JPH01174260A - Linear pulse motor - Google Patents

Linear pulse motor

Info

Publication number
JPH01174260A
JPH01174260A JP21377287A JP21377287A JPH01174260A JP H01174260 A JPH01174260 A JP H01174260A JP 21377287 A JP21377287 A JP 21377287A JP 21377287 A JP21377287 A JP 21377287A JP H01174260 A JPH01174260 A JP H01174260A
Authority
JP
Japan
Prior art keywords
magnetic pole
pulse motor
linear pulse
primary
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21377287A
Other languages
Japanese (ja)
Inventor
Yuichi Moriki
森木 優一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21377287A priority Critical patent/JPH01174260A/en
Publication of JPH01174260A publication Critical patent/JPH01174260A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To obtain a compact and lightweight pulse motor at a low cost by constructing the motor with mainly a primary side electromagnetic force generating section 1 constituted of primary side magnetic poles, windings and a permanent magnet, a secondary side magnetic pole and sliding devices. CONSTITUTION:A cylindrical linear pulse motor is mainly constituted of a primary side electromagnetic force generation section 1 constituted of primary side magnetic poles 3a-3b, windings 2a-2b and a permanent magnet, a secondary side magnetic pole 20 and sliding devices 30a-30b. The secondary side magnetic pole 20 is so disposed on the periphery of the primary side electromagnetic force generation section 1 that each of them forms a coaxial cylinder through sliding devices 30a-30b and movable shafts 35a-35b. Primary side magnetic poles 3a-3b and movable shafts 35a-35b are constituted of a heat pipe 50. The heat pipe 50 provides specified windings 2a-2b on the primary side magnetic poles 3a-3b, and the primary side electromagnetic force generation section 1 is constituted by placing the permanent magnet 4 between the primary side magnetic poles 3a and 3b. Accordingly, an atmosphere and a space of the installation location are not restricted.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、一次側起磁力発生部及び二次側磁極よシ発生
する銅損及び鉄損等による熱をヒートパイプを介して放
熱することを特徴としたリニアパルスモータに関するも
のである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is directed to dissipating heat due to copper loss, iron loss, etc. generated from the primary side magnetomotive force generating part and the secondary side magnetic pole through a heat pipe. This article relates to a linear pulse motor with special features.

〔発明の利用分野〕[Field of application of the invention]

リニアパルスモータとは、電気的パルス入力に対して、
そのパルス数に対応したステップ量で歩進直線運動を可
能としたリニアアクチュエータであり、ヒートパイプと
は、蒸発部(熱吸収部)、凝縮部(熱放出部)及び毛細
管構造部(熱伝導部)より構成されたコンテナの内部に
毛細管構造体と作動液を封入したものであり、被放熱体
或いは被冷却体の温度を自由に制御することを可能とし
た熱伝達素子である。
A linear pulse motor is a motor that responds to electrical pulse input.
It is a linear actuator that enables stepwise linear motion with a step amount corresponding to the number of pulses.A heat pipe is composed of an evaporation section (heat absorption section), a condensation section (heat release section), and a capillary structure section (heat conduction section). ) A capillary structure and a working fluid are sealed inside a container, and it is a heat transfer element that makes it possible to freely control the temperature of a heat radiating object or a cooling object.

本発明のリニアパルスモータは、従来のリニアパルスモ
ータと同様に電気信号による速度制御及び位置決め制御
等を高精度に行うことが可能であシ、更に設置場所の通
風及びリニアパルスモータ本体の発熱が近接する他の装
置或いは部品等に与える悪影響を考慮せずに、密封され
た場所、閉鎖された場所或いは熱を嫌う場所等への設置
が可能となると共にリニアパルスモータ本体の温度上昇
による各種特性の低下を抑制するので、高精度を要する
微少変位の制御や頻繁な速度制御等を必要とするプリン
ター及びフロッピー装置等のコンピュータ端末機器、工
作機械、電気加工機器及び各種流体制御弁等の可動部の
駆動源として利用されるものである。
The linear pulse motor of the present invention can perform speed control, positioning control, etc. with high precision using electric signals as with conventional linear pulse motors, and also reduces ventilation in the installation location and heat generation in the linear pulse motor main body. It is possible to install the linear pulse motor in a sealed place, a closed place, or a place that dislikes heat without considering the adverse effects on other devices or parts in the vicinity, and various characteristics due to temperature rise of the linear pulse motor body This suppresses the decrease in the speed of moving parts such as computer terminal equipment such as printers and floppy devices, machine tools, electrical processing equipment, and various fluid control valves that require minute displacement control and frequent speed control that require high precision. It is used as a driving source.

