JPH0117415B2 - - Google Patents

Info

Publication number
JPH0117415B2
JPH0117415B2 JP54026570A JP2657079A JPH0117415B2 JP H0117415 B2 JPH0117415 B2 JP H0117415B2 JP 54026570 A JP54026570 A JP 54026570A JP 2657079 A JP2657079 A JP 2657079A JP H0117415 B2 JPH0117415 B2 JP H0117415B2
Authority
JP
Japan
Prior art keywords
diameter
pores
pore
catalyst
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54026570A
Other languages
Japanese (ja)
Other versions
JPS55119445A (en
Inventor
Hidehiro Azuma
Yasuo Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2657079A priority Critical patent/JPS55119445A/en
Publication of JPS55119445A publication Critical patent/JPS55119445A/en
Publication of JPH0117415B2 publication Critical patent/JPH0117415B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/30Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/3023Triangle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30242Star
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30416Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30475Composition or microstructure of the elements comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/31Size details
    • B01J2219/312Sizes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は石油系重質炭化水素油(以下、重質油
と呼ぶ)の水素化脱硫に有効な触媒に関するもの
であつて、さらに詳しくは、長期間安定な触媒活
性を保持し得る特定な細孔分布を持ち、しかも運
転コストに多大な影響を与える圧力損失を極力減
少させ得る特殊な形状を有した水素化脱硫触媒に
係る。 本発明の共同発明者の一人である東は、先に他
の共同研究者3名と共に、重質油用水素化脱硫触
媒の細孔分布と、活性並びに寿命との関係を解明
して、高活性で寿命の長い新しい水素化脱硫触媒
を開発した(特願昭53−99055号(特開昭55−
27036号)出願参照)。この新触媒は多孔性アルミ
ナとこれに担持された水素添加成分とで構成さ
れ、その特徴とするところは当該触媒の細孔分布
が下記の(a)、(b)両條件を共に満足する点にある。 (a) 窒素ガス吸着法で測定した細孔分布條件 細孔直径が0〜600Åの範囲にある細孔の平
均直径が100〜130Åであり、90〜140Åの細孔
直径を持つ細孔の容積合計が、0〜600Åの細
孔直径を持つ細孔の容積合計の少なくとも70%
であり、0〜60Åの細孔直径を持つ細孔の容積
合計が、0〜600Åの細孔直径を持つ細孔の容
積合計の10%以下である。 (b) 水銀圧入法で測定した細孔分布條件 細孔直径が62〜600Åの範囲にある細孔の平
均直径が90〜130Åであり、平均直径±10Åの
細孔直径を持つ細孔の容積合計が62〜600Åの
細孔容積の少なくとも60%を占め、平均直径+
10Å以上の細孔直径を持つ細孔の容積合計が62
〜600Åの細孔容積の10%以下である。 尚、上に規定した細孔分布條件に関し、窒素ガ
ス吸着法にはジヤーナル・オブ・アメリアン・ケ
ミカル・ソサエテイ、第73巻、第373頁(1951年)
所載の方法を採用し、水銀圧入法にはCALRO
ERBA社製の水銀圧入式細孔分布測定機220型を
使用して、接触角130゜、表面張力473dyn/cm2の條
件を採用する。 上記した如き細孔分布特性を有する触媒は、そ
の平均細孔直径が90〜130Åの範囲にあつて細孔
分布が狭く、しかも殆どすべての細孔が円筒状に
あるため、重質油と接触とした情況下でもアスフ
アルテン乃至はアスフアルト成分を細孔内に侵入
させることがない。従つてこの触媒は重金属並び
に炭素質の析出が比較的少なく、その分だけ触媒
寿命の延長を可能にする。また、この触媒はアス
フアルテン乃至アスフアルト成分の侵入を許さぬ
ものの、比較的長大分子の硫黄化合物及び窒素化
合物を細孔内に呼び込めるため、水素化脱硫活性
を高水準に維持できる利点を備えている。 ところで、不均一系の接触反応にあつては、一
般に触媒粒子の単位重量当りの表面積は大きい程
好ましく、換言すれば触媒粒子のサイズは小さい
程接触反応にとつて有利である。しかし、触媒粒
子を小さくすれば必然的に反応塔の充填的空隙率
が減少して反応塔内での圧力損失(以下、ΔPと
記す)を増大させる結果を招くので、触媒の小型
化には一定の限界がある。こうした事情から重質
油の水素化脱硫には、直径約1〜1/50インチ程度
の円筒状又は球状に成型した触媒がこれまで汎用
されて来た。しかしながら、商業的規模で重質油
の水素化脱硫を行なう場合には、100トン単位も
の多量の触媒を充填した反応塔に、大量の水素を
流しながら高分子量で高粘度の重質油を流下反応
せしめる関係で、ΔPはどうしても大きくならざ
るを得ない。これに加えて当該反応塔は高圧容器
であるため、反応塔の直径を大きくすることは限
度がある。従つて水素化脱硫の反応塔は直径/高
さの比が小さいのが通例であつて、これが反応塔
に於けるΔPを増大させる原因ともなつている。 周知の通り、反応塔でのΔPと運転コストとは
密接な関係があつて、ΔPの増大は水素化脱硫装
置の運転コストを大幅に高騰させる。それ故ΔP
の大小は実操業にとつて極めて重要であるが、前
記の如き形状と寸法を持つた水素化脱硫触媒を使
用する限り、かなりのΔPを覚悟しなければなら
ない。 本発明者らは先に紹介した特願昭53−99055号
発明に係る水素化脱硫触媒が高活性で長寿命であ
るという特性に着目し、この特性を活かしつつ反
応塔内でのΔPを従来よりも低減させ得る触媒を
提案すべく、水素化脱硫活性を加味しながら触媒
の形状と寸法について検討を重ねて、ここに本発
明を完成した。 而して本発明に係る重質油の水素化脱硫触媒
は、多孔性アルミナと、これに担持された水素添
加成分を含有する水素化脱硫触媒に於て、当該触
媒が柱体であつてその横断面が直径0.4〜5mmの
円の周囲にその中心から等角に直径の等しい3〜
