2002-10-23 Keio Gijuku Master and slave device, control method and computer program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6412640B1 (en) 1999-03-12 2002-07-02 L'oreal Make-up compact comprising at least two products of different types
JP2002307336A (en) * 2001-04-17 2002-10-23 Keio Gijuku Master and slave device, control method and computer program

Similar Documents

Publication Publication Date Title
EP0159131B1 (en) Drive system for a movable apparatus
KR20010041353A (en) Synchronization controller
JPH02290187A (en) Synchronous control and device therefor
US5231335A (en) Double spindle synchronous driving apparatus
JPH01175611A (en) Controller with force control function
JPH03123907A (en) Direct teaching device and method of robot
JPH0639760A (en) Control device for robot
JPH0424198B2 (en)
JP3483675B2 (en) Position teaching method using soft floating function
JPH05318283A (en) Tool deflection correcting system
JPH03142159A (en) Push pressure control type grinding device
JPH05150836A (en) Robot controller
JP2922617B2 (en) Designation method of pressing force direction in force control robot
JP2682977B2 (en) Robot control method and device
JPH0719180B2 (en) Feed axis position control method
JP2003084839A (en) Motor controller with function of overshoot suppression
JP2581192B2 (en) Master / slave / manipulator controller
JPH0513793B2 (en)
JPH0430942A (en) Control device for position and force of multi-degree-of-freedom working machine
Lee et al. Robust tracking controller design for high-speed machining
JPS61208513A (en) Controller of traveling object
JPH05150837A (en) Robot c0ntroller
JPH03213286A (en) Force control system for robot
JPS6315111B2 (en)
JP3199769B2 (en) Servo control device