〔発明の技術的背影〕[Technical background of the invention]

一般にリニアパルスモータを含むリニアアクチュエータ
及び電気回転機は、その運転に伴い巻線の銅損及び磁極
の鉄損等によシ熱を発生する。銅損とは巻線のジュール
熱であり、鉄損Wiは第1式に示すように磁極を形成す
る磁性材料のヒステリシス損許と渦電流拠−とにより構
成され、ヒステリシス損靜は第2式に示すように周波数
fに比例すると共に磁束密度Bの二乗に比例し、渦電流
損Weは第6式に示すように周波数fと磁束密度Bの二
乗に比例する。
In general, linear actuators and electric rotating machines including linear pulse motors generate heat due to copper loss in windings, iron loss in magnetic poles, etc. during operation. Copper loss is the Joule heat of the winding, iron loss Wi is composed of the hysteresis loss of the magnetic material forming the magnetic pole and eddy current base as shown in the first equation, and the hysteresis loss is as shown in the second equation. The eddy current loss We is proportional to the frequency f and the square of the magnetic flux density B, as shown in Equation 6, and the eddy current loss We is proportional to the frequency f and the square of the magnetic flux density B, as shown in Equation 6.

W i =W h +W e          (1
)Wh=Kh−f−B        (2)We−K
e・(d−f−B)2     (3)Wi:鉄損  
     [W/kg)Wh:ヒステリシス損  (W
/吻〕 We:渦電流損     〔W/kLi〕f :周波数
      〔H2〕 B :磁束密度     〔T〕 d :磁性材料の厚さ  〔箪〕 Kh:磁性材料の材質及び厚さによる定数Ke:磁性材
料の材質及び厚さによる定数通常リニアパルスモータは
、他のリニアアクチュエータ及び一般の電気回転機に比
して高周波数及び高磁束密度にて運転されるため極めて
大きな鉄損を有するものである。
W i =W h +W e (1
)Wh=Kh-f-B (2)We-K
e・(d−f−B)2 (3) Wi: Iron loss
[W/kg)Wh: Hysteresis loss (W
/proboscis] We: Eddy current loss [W/kLi] f: Frequency [H2] B: Magnetic flux density [T] d: Thickness of magnetic material [Kan] Kh: Constant depending on the material and thickness of magnetic material Ke: Magnetism Constants Depends on the Material and Thickness Normally, linear pulse motors have extremely large core losses because they operate at higher frequencies and higher magnetic flux densities than other linear actuators and general electric rotating machines.

一般にリニアアクチュエータ及び電気回転機等は、外部
からの湿気の浸入を防ぐため銅損及び鉄損の損失による
発熱により常に乾燥状態におくことが必要であるが、必
要以上の温度上昇は電気絶縁物の劣化を促進し、焼損事
故を来たすものである。リニアパルスモータにおいても
同様に適度な温度上昇は必要であるが、前述のように鉄
損が極めて大きいため発熱量が大きく、更に高磁束密度
運転を必要とするため巻線の巻回数が多くなり必然的に
巻線の外径が細くなると共に巻線が長くなり、銅損が増
加し発熱量がより大きくなる。
In general, linear actuators and electric rotating machines need to be kept dry at all times to prevent moisture from entering from the outside due to the heat generated by copper loss and iron loss. This accelerates the deterioration of the product and causes burnout accidents. Similarly, a linear pulse motor requires a moderate temperature rise, but as mentioned above, the core loss is extremely large, so the amount of heat generated is large, and the number of turns of the winding is increased because it requires high magnetic flux density operation. Inevitably, as the outer diameter of the winding becomes thinner, the winding becomes longer, copper loss increases, and the amount of heat generated becomes larger.

尚、高速での定電流駆動のような駆動方法によっては著
しい発熱量の増加が現われる。
Note that, depending on the driving method such as constant current driving at high speed, a significant increase in heat generation appears.