6ケの円を配して、中央の円の中心から等角にあ
る円の中心までの距離を中央の円の直径の1/4〜
3/4とすると共に、等角にある円の直径を中央の
円のそれにほぼ等しくした花弁状を呈し、この花
弁状横断面を持つ柱体の高さが2〜15mmの範囲に
あり、且つ当該触媒の窒素ガス吸着法で測定した
細孔分布と、水銀圧入法で測定した細孔分布がそ
れぞれ前掲の(a)、(b)両條件を満足することを特徴
とする。 すなわち本発明の触媒は、特定な細孔分布を有
している点で在来の水素化脱硫触媒と区別され、
その形状が特殊な花弁状横断面を持つた柱体であ
る点で特願昭53−99055号発明の水素化脱硫触媒
と峻別される。そこでまず本発明に係る触媒の形
状的特徴を図面に沿つて説明すれば、次の通りで
ある。 第1図のa,bはそれぞれ本発明に係る触媒の
花弁状横断面の一例を示すものであつて、花弁状
横断面が中央の円の周囲にその中心から等角に直
径の等しい4ケの円を配して構成される場合が図
示されている。そして第1図のaでは中央の円の
中心と等角にある周囲の円の中心との距離が、中
央の円の直径の1/4にあり、bではその距離が中
央の円の直径の3/4にあつて、中央の円と周囲の
円との中心間の距離は、上記の範囲内で任意に選
択することができる。また第1図に示す例では周
囲の円の数が4ケで、周囲の円と中央の円と同一
直径にあるが、本発明では周囲の円の数を3〜6
ケの範囲で選択できる外、周囲の円と中央の円の
直径はほぼ等しければ必ずしも同一である必要は
ない。ここで「ほぼ等しい」とは上記両円の直径
の差が±20%であることを意味する。 上記の如き特殊な花弁状横断面を持つたところ
の柱体である本発明の水素化脱硫触媒は、多孔性
アルミナを所望の形状に成型し、これに水素添加
成分を担持させる方法で通常製造される。それ
故、触媒製造にあたつては、触媒担体として使用
される多孔性アルミナを本発明が企図した特殊形
状に成型しなければならない。しかし、そうした
担体の成型は通常の押出し成型機のダイスを所望
形状に加工するだけ可能であるから、著しいコス
トアツプを招来することがない。押出し成型され
たアルミナは、典型的には110℃で一昼夜風乾後
550℃で、3時間焼成して触媒担体となる。次い
で触媒担体には水素添加成分を担持させるが、こ
こで使用される水素添加成分とその担持手段は公
知であつて、本発明でもこれを採用することがで
きる。例えばパラモリブデン酸アンモンにアンモ
ニア水と水を加えてこれを担体に含浸させて一且
乾燥し、しかる後硝酸コバルトと硝酸ニツケルを
含む水溶液を含浸させた後、乾燥して550℃で焼
成する方法が採用可能である。この場合、各水素
添加成分の担持量はそれぞれNiOとして10wt%
以下、CoOとして10wt%以下、MoO3として5〜
30wt%以下であることを可とする。こうして所
望の花弁状横断面を持つた柱体状の触媒が得られ
るが、本発明の水素化脱硫触媒はこうした形状的
特徴に加えて、水素添加成分を添加した状態での
細孔分布が下記の(a)、(b)両條件を共に満足しなけ
ればならない。 (a) 窒素ガス吸着法で測定した細孔分布條件 細孔直径が0〜600Åの範囲にある細孔の平
均直径が100〜130Åであり、90〜140Åの細孔
直径を持つ細孔の容積合計が、0〜600Åの細
孔直径を持つ細孔の容積合計の少なくとも70%
であり、0〜60Åの細孔直径を持つ細孔の容積
合計が、0〜600Åの細孔直径を持つ細孔の容
積合計の10%以下である。 (b) 水銀圧入法で測定した細孔分布條件 細孔直径が62〜600Åの範囲にある細孔の平
均直径が90〜130Åであり、平均直径±10Åの
細孔直径を持つ細孔の容積合計が62〜600Åの
細孔容積の少なくとも60%を占め、平均直径+
10Å以上の細孔直径を持つ細孔の容積合計が62
〜600Åの細孔容積の10%以下である。 ここで、窒素ガスの吸着法の細孔分布はジヤー
ナル・オブ・アメリカン・ケミカル・ソサエテ
イ、第73巻、第373頁(1951年)所載の窒素吸着
等温線から求める方法を採用し、水銀圧入法には
CALRO ERBA社製の水銀圧入式細孔分布測定
機220型を使用して、接触角130゜、表面張力
473dyn/cm2の條件を採用する。また、細孔の平
均直径は細孔分布曲線から求めた細孔容積の50%
に相当する直径である。 本発明の水素化脱硫触媒は、アルミナ担体に所
定量の水素添加成分を、例えば含浸法で担持させ
るさせることにより調製することができるが、そ
の場合のアルミナ担体としては、次のような二つ
の細孔分布条件を共に満たす多孔性アルミナが好
適である。 (a) 窒素ガス吸着法で測定した細孔分布条件 細孔直径が0〜600Åの範囲にある細孔の平
均直径が100〜130Åであり、90〜140Åの細孔
直径を持つ細孔の容積合計が、0〜600Åの細
孔直径を持つ細孔の容積合計の65%以上であ
り、0〜60Åの細孔直径を持つ細孔の容積合計
が、0〜600Åの細孔直径を持つ細孔の容積合
計の15%以下である。 (b) 水銀圧入法で測定した細孔分布条件 細孔直径が62〜600Åの範囲にある細孔の平
均直径が80〜125Åであり、平均直径±10Åの
細孔直径を持つ細孔の容積合計が62〜600Åの
細孔容積の65%以上であり、平均直径+10Å以
上の細孔直径を持つ細孔の容積合計が62〜600
Åの細孔容積の10%以下である。 上記のような多孔性アルミナ担体は、通常の塩
基性アルミニウム塩水溶液と酸性物質水溶液との
中和反応又は塩基性物質水溶液と酸性アルミニウ
ム塩水溶液との中和反応により得られるアルミナ
水和物を、有機塩基化合物の存在下に加熱熟成す
る方法で得ることができる。しかし、本発明に係
る触媒の調製方法は、上記した方法に限定される
ものではなく、最終的に得られる触媒の細孔分布
が本発明で規定した条件を満足する限り、例え
ば、多孔性アルミナの前駆物と水素添加成分を混
練して所望の形状に成型する方法を採用すること
もできる。 本発明の水素化脱硫触媒はその特殊な細孔分布
の故に、重質油の水素化脱硫に使用して長期間安
定な触媒活性を持続し、また独特な形状的特徴を
備えているために、従来触媒に比較して反応塔内
でのΔPを小さくすることができるという格別な
効果を発揮する。 進んで実施例を示して本発明の触媒をさらに具
体的に説明すると共に、試験例によつて当該触媒
の性能を実証する。 実施例 1 アルミナとしての濃度5.0wt%のアルミン酸ソ
ーダ溶液を60℃に加温し、これに安定化剤として
グルコン酸水溶液を加え、ついでアルミナとして
の濃度2.5wt%の60℃に加温した硫酸アルミニウ
ム溶液を約10分間で添加して調合スラリーのPHを
7.0とした。このアルミナ調合スラリーを洗浄し
アルミナ水和物を得た。このアルミナ水和物に少
量のアンモニア水と尿素を加えてPH10.5とし、か
つアルミナ水和物のアルミナ濃度を9%に調整し
た。このアルミナ水和物のスラリーを95℃で15時
間加温撹拌したのち、さらにニーダーで加温〓和
して可塑性のある〓和物をえた。この〓和物を次
の9種の形状に押出し成型した。 (1) 円筒体;1/50″φ、1/32″φ、1/16″φ、
1/12″φ;これらをそれぞれA、B、C、D
とする。 (2) 第2図に示す四葉型横断面を持つ柱体;直径
が0.5mmの中央の円の周囲にその中心Oからほ
ぼ等角に直径の等しい4ケの円(直径0.5mm)
を配し、その各円の中心A、B、C、DとOの
距離がそれぞれ0.33mm(0.5mm×2/3)である花 弁状横断面を持つた平均高さ3.3mmの柱体。こ
れをEとする。 (3) 花弁状横断面(第3図参照)を持つた柱体; (i) 直径0.5mmの中央の円の周囲にその中心O
から等角に直径の等しい3ケの円(直径0.5
mm)を配し、その各円の中心A、B、CとO
との距離がそれぞれ0.375mm(0.5mm×3/4)
である花弁状横断面を持つた平均高さ3.3mm
の柱体。これをFとする。 (ii) 中心A、B、CとOとの距離がそれぞれ
0.250mm(0.5mm×2/4)であり、平均高さが
2.9mmである以外は上記Fと同一形状の柱体。
これをGとする。 (iii) 中心A、B、CとOとの距離がそれぞれ
0.420mm(0.5mm×5/6)である以上は上記F
と同一形状の柱体。これをHとする。 (iv) 中心A、B、CとOとの距離が0.1mm(0.5
mm×1/5)であり、平均高さが3.0mmである以
外は上記のFと同一形状の柱体。これをIと
する。 (4) 粉粒体;これをJとする。 一旦1/8″φの円筒状に押出し成型後、これ
を粉砕し、粒径が100〜120μになるようふるい
分けた粉粒体。 これら押出し成型品A〜I及び粉粒体Jの10種
(このうち、本発明に相当するものはF及びGの
2種)を、それぞれ110℃で1昼夜風乾後、550℃
で3時間焼成した。 こうして得られた各多孔性アルミナ担体の窒素
ガス吸着法で測定した細孔容積は0.70ml/gであ
り、細孔直径が0〜600Åの範囲にある細孔の平
均直径は105Åであり、90〜140Åの細孔直径を持
つ細孔の容積合計は、0〜600Åの細孔直径を持
つ細孔の容積合計の71.4%であり、0〜60Åの細
孔直径を持つ細孔の容積合計は、0〜600Åの細
孔直径を持つ細孔の容積合計の4.3%であつた。
そして、これら担体の水銀圧入法で測定した細孔
分布は、細孔直径62〜600Åの範囲にある細孔の
平均直径が90Åであり、平均直径±10Åの細孔直
径を持つ細孔の容積合計は62〜600Åの細孔容積
の76.5%であり、平均直径+10Å以上の細孔直径
を持つ細孔の容積合計は62〜600Åの細孔容積の
4.4%であつた。 パラモリブデン酸アンモン755gに、15wt%の
アンモニア水639gを加え、さらに全細孔容積に
充分見合う含浸液量とするため、水2330gを加え
た溶液を調製し、これを前記の焼成担体5Kgに含
浸させた。ついで110℃で1晩風乾し、この乾燥
品に、硝酸コバルト275gと硝酸ニツケル165gを
含む水溶液を含浸させて、乾燥した。しかる後
550℃で1時間マツフル炉で焼成して触媒とした。
これらの触媒A〜Jは何れもMoO3、NiOおよび
CoOとしてそれぞれ12.0、0.8および1.3wt%の水
素添加成分を含有する。これらの触媒A〜Iの窒
素吸着法により求めた、0〜600Åの範囲の細孔
の平均直径は105Åであり、細孔直径90〜140Åの
細孔容積は、細孔直径0〜600Åの細孔容積の
74.5%であり、細孔直径0〜60Åの細孔容積は、
細孔直径0〜600Åの細孔容積の1.0%であつた。 また、この触媒の水銀圧入法による細孔分布
は、細孔直径62〜600Åの範囲の平均細孔直径が
94Åで、全細孔容積の76.5%が94±10Åの細孔で
占められ、104Å以上の細孔の容積が全細孔容積
の7.5%であつた。 比較例 1 アルミナとして濃度5.0wt%のアルミン酸ソー
ダ水溶液に、安定化剤としてグルコン酸水溶液を
加え、ついでアルミナとしての濃度2.5wt%の硫
酸アルミニウム溶液を室温で添加してアルミナ調
合スラリーを得た。このアルミナ調合スラリーを
洗浄して得たアルミナ水和物をニーダーで加温捏
和して可塑性のある捏和物とした。この捏和物を
触媒Gに用いた担体と同じ形状に成型して焼成
し、多孔性アルミナ担体を得た。この担体に実施
例1と同様な方法で同種同量の水素添加成分を担
持させ、触媒Kを調製した。 触媒Kに用いたアルミナ担体の窒素ガス吸着法
で測定した細孔容積は0.62ml/gであり、0〜
600Åの範囲の細孔の平均直径は80Åであり、細
孔直径90〜140Åの細孔容積は、0〜600Åの細孔
容積の33.9%であり、0〜60Åの細孔容積は、0
〜600Åの細孔容積の16.1%であつた。また、こ
の担体の水銀圧入法による細孔分布は、細孔直径
62〜600Åの範囲の平均直径が65Åであり、62〜
75Åの細孔で占められる容積は、62〜600Åの細
孔容積の88.8%であり、75Å以上の細孔容積は、
62〜600Åの細孔容積の11.1%であつた。 そして、触媒K自体の窒素ガス吸着法で求めた
0〜600Å細孔の平均直径は81Åであり、細孔直
径90〜140Åの細孔容積は、0〜600Åの細孔容積
の27%であり、0〜60Åの細孔容積は、0〜600
Åの細孔容積の3.0%であつた。また、水銀圧入
法で求めた細孔直径62〜600Åの範囲の平均直径
が71Åであり、平均直径71±10Åの細孔で占めら
れる容積は、62〜600Åの細孔容積の85%であり、
81Å以上の細孔容積は、62〜600Åの細孔容積の
11.5%であつた。 この触媒Kは触媒Gと似た細孔構造を持つが、
触媒の平均細孔直径が81Åと、触媒Gより小さ
い。 比較例 2 市販のアルミナ粉末(ベーマイト)に少量の15
%アンモニア水と水を加えてニーダーで加温捏和
し、可塑性のある捏和物を得た。この捏和物を触
媒Fに用いた担体と同じ形状に成型して焼成し、
多孔性アルミナ担体を得た。この担体に実施例1
と同様な方法で同種同量の水素添加成分を担持さ
せ、触媒Lを調整した。 触媒Lに用いたアルミナ担体の窒素ガス吸着法
で測定した細孔容積は0.65ml/gであり、0〜
600Åの範囲の細孔の平均直径は146Åであつて、
細孔直径90〜140Åの細孔容積は、0〜600Åの細
孔容積の28.5%であり、0〜60Åの細孔容積は0
〜600Åの細孔容積の6.2%であつた。また、水銀
圧入法で求めた細孔直径62〜600Åの範囲の平均
直径は135Åであり、平均直径±10Åの細孔で占
められる容積は、62〜600Åの細孔容積の73.3%
であり、145Å以上の直径を持つ細孔の容積は62
〜600Åの細孔容積の15%であつた。 一方、触媒L自体の窒素ガス吸着法で求めた0
〜600Å細孔の平均直径は147Åであり、細孔直径
90〜140Åの細孔容積は、0〜600Åの細孔容積の
23.5%であり、0〜60Åの細孔容積は0〜600Å
の細孔容積の0%であつた。また、水銀圧入法で
求めた細孔直径62〜600Åの範囲の平均直径は144
Åであり、平均直径±10Åの細孔で占められる容
積は、62〜600Åの細孔容積の60%であり、直径
154Å以上の細孔の容積は62〜600Åの細孔容積の
20%であつた。 この触媒Lはほとんどの細孔が150Å付近に集
中しており、本発明の触媒の平均細孔径をほぼ40
Åだけ大きい方に移動させた触媒に相当する。 試験例 1 実施例および比較例1〜2で得た各種触媒を用
い、クエート産常圧残渣油を水素化脱硫した。原
料油性状、試験装置、試験條件を次に示す。 (1) 原料油性状 比 重 (15/4℃) 0.956 硫黄分 (wt%) 3.77 窒素分 (ppm) 2100 アスフアルテン (wt%) 3.9 バナジウム (ppm) 48 ニツケル (ppm) 14 (2) 試験装置 試験に用いた装置は固定床方式によるもので