特に第4図に示すような一次側起磁力発生部(1)の周
囲に二次側磁極(イ)を各々が同軸円筒状になるように
配置した、リニアパルスモータにおいては巻線(2a)
、(2b)の銅損及び一次側磁極(3a)、(6b)の
鉄損による熱の放出が困難である。
In particular, in a linear pulse motor in which the secondary magnetic poles (A) are arranged in a coaxial cylindrical shape around the primary magnetomotive force generating part (1) as shown in Fig. 4, the winding (2a)
, (2b) and the iron loss of the primary magnetic poles (3a) and (6b) make it difficult to release heat.

一般にリニアパルスモータの推力は巻線温度の上昇に従
い低下し、低速運転時には推力の低下がより顕著に現わ
れる。
Generally, the thrust of a linear pulse motor decreases as the winding temperature increases, and the decrease in thrust becomes more noticeable during low-speed operation.

前述のようにリニアパルスモータは必然的に高温度の状
態で運転せねばならず、電気絶縁材料の高級化及び装置
の大型大重量化を来たすものである。
As mentioned above, linear pulse motors must necessarily be operated at high temperatures, leading to higher quality electrical insulating materials and larger and heavier equipment.

第1図に従来のリニアパルスモータを示す。巻線(2a
)、(2b)、一次側磁極(3a)、(3b)及び永久
磁石(4)により構成される一次側起磁力発生部(1)
、二次側磁極(イ)、摺動装置(30a)、(30b)
、側板(25aX25b)は各々が同軸円筒状に構成さ
れ、一次側磁極(6a)(3b)と二次側磁極(20と
の一定の間隙Gを隔て対面する円筒面にはそれぞれ所定
数の凸状をなす磁極歯(5a)、(5b)、(6a)、
(6b)%(21)が列設される。一次側起磁力発生部
(1)と二次側磁極(イ)とは摺動装置(30a)(3
0b)を介して一定の間隙Gを保持し軸方向に相対直進
運動をし得る構造を有するものである。
FIG. 1 shows a conventional linear pulse motor. Winding wire (2a
), (2b), primary side magnetomotive force generating section (1) composed of primary side magnetic poles (3a), (3b) and permanent magnet (4)
, secondary magnetic pole (a), sliding device (30a), (30b)
, the side plates (25aX25b) are each formed into a coaxial cylindrical shape, and a predetermined number of protrusions are formed on the cylindrical surfaces of the primary magnetic poles (6a) (3b) and the secondary magnetic poles (20) facing each other with a certain gap G between them. magnetic pole teeth (5a), (5b), (6a),
(6b)%(21) are arranged in a row. The primary side magnetomotive force generating part (1) and the secondary side magnetic pole (a) are the sliding device (30a) (3
0b), it has a structure that maintains a constant gap G and allows relative rectilinear movement in the axial direction.

第2図に示すように二次側磁極(イ)の軸方向にピッチ
で列設された磁極歯Qυに対して一次側磁極・:コ(6
a)、(5b)を構成する磁極歯(5a)、(5b)、
(6a)、(6b)は、磁極歯(5a)を基準とすると
磁極歯(5b)は/2)磁極歯(6a)と磁極歯(6b
)とはそれぞれ逆方向に9Lずれた状態に配置される。
As shown in Fig. 2, the primary magnetic pole (:co) (6
a), (5b) constitute magnetic pole teeth (5a), (5b),
(6a) and (6b) are based on the magnetic pole tooth (5a), and the magnetic pole tooth (5b) is /2).
) are respectively arranged in a state shifted by 9L in the opposite direction.