あり、反応管の寸法は外径27mmφ、内径19mm
φ、長さ3mである。反応管の中心に反応温度
を測定するための熱電対用のシエルを取付け、
このシエル内を熱電対を移動させながら触媒層
の平均温度を測定した。また、反応管の外部は
均熱のための金属ブロツクで囲み、その外側に
5段の電気炉を設けて反応温度をコントロール
した。 (3) 試験條件 (i) 硫化操作;触媒150gを秤量し、その容積
に対し毎時あたり830倍の水素(3%の硫化
水素を含む)を流しながら、大気圧下330℃
で3時間の硫化処理を行つた。 (ii) 試験條件 反応温度 (℃) 361 反応圧力 (Kg/cm2.G) 150 L.H.S.V (hr-1) 1.0 水素/炭化水素油 (Nm3/Kl) 830 水素濃度 (mol%) 90 以上の條件で100時間のならし運転を行い、100
〜110時間目で活性比較を行つた。脱硫活性は触
媒Bの361℃における脱硫反応のみかけの反応速
度定数(2次式)を100としてこれとの相対値で
求めた。結果を表1および第4図に示す。また各
使用触媒の性状および反応管内の充填密度を表1
に併記した。尚、触媒E、F、G、H、I、Kの
平均径は第2〜3図に示すdに相当し、耐圧強度
は第2〜3図の矢印方向から測定した値である。 試験例 2 試験例1で用いたものと同じ触媒A〜Lを用
い、実装置規模の反応塔を想定した條件でガスお
よび油による圧力損失を実測した。装置と測定條
件はつぎのようである。 充填装置寸法 内径20.5mm、外径32mm、長さ5000
mm 使用触媒量 1485ml(容積一定) 油 市販灯油(比重15/4℃、0.792、粘度1.2cst
(37.8℃)流量8.2/hr(線速27m/hrに相当) ガス 市販窒素、流量98/hr(線速320m/hrに
相当) 触媒Bを使用した際の圧力損失ΔPを100とした
場合の各触媒のΔP相対値を表1および第5図に
示す。
The present invention relates to a catalyst effective for the hydrodesulfurization of petroleum-based heavy hydrocarbon oil (hereinafter referred to as heavy oil), and more specifically to a catalyst that can maintain stable catalytic activity for a long period of time. The present invention relates to a hydrodesulfurization catalyst that has a pore distribution and a special shape that can minimize pressure loss, which greatly affects operating costs. Azuma, who is one of the co-inventors of the present invention, previously worked with three other co-researchers to elucidate the relationship between the pore distribution, activity, and life of heavy oil hydrodesulfurization catalysts. Developed a new hydrodesulfurization catalyst that is active and has a long life (Patent Application No. 99055/1983
No. 27036) (see application). This new catalyst is composed of porous alumina and a hydrogenation component supported on it, and its feature is that the pore distribution of the catalyst satisfies both conditions (a) and (b) below. It is in. (a) Pore distribution conditions measured by nitrogen gas adsorption method The average diameter of pores with a pore diameter in the range of 0 to 600 Å is 100 to 130 Å, and the volume of pores with a pore diameter of 90 to 140 Å the sum is at least 70% of the total volume of pores with pore diameters between 0 and 600 Å
and the total volume of pores with a pore diameter of 0 to 60 Å is 10% or less of the total volume of pores with a pore diameter of 0 to 600 Å. (b) Pore distribution conditions measured by mercury porosimetry Pore diameter is in the range of 62 to 600 Å, average diameter is 90 to 130 Å, and volume of pores with average diameter ± 10 Å The total accounts for at least 60% of the pore volume between 62 and 600 Å, with an average diameter +
The total volume of pores with a pore diameter of 10 Å or more is 62
~600 Å is less than 10% of the pore volume. Regarding the pore distribution conditions specified above, the nitrogen gas adsorption method is described in Journal of the American Chemical Society, Vol. 73, p. 373 (1951).
Adopt the described method and use CALRO for mercury intrusion method.