即ち一次側磁極(5a)、(3b)の有する磁極歯(5
a)、(5b)と磁極歯(6a)、(6b)とは、磁極
歯Cυに対してずれの無い状態とt72ずれた状態に、
°或いは各々逆方向に7−/4ずれた状態に配置される
。点線で示す永久磁石(4)の磁束軸に対し、巻線(2
b)に所定の方向の電流を流すと実線で示す磁束Φiが
発生する。磁極歯(21)と磁極歯(6b)間の磁束Φ
mと磁束Φiは打ち消し合い、磁極歯(21)と磁極歯
(6a)間に一次側磁極(5b)或いは一次側起磁力発
生部(1)を矢印Aの方向に或いは二次側磁極(イ)を
矢印Bの方向に74移動させる力が発生する。移動が完
了すると磁極歯(2flに対し磁極歯(5a)、(5b
)が″”/4ずれた状態となり、巻線(2a)に電流を
流すことにより一次側起磁力発生部(1)或いは二次側
磁極(イ)を所定の方向にマ4移動させる。
That is, the magnetic pole teeth (5
a), (5b) and the magnetic pole teeth (6a), (6b) are in a state where there is no deviation from the magnetic pole tooth Cυ and a state where it is deviated by t72,
or 7-/4 degrees offset in opposite directions. The winding (2) is connected to the magnetic flux axis of the permanent magnet (4) shown by the dotted line.
When a current is passed in a predetermined direction through b), a magnetic flux Φi shown by a solid line is generated. Magnetic flux Φ between magnetic pole tooth (21) and magnetic pole tooth (6b)
m and the magnetic flux Φi cancel each other out, and the primary magnetic pole (5b) or the primary magnetomotive force generator (1) is moved in the direction of arrow A or the secondary magnetic pole (i.e. ) is generated 74 times in the direction of arrow B. When the movement is completed, the magnetic pole teeth (5a), (5b
) is shifted by ``''/4, and by passing current through the winding (2a), the primary side magnetomotive force generating section (1) or the secondary side magnetic pole (A) is moved in a predetermined direction.

以上二相リニアパルスモータの1相励磁方式について記
したが、多相リニアパルスモータにおいても同様に構成
されるものであシ、2相励磁方式或いは1−2相励磁方
式等の他の励磁方式においても原理的には同様なもので
ある。
Although the one-phase excitation method of a two-phase linear pulse motor has been described above, a multi-phase linear pulse motor can also be configured in the same way.Other excitation methods such as a two-phase excitation method or a 1-2 phase excitation method The principle is the same in both cases.

ヒートパイプとは、周知のように熱伝導性の優れた熱伝
達素子であり、作動液の種類により絶対零度より250
0〔℃〕程度の広範囲にわたる温度の伝達を可能とする
ものである。第6図によりその動作を説明すると、ヒー
トパイプとはコンテナGυの内部に毛細管構造体りと少
量の作動液6jを入れ、真空に引いてから密封したもの
であり、コンテナl51)の一端(蒸発部(54) )
を加熱するとコンテナ6υ内の作動液(53)が蒸発し
、発生した蒸気651は冷えた他端(凝縮部56) )
へ矢印C方向に移動し凝縮して液体に戻り、更に作動液
(53)は毛細管構造体(5の内を毛細管現象により蒸
発部54)に移動する。即ち作動液153)を媒体とし
た熱伝達素子である。
As is well known, a heat pipe is a heat transfer element with excellent thermal conductivity, and depending on the type of working fluid, the heat pipe can be heated up to 250 degrees below absolute zero.
It is possible to transmit temperature over a wide range of about 0 [°C]. To explain its operation with reference to FIG. 6, a heat pipe is a container Gυ with a capillary structure and a small amount of working fluid 6j placed inside, evacuated, and then sealed. Part (54) )
When heated, the working fluid (53) in the container 6υ evaporates, and the generated steam 651 is transferred to the other end (condensing section 56) which has cooled down.
The working fluid (53) moves in the direction of arrow C, condenses and returns to liquid, and further moves to the evaporation section 54 within the capillary structure (5) by capillary action. That is, it is a heat transfer element using the working fluid 153) as a medium.

〔発明の目的〕[Purpose of the invention]

本発明は、リニアパルスモータを運転することにより銅
損及び鉄損による巻線や磁極の温度上昇に伴う推力の低
下、各種電気絶縁材料の高級化、各磁極間距離の変動及
び摺動装置の不安定化等を防止することにより装置の小
型軽量化、低コスト化及び推力特性の安定化を可能とし
、設置場所の通風等の雰囲気を選ばず、狭い空間或いは
密閉された場所への設置を可能としたリニアパルスモー
タを提供することを目的とするものである。
The present invention is capable of reducing the thrust force due to increases in temperature of windings and magnetic poles due to copper loss and iron loss, increasing the quality of various electrical insulating materials, changing the distance between each magnetic pole, and reducing the sliding device by operating a linear pulse motor. By preventing instability, etc., it is possible to reduce the size and weight of the device, reduce costs, and stabilize the thrust characteristics, making it possible to install it in narrow spaces or closed places regardless of the ventilation or atmosphere of the installation location. The purpose of this invention is to provide a linear pulse motor that can

〔発明の概要〕[Summary of the invention]

本発明は、前記目的を達成するだめのものであり、一次
側磁極、巻線及び永久磁石よりなる一次側起磁力発生部
、二次側磁極及び摺動装置を主として構成された、一次
側起磁力発生部の銅損と鉄損及び二次側磁極の鉄損等に
より発生する熱をヒートパイプを介して放熱することを
特徴としたリニアパルスモータである。
The present invention is intended to achieve the above object, and is directed to a primary magnetomotive force generating section comprising a primary magnetic pole, a winding, and a permanent magnet, a secondary magnetic pole, and a sliding device. This linear pulse motor is characterized by dissipating heat generated by copper loss and iron loss in the magnetic force generating section, iron loss in the secondary magnetic pole, etc. through a heat pipe.

〔発明の実施例〕[Embodiments of the invention]

本発明によるリニアパルスモータを第4図〜第6図に示
す実施例において説明する。
The linear pulse motor according to the present invention will be explained in the embodiment shown in FIGS. 4 to 6.

第4図は、一次側磁極(3a)、(6b)、巻線(2a
)、(2b)及び永久磁石(4)よりなる一次側起磁力
発生部(1)、二次側磁極(イ)及び摺動装置(30a
)、 (30b)を主として構成したところの、一次側
起磁力発生部(1)の周囲に二次側磁極■を摺動装置(
30a)、(30b)と可動軸(35a)、(35b)
を介して各々が同軸円筒状になるように配置した。一次
側磁極(3a)、 (3b)とOI動軸(35a)、(
35b)とをヒートパイプ50)にて構成した円筒型リ
ニアパルスモータを示すものである。一次側磁極(6a
)、(5b)はヒートパイプ印の蒸発部(54a)(5
4b)としてコンテナ61)と一体に形成される。コン
テナ6υは透磁率μが大きく、保磁力Heが小さく、電
気抵抗が大きな金属によシ構成され、一次側磁極(3a
)、(3b)及び毛細管構造体(52と作動液部を収納
する空間を加工した後に金属の磁気特性の改良を目的と
した所定の温度での焼鈍を行い形成される。ヒートパイ
プは、前記コンテナ6υの内部に毛細管構造体52と作
動液531を入れ、真空に引いてから両端を密封し、摺
動装置(30a)、(30b)との摺動部にクロムメツ
キ、ポーラスクロムメツキ或いは低温スパッタリングに
て耐摩耗性の金属被膜を設は形成され、一次側磁極(3
a)、(3b)に所定の巻線(2a)、(2b)を設け
、一次側磁極(6a)と一次側磁極(3b)間に永久磁
石(4)を配置することにより一次側起磁力発生部(1
)(t:i構成する。
Figure 4 shows the primary magnetic poles (3a), (6b) and the winding (2a).
), (2b) and a primary side magnetomotive force generating part (1) consisting of a permanent magnet (4), a secondary side magnetic pole (a) and a sliding device (30a
), (30b), a sliding device (
30a), (30b) and movable shafts (35a), (35b)
They were arranged so that they each formed a coaxial cylindrical shape. Primary side magnetic poles (3a), (3b) and OI moving shaft (35a), (
35b) and a heat pipe 50) are shown. Primary magnetic pole (6a
), (5b) are the evaporation parts (54a) and (5) marked with heat pipes.
4b) is formed integrally with the container 61). The container 6υ is made of metal with a large magnetic permeability μ, a small coercive force He, and a large electric resistance, and has a primary magnetic pole (3a
), (3b) and the capillary structure (52) and the space for accommodating the working fluid part are processed and then annealed at a predetermined temperature for the purpose of improving the magnetic properties of the metal.The heat pipe is formed by The capillary structure 52 and the working fluid 531 are placed inside the container 6υ, and after the vacuum is drawn, both ends are sealed, and the sliding parts with the sliding devices (30a) and (30b) are coated with chrome plating, porous chrome plating, or low-temperature sputtering. A wear-resistant metal coating is formed on the primary magnetic pole (3
By providing predetermined windings (2a) and (2b) in a) and (3b) and arranging a permanent magnet (4) between the primary magnetic pole (6a) and the primary magnetic pole (3b), the primary magnetomotive force can be increased. Generating part (1
) (t: i configure.