A mercury intrusion type pore distribution measuring machine model 220 manufactured by ERBA is used, and conditions of a contact angle of 130° and a surface tension of 473 dyn/cm 2 are adopted. Catalysts with the above-mentioned pore distribution characteristics have a narrow pore distribution with an average pore diameter in the range of 90 to 130 Å, and almost all pores are cylindrical, so they come into contact with heavy oil. Even under these conditions, asphaltene or asphalt components do not enter the pores. Therefore, this catalyst has relatively little precipitation of heavy metals and carbonaceous matter, and the life of the catalyst can be extended accordingly. Further, although this catalyst does not allow the intrusion of asphaltene or asphalt components, it can draw relatively long sulfur compounds and nitrogen compounds into the pores, so it has the advantage of maintaining a high level of hydrodesulfurization activity. By the way, in the case of a heterogeneous catalytic reaction, the larger the surface area per unit weight of the catalyst particles, the better. In other words, the smaller the size of the catalyst particles, the more advantageous it is for the catalytic reaction. However, if the catalyst particles are made smaller, the packing porosity of the reaction column will inevitably decrease and the pressure drop (hereinafter referred to as ΔP) within the reaction column will increase. There are certain limits. Under these circumstances, cylindrical or spherical catalysts with a diameter of about 1 to 1/50 inch have been widely used for the hydrodesulfurization of heavy oil. However, when hydrodesulfurizing heavy oil on a commercial scale, heavy oil with high molecular weight and high viscosity is poured into a reaction tower packed with as much as 100 tons of catalyst while flowing a large amount of hydrogen. Because of the reaction, ΔP inevitably becomes large. In addition, since the reaction tower is a high-pressure vessel, there is a limit to increasing the diameter of the reaction tower. Therefore, the reaction tower for hydrodesulfurization usually has a small diameter/height ratio, which is also a cause of increasing ΔP in the reaction tower. As is well known, there is a close relationship between ΔP and operating cost in the reaction tower, and an increase in ΔP significantly increases the operating cost of the hydrodesulfurization equipment. Therefore ΔP
The size of ΔP is extremely important for actual operation, but as long as a hydrodesulfurization catalyst with the shape and dimensions described above is used, one must be prepared for a considerable ΔP. The present inventors focused on the characteristics that the hydrodesulfurization catalyst according to the invention of Japanese Patent Application No. 53-99055 introduced earlier has high activity and long life. In order to propose a catalyst that can further reduce this, we have completed the present invention by repeatedly studying the shape and dimensions of the catalyst while taking into consideration the hydrodesulfurization activity. Therefore, the hydrodesulfurization catalyst for heavy oil according to the present invention is a hydrodesulfurization catalyst containing porous alumina and a hydrogenation component supported thereon. Around a circle whose cross section is 0.4 to 5 mm in diameter, there are 3 to 3 squares of equal diameter equiangularly placed from the center of the circle.