第5図は、内部に一次側磁極(6a)部或いは一次側磁
極(6b)部を各々別個に放熱或いは冷却する目的を有
する毛細管構造体(52a)、(52b)と作動液(5
3a )、(53b)を収納したところのコンテナ61
)の−部を可動軸(35a)、 (35b)となし得る
構造を有するヒートパイプの蒸発部(54a)、 (5
4b)に一次側磁極(3a)、(3b)、永久磁石(4
)及び巻線(2a)、(2b)を挿入或いは配置し固着
した一次側起磁力発生部(1)を示すものである。一次
側磁極(3a)、 (3b)は、前述の磁気的及び電気
的特性を有する金属にて各々一体に構成されるか、けい
素鋼板或いは磁極用鋼板等を積層して構成される。
FIG. 5 shows a capillary structure (52a), (52b) and a working fluid (52b) each having the purpose of dissipating or cooling the primary magnetic pole (6a) or primary magnetic pole (6b) separately.
Container 61 where 3a) and (53b) are stored
evaporation part (54a) of a heat pipe (54a), (5
4b), the primary side magnetic poles (3a), (3b), and the permanent magnet (4b).
) and windings (2a) and (2b) are inserted or arranged and fixed to the primary side magnetomotive force generating part (1). The primary magnetic poles (3a) and (3b) are each integrally formed of a metal having the above-mentioned magnetic and electrical characteristics, or are formed by laminating silicon steel plates, magnetic pole steel plates, or the like.

第6図は、第1図に示した円筒型リニアパルスモータの
二次側磁極(イ)をヒトパイプにて構成したものを示す
ものである。
FIG. 6 shows a secondary magnetic pole (a) of the cylindrical linear pulse motor shown in FIG. 1 made of a human pipe.

第4図〜第6図に示したリニアパルスモータは、円筒型
の形状を有するものに対する実施例であり平板型の形状
を有するリニアパルスモータ等に対しても利用し得るも
のであり、リニアパルスモータの形状、ヒートパイプの
形状或いはヒートパイプの凝縮部の表面積を広くする形
状等により多くの形態を取り得るものである。
The linear pulse motors shown in FIGS. 4 to 6 are examples of those having a cylindrical shape, and can also be used for linear pulse motors having a flat plate shape. It can take many forms depending on the shape of the motor, the shape of the heat pipe, the shape that increases the surface area of the condensing part of the heat pipe, etc.

〔発明の効果〕〔Effect of the invention〕

本発明のリニアパルスモータは、一次側起磁力発生部の
銅損と鉄損及び二次側磁極の鉄損等によシ発生する熱を
ヒートパイプを介して放熱させるものであり、下記のよ
うな効果を有するものである。
The linear pulse motor of the present invention radiates heat generated by copper loss and iron loss in the primary side magnetomotive force generating section and iron loss in the secondary side magnetic pole through a heat pipe, as described below. It has a great effect.

(1)  ’)ニアパルスモータの一次側起磁力発生部
を構成する巻線に所定のパルス電流を通電することによ
り発生するジュール熱を速やかに放熱すること、或いは
巻線を冷却することができ、より大きな推力を発生させ
ることが可能である。
(1) ') Joule heat generated by passing a predetermined pulse current through the windings constituting the primary side magnetomotive force generating part of a near-pulse motor can be quickly dissipated or the windings can be cooled. , it is possible to generate a larger thrust.

(2)温度変動を抑制することが容易となり、それに伴
い推力変動を防止する。
(2) Temperature fluctuations can be easily suppressed, thereby preventing thrust fluctuations.

(3)温度上昇による推力減少の防止が可能となり、そ
れに伴いリニアパルスモータの小型軽量化及び構成材料
のコスト低減化を計ることが可能となる。
(3) It becomes possible to prevent a reduction in thrust due to temperature rise, and accordingly it becomes possible to reduce the size and weight of the linear pulse motor and the cost of the constituent materials.