Arrange six circles and measure the distance from the center of the center circle to the center of the equiangular circle from 1/4 to the diameter of the center circle.
3/4, and the diameter of the equiangular circle is approximately equal to that of the central circle, and the height of the column with this petal-shaped cross section is in the range of 2 to 15 mm, and The catalyst is characterized in that the pore distribution measured by the nitrogen gas adsorption method and the pore distribution measured by the mercury intrusion method satisfy both conditions (a) and (b) above, respectively. That is, the catalyst of the present invention is distinguished from conventional hydrodesulfurization catalysts in that it has a specific pore distribution,
It is distinguished from the hydrodesulfurization catalyst of the invention in Japanese Patent Application No. 53-99055 in that its shape is a columnar body with a special petal-like cross section. First, the geometrical features of the catalyst according to the present invention will be explained below with reference to the drawings. Figures a and b in Fig. 1 each show an example of a petal-shaped cross section of the catalyst according to the present invention, and the petal-shaped cross section is arranged around a central circle in four equal-diameter circles equiangularly from the center. The diagram shows a case in which the image is constructed by arranging circles. In Figure 1 a, the distance between the center of the central circle and the centers of the surrounding circles equiangular is 1/4 of the diameter of the central circle, and in b, the distance is 1/4 of the diameter of the central circle. For 3/4, the distance between the centers of the central circle and the surrounding circles can be arbitrarily selected within the above range. In addition, in the example shown in Fig. 1, the number of surrounding circles is 4, and the surrounding circles and the center circle have the same diameter, but in the present invention, the number of surrounding circles is 3 to 6.
The diameters of the surrounding circle and the center circle do not necessarily have to be the same as long as they are approximately equal. Here, "approximately equal" means that the difference in diameter between the two circles is ±20%. The hydrodesulfurization catalyst of the present invention, which is a columnar body with a special petal-shaped cross section as described above, is usually manufactured by molding porous alumina into a desired shape and supporting the hydrogenation component on the catalyst. be done. Therefore, in producing the catalyst, porous alumina used as a catalyst carrier must be molded into the special shape contemplated by the present invention. However, since such a carrier can be molded simply by processing a die of an ordinary extrusion molding machine into a desired shape, a significant increase in cost does not occur. Extruded alumina is typically air-dried overnight at 110°C.
It is fired at 550°C for 3 hours to become a catalyst carrier. Next, a hydrogenation component is supported on the catalyst carrier, and the hydrogenation component and its supporting means used here are well known, and can be employed in the present invention. For example, a method in which ammonia water and water are added to ammonium paramolybdate, impregnated into a carrier, dried once, then impregnated with an aqueous solution containing cobalt nitrate and nickel nitrate, dried, and fired at 550°C. can be adopted. In this case, the supported amount of each hydrogenation component is 10wt% as NiO.
Below, 10wt% or less as CoO, 5~ as MoO 3
It is allowed to be less than 30wt%. In this way, a columnar catalyst with a desired petal-like cross section is obtained. In addition to these morphological characteristics, the hydrodesulfurization catalyst of the present invention has the following pore distribution when the hydrogenation component is added. Both conditions (a) and (b) must be satisfied. (a) Pore distribution conditions measured by nitrogen gas adsorption method The average diameter of pores with a pore diameter in the range of 0 to 600 Å is 100 to 130 Å, and the volume of pores with a pore diameter of 90 to 140 Å the sum is at least 70% of the total volume of pores with pore diameters between 0 and 600 Å
and the total volume of pores with a pore diameter of 0 to 60 Å is 10% or less of the total volume of pores with a pore diameter of 0 to 600 Å. (b) Pore distribution conditions measured by mercury porosimetry Pore diameter is in the range of 62 to 600 Å, average diameter is 90 to 130 Å, and volume of pores with average diameter ± 10 Å The total accounts for at least 60% of the pore volume between 62 and 600 Å, with an average diameter +
The total volume of pores with a pore diameter of 10 Å or more is 62
~600 Å is less than 10% of the pore volume. Here, the pore distribution of the nitrogen gas adsorption method was determined from the nitrogen adsorption isotherm described in Journal of the American Chemical Society, Vol. 73, p. 373 (1951), and In the law
Using CALRO ERBA's mercury intrusion type pore distribution analyzer model 220, the contact angle was 130° and the surface tension was measured.
The condition of 473dyn/ cm2 is adopted. In addition, the average diameter of pores is 50% of the pore volume determined from the pore distribution curve.
The diameter is equivalent to . The hydrodesulfurization catalyst of the present invention can be prepared by supporting an alumina carrier with a predetermined amount of hydrogenation component, for example, by an impregnation method. Porous alumina that satisfies both pore distribution conditions is preferred. (a) Pore distribution conditions measured by nitrogen gas adsorption method The average diameter of pores with a pore diameter in the range of 0 to 600 Å is 100 to 130 Å, and the volume of pores with a pore diameter of 90 to 140 Å The total volume of pores with a pore diameter of 0 to 600 Å is greater than or equal to 65% of the total volume of pores with a pore diameter of 0 to 600 Å, and the total volume of pores with a pore diameter of 0 to 600 Å is Not more than 15% of the total pore volume. (b) Pore distribution conditions measured by mercury porosimetry Pore diameter is in the range of 62 to 600 Å, average diameter is 80 to 125 Å, and volume of pores with average diameter ± 10 Å 65% or more of the pore volume with a total of 62 to 600 Å, and the total volume of pores with a pore diameter of average diameter + 10 Å or more is 62 to 600
It is less than 10% of the pore volume of Å. The porous alumina carrier as described above is made of alumina hydrate obtained by a normal neutralization reaction between a basic aluminum salt aqueous solution and an acidic substance aqueous solution, or a basic substance aqueous solution and an acidic substance aqueous solution. It can be obtained by heating and ripening in the presence of an organic base compound. However, the method for preparing the catalyst according to the present invention is not limited to the method described above, and as long as the pore distribution of the catalyst finally obtained satisfies the conditions specified in the present invention, for example, porous alumina It is also possible to adopt a method of kneading the precursor and the hydrogenation component and molding it into a desired shape. Due to its special pore distribution, the hydrodesulfurization catalyst of the present invention maintains stable catalytic activity for a long period of time when used for hydrodesulfurization of heavy oil, and because it has unique shape characteristics. Compared to conventional catalysts, this catalyst exhibits the special effect of being able to reduce ΔP within the reaction tower. Next, the catalyst of the present invention will be explained in more detail with reference to Examples, and the performance of the catalyst will be demonstrated through test examples. Example 1 A sodium aluminate solution with a concentration of 5.0 wt% as alumina was heated to 60°C, an aqueous gluconic acid solution was added as a stabilizer, and then heated to 60°C with a concentration of 2.5 wt% as alumina. Add aluminum sulfate solution for about 10 minutes to adjust the pH of the prepared slurry.
It was set to 7.0. This alumina blend slurry was washed to obtain alumina hydrate. A small amount of ammonia water and urea were added to this alumina hydrate to adjust the pH to 10.5, and the alumina concentration of the alumina hydrate was adjusted to 9%. This slurry of alumina hydrate was heated and stirred at 95°C for 15 hours, and then heated and further heated in a kneader to obtain a plastic hydrate. This mixture was extruded into the following nine shapes. (1) Cylindrical body; 1/50″φ, 1/32″φ, 1/16″φ,
1/12″φ; These are A, B, C, and D, respectively.
shall be. (2) A column with a four-lobed cross section as shown in Figure 2; around a central circle with a diameter of 0.5 mm, there are four circles (diameter 0.5 mm) approximately equiangular from the center O.
A column with an average height of 3.3 mm and a petal-shaped cross section with distances between the centers A, B, C, D, and O of each circle being 0.33 mm (0.5 mm x 2/3). Let this be E. (3) A columnar body with a petal-like cross section (see Figure 3); (i) A central circle with a diameter of 0.5 mm and its center O.
Three circles of equal diameter are equiangular from (0.5
mm), and the centers of each circle are A, B, C and O.
The distance between each is 0.375mm (0.5mm x 3/4)
The average height is 3.3mm with a petal-shaped cross section.
column body. Let this be F. (ii) The distances between centers A, B, C and O are respectively
0.250mm (0.5mm×2/4), and the average height is
The column has the same shape as F above except that it is 2.9mm.
Let this be G. (iii) The distances between centers A, B, C and O are respectively
If it is 0.420mm (0.5mm×5/6), the above F
A column with the same shape as . Let this be H. (iv) The distance between centers A, B, C and O is 0.1 mm (0.5
mm x 1/5) and has the same shape as F above except that the average height is 3.0 mm. Let this be I. (4) Powder: This is designated as J. Once extruded into a cylindrical shape with a diameter of 1/8", this is crushed and sieved to a particle size of 100 to 120μ. These 10 types of extrusion molded products A to I and powder and granule J ( Among these, two types (F and G) corresponding to the present invention were air-dried at 110°C for one day and night, and then heated to 550°C.
It was baked for 3 hours. The pore volume of each of the porous alumina carriers obtained as measured by nitrogen gas adsorption method was 0.70 ml/g, and the average diameter of pores with a pore diameter in the range of 0 to 600 Å was 105 Å. The total volume of pores with a pore diameter of ~140 Å is 71.4% of the total volume of pores with a pore diameter of 0 to 600 Å, and the total volume of pores with a pore diameter of 0 to 60 Å is , 4.3% of the total volume of pores with pore diameters from 0 to 600 Å.
The pore distribution of these carriers measured by mercury porosimetry shows that the average diameter of pores in the range of 62 to 600 Å is 90 Å, and the volume of pores with a pore diameter of ±10 Å is The total is 76.5% of the pore volume between 62 and 600 Å, and the total volume of pores with a pore diameter greater than or equal to the average diameter + 10 Å is 76.5% of the pore volume between 62 and 600 Å.
It was 4.4%. A solution was prepared by adding 639 g of 15 wt% aqueous ammonia to 755 g of ammonium paramolybdate, and further adding 2330 g of water to make the amount of impregnating liquid sufficient for the total pore volume, and impregnating 5 kg of the above-mentioned fired carrier with this solution. I let it happen. The dried product was then air-dried at 110° C. overnight, impregnated with an aqueous solution containing 275 g of cobalt nitrate and 165 g of nickel nitrate, and dried. After that
The catalyst was fired at 550°C for 1 hour in a Matsufuru furnace.
These catalysts A to J all contain MoO 3 , NiO and
Contains 12.0, 0.8 and 1.3 wt% hydrogenated components as CoO, respectively. The average diameter of pores in the range of 0 to 600 Å, determined by the nitrogen adsorption method, of these catalysts A to I is 105 Å, and the pore volume of pores with a pore diameter of 90 to 140 Å is the same as that of pores with a pore diameter of 0 to 600 Å. of pore volume
74.5%, and the pore volume with a pore diameter of 0 to 60 Å is
It was 1.0% of the pore volume with a pore diameter of 0 to 600 Å. In addition, the pore distribution of this catalyst determined by mercury intrusion method shows that the average pore diameter is in the range of 62 to 600 Å.