(4)リニアパルスモータを構成する各種絶縁物の温度
に対する絶縁段階を下げることが可能となり絶縁材料の
コストが下がる。
(4) It is possible to lower the insulation level of various insulators constituting the linear pulse motor with respect to temperature, and the cost of insulating materials is reduced.

(5)  近辺に設置される他の装置(特に電子回路を
有する装置)に熱的障害−(熱による絶縁劣化及び電子
部品の加熱に伴う熱雑音の発生等)を与えることがない
(5) There will be no thermal damage (deterioration of insulation due to heat, generation of thermal noise due to heating of electronic components, etc.) to other devices installed nearby (particularly devices with electronic circuits).

(6)  一般KIJニアパルスモークは、各種装置の
動部の駆動源として使用されるもので、設置スペースの
制約等により、小型軽量が望まれると共に通風の無い閉
鎖された場所への設置が望まれるものである。本発明の
リニアパルスモータは、ヒートパイプの凝縮部56) 
(放熱部或いは冷却部)のみを開放された場所に設置す
るか冷却することによりリニアパルスモータ本体の放熱
或いは冷却が可能となり、設置場所の雰囲気及び設置ス
ペース等の制約を受けない。
(6) General KIJ Near Pulse Smoke is used as a drive source for the moving parts of various devices, and due to installation space constraints, it is desired to be small and lightweight, and it is also desirable to install it in a closed place without ventilation. It is something that can be done. The linear pulse motor of the present invention has a heat pipe condensing section 56).
By installing or cooling only the heat radiating section or the cooling section in an open place, the linear pulse motor main body can be radiated or cooled, and is not subject to restrictions such as the atmosphere of the installation location and the installation space.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のリニアパルスモータの斜視断面図。 第2図は第1図に示すリニアパルスモータの動作原理説
明図。 第5図はヒートパイプの動作説明図。 第4図〜第6図は本発明のリニアパルスモータの実施例
による構造説明図。
FIG. 1 is a perspective sectional view of a conventional linear pulse motor. FIG. 2 is an explanatory diagram of the operating principle of the linear pulse motor shown in FIG. 1. FIG. 5 is an explanatory diagram of the operation of the heat pipe. 4 to 6 are structural explanatory diagrams according to embodiments of the linear pulse motor of the present invention.

Claims (7)

【特許請求の範囲】[Claims] (1)一次側磁極、巻線及び永久磁石よりなる一次側起
磁力発生部、二次側磁極及び摺動装置を主として構成さ
れた、一次側磁極と二次側磁極との一定の間隙を隔て対
面する部分に各々所定数の凸状をなす磁極歯を列設し、
所定の軸方向に相対直進運動を行うところの一次側起磁
力発生部の銅損及び一次側磁極と二次側磁極の鉄損等に
より発生する熱をヒートパイプを介して放熱することを
特徴としたリニアパルスモータ。
(1) Mainly composed of a primary magnetic pole, a primary magnetomotive force generating section consisting of a winding and a permanent magnet, a secondary magnetic pole, and a sliding device, with a fixed gap between the primary magnetic pole and the secondary magnetic pole. A predetermined number of convex magnetic pole teeth are arranged in rows on each facing part,
It is characterized by dissipating heat generated by copper loss in the primary side magnetomotive force generation part and iron loss between the primary side magnetic pole and the secondary side magnetic pole, etc., through a heat pipe when relative linear motion is performed in a predetermined axial direction. linear pulse motor.
(2)特許請求の範囲第1項記載のリニアパルスモータ
において、一次側磁極或いは二次側磁極をヒートパイプ
にて形成したことを特徴としたリニアパルスモータ。
(2) A linear pulse motor according to claim 1, wherein the primary magnetic pole or the secondary magnetic pole is formed of a heat pipe.
(3)特許請求の範囲第1項記載のリニアパルスモータ
において、一次側磁極或いは二次側磁極の一部をヒート
パイプで形成したことを特徴としたリニアパルスモータ
(3) A linear pulse motor according to claim 1, wherein a part of the primary magnetic pole or the secondary magnetic pole is formed by a heat pipe.
(4)特許請求の範囲第1項記載のリニアパルスモータ
において、一次側磁極或いは二次側磁極を板状ヒートパ
イプと各種磁性材料とを積層して形成したことを特徴と
したリニアパルスモータ。
(4) A linear pulse motor according to claim 1, wherein the primary magnetic pole or the secondary magnetic pole is formed by laminating a plate-shaped heat pipe and various magnetic materials.
(5)特許請求の範囲第1項記載のリニアパルスモータ
において、一次側磁極或いは二次側磁極の所定の位置に
ヒートパイプを密着挿入した構造を有することを特徴と
したリニアパルスモータ。
(5) A linear pulse motor according to claim 1, characterized in that the linear pulse motor has a structure in which a heat pipe is closely inserted into a predetermined position of the primary magnetic pole or the secondary magnetic pole.
(6)特許請求の範囲第1項記載のリニアパルスモータ
において、一次側磁極或いは二次側磁極を構成する所定
の面にヒートパイプを密着固定した構造を有することを
特徴としたリニアパルスモータ。
(6) A linear pulse motor according to claim 1, characterized in that the linear pulse motor has a structure in which a heat pipe is closely fixed to a predetermined surface constituting a primary magnetic pole or a secondary magnetic pole.
(7)特許請求の範囲第1項記載のリニアパルスモータ
において、特許請求の範囲第2項、第3項、第4項、第
5項或いは第6項に記載したヒートパイプの設置構造等
を各々組み合わせたことを特徴としたリニアパルスモー
タ。
(7) In the linear pulse motor set forth in claim 1, the heat pipe installation structure, etc. set forth in claim 2, 3, 4, 5, or 6 is provided. A linear pulse motor characterized by a combination of each.
JP21377287A 1987-08-27 1987-08-27 Linear pulse motor Pending JPH01174260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21377287A JPH01174260A (en) 1987-08-27 1987-08-27 Linear pulse motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21377287A JPH01174260A (en) 1987-08-27 1987-08-27 Linear pulse motor