At 94 Å, 76.5% of the total pore volume was occupied by 94±10 Å pores, and the volume of pores larger than 104 Å was 7.5% of the total pore volume. Comparative Example 1 A gluconic acid aqueous solution was added as a stabilizer to a sodium aluminate aqueous solution with a concentration of 5.0 wt% as alumina, and then an aluminum sulfate solution with a concentration of 2.5 wt% as alumina was added at room temperature to obtain an alumina blend slurry. . The alumina hydrate obtained by washing this alumina blend slurry was heated and kneaded in a kneader to obtain a plastic kneaded product. This kneaded product was molded into the same shape as the carrier used for Catalyst G and fired to obtain a porous alumina carrier. Catalyst K was prepared by supporting the same kind and amount of hydrogenation components on this carrier in the same manner as in Example 1. The pore volume of the alumina support used for Catalyst K was 0.62 ml/g, measured by nitrogen gas adsorption method, and the pore volume was 0.62 ml/g.
The average diameter of pores in the range of 600 Å is 80 Å, the pore volume of pore diameters 90-140 Å is 33.9% of the pore volume of 0-600 Å, and the pore volume of 0-60 Å is 0
~600 Å was 16.1% of the pore volume. In addition, the pore distribution of this carrier by mercury intrusion method is as follows:
The average diameter ranges from 62 to 600 Å, with an average diameter of 65 Å and 62 to 600 Å.
The volume occupied by 75 Å pores is 88.8% of the pore volume between 62 and 600 Å, and the pore volume above 75 Å is
It was 11.1% of the pore volume between 62 and 600 Å. The average diameter of 0-600 Å pores determined by the nitrogen gas adsorption method of catalyst K itself is 81 Å, and the pore volume of pores with a diameter of 90-140 Å is 27% of the pore volume of 0-600 Å. , the pore volume of 0-60 Å is 0-600
It was 3.0% of the pore volume of Å. In addition, the average diameter of pores in the range of 62 to 600 Å determined by mercury intrusion method is 71 Å, and the volume occupied by pores with an average diameter of 71 ± 10 Å is 85% of the volume of pores in the range of 62 to 600 Å. ,
The pore volume of 81 Å or more is the same as that of the pore volume of 62 to 600 Å.
It was 11.5%. This catalyst K has a pore structure similar to that of catalyst G, but
The average pore diameter of the catalyst is 81 Å, which is smaller than Catalyst G. Comparative Example 2 A small amount of 15 was added to commercially available alumina powder (boehmite).
% ammonia water and water were added and kneaded by heating in a kneader to obtain a plastic kneaded product. This mixture was molded into the same shape as the carrier used for catalyst F and fired.
A porous alumina carrier was obtained. Example 1
Catalyst L was prepared by supporting hydrogenation components of the same type and amount in the same manner as in Example 1. The pore volume of the alumina support used in Catalyst L measured by nitrogen gas adsorption method was 0.65 ml/g, which was 0 to 0.
The average diameter of the pores in the 600 Å range is 146 Å;
The pore volume with a pore diameter of 90-140 Å is 28.5% of the pore volume with a pore diameter of 0-600 Å, and the pore volume with a pore diameter of 0-60 Å is 0.
~600 Å was 6.2% of the pore volume. In addition, the average diameter of pores in the range of 62 to 600 Å determined by mercury intrusion method is 135 Å, and the volume occupied by pores with an average diameter of ±10 Å is 73.3% of the pore volume of 62 to 600 Å.
and the volume of a pore with a diameter of 145 Å or more is 62
~600 Å was 15% of the pore volume. On the other hand, 0 determined by the nitrogen gas adsorption method of the catalyst L itself
The average diameter of ~600 Å pores is 147 Å, and the pore diameter
The pore volume between 90 and 140 Å is the same as that between 0 and 600 Å.
23.5%, and the pore volume from 0 to 60 Å is 0 to 600 Å
It was 0% of the pore volume. In addition, the average diameter of the pores in the range of 62 to 600 Å determined by mercury intrusion method was 144
Å, and the volume occupied by pores with an average diameter of ±10 Å is 60% of the pore volume between 62 and 600 Å, and the volume occupied by pores with an average diameter of ±10 Å is
The pore volume of 154 Å or more is smaller than that of 62 to 600 Å.
It was 20%. Most of the pores of this catalyst L are concentrated around 150 Å, which makes the average pore diameter of the catalyst of the present invention approximately 40 Å.
This corresponds to a catalyst that has been moved to the larger side by Å. Test Example 1 Using the various catalysts obtained in Examples and Comparative Examples 1 and 2, atmospheric residual oil produced in Kuwait was hydrodesulfurized. The raw oil properties, test equipment, and test conditions are shown below. (1) Raw oil properties Specific gravity (15/4℃) 0.956 Sulfur content (wt%) 3.77 Nitrogen content (ppm) 2100 Asphaltene (wt%) 3.9 Vanadium (ppm) 48 Nickel (ppm) 14 (2) Test equipment Test The equipment used was of a fixed bed type, and the dimensions of the reaction tube were 27 mm in outer diameter and 19 mm in inner diameter.
φ, length 3m. Attach a thermocouple shell to the center of the reaction tube to measure the reaction temperature.
The average temperature of the catalyst layer was measured while moving the thermocouple inside this shell. Furthermore, the outside of the reaction tube was surrounded by a metal block for uniform heating, and a five-stage electric furnace was installed outside of the metal block to control the reaction temperature. (3) Test conditions (i) Sulfurization operation: 150g of catalyst was weighed and heated at 330°C under atmospheric pressure while flowing 830 times the volume of hydrogen (including 3% hydrogen sulfide) per hour.
A sulfiding treatment was carried out for 3 hours. (ii) Test conditions Reaction temperature (℃) 361 Reaction pressure (Kg/ cm2.G ) 150