Publications (1)

Publication Number Publication Date
JPH01174260A true JPH01174260A (en) 1989-07-10

Family

ID=16644780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21377287A Pending JPH01174260A (en) 1987-08-27 1987-08-27 Linear pulse motor

Country Status (1)

Country Link
JP (1) JPH01174260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU90222B1 (en) * 1998-03-11 1999-09-13 Wurth Paul Lift drive for use in the iron and steel industry

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU90222B1 (en) * 1998-03-11 1999-09-13 Wurth Paul Lift drive for use in the iron and steel industry
WO1999046849A1 (en) * 1998-03-11 1999-09-16 Paul Wurth S.A. Hoisting drive for use in the iron and steel industry
US6445094B1 (en) 1998-03-11 2002-09-03 Paul Wurth S.A. Hoisting drive for use in the iron and steel industry

Similar Documents

Publication Publication Date Title
KR102225323B1 (en) Electric machine
JP6653011B2 (en) Axial gap type rotary electric machine
US4605874A (en) Brushless D.C. dynamoelectric machine having ferrite material magnetic circuit
US11683919B2 (en) Conformal heat pipe assemblies
AU2004302757A1 (en) Efficient high-speed electric device using low-loss materials
US7176593B2 (en) Actuator coil cooling system
JP2010537376A (en) Induction heating method and apparatus for metal billet
Jang et al. Design and analysis of helical motion permanent magnet motor with cylindrical Halbach array
US20220111504A1 (en) Linear electric machine
JP2006518180A (en) Expansion core for motor / generator
Luo et al. Analysis and design of ironless toroidal winding of tubular linear voice coil motor for minimum copper loss
JP2023541629A (en) Electric machines with enhanced electromagnetic interaction
JPH01174260A (en) Linear pulse motor
WO2013105214A1 (en) Linear motor
JPS63196016A (en) Superconducting coil
KR102056132B1 (en) Rotor assembly and superconducting generator having the same
CN107800264B (en) Linear transverse flux motor
US4908592A (en) Electromagnetic actuating device
JPH11243677A (en) Coaxial linear motor
US20150288229A1 (en) Electric motor with improved inductance and method for winding and interconnecting coils
US6927506B2 (en) Low loss reciprocating electromagnetic device
Bianchi et al. Tubular linear motors: A comparison of brushless PM and SR motors
JP4706350B2 (en) Inductor type motor
JPS62217852A (en) Linear motor
JPH1169754A (en) Movable permanent magnet dc linear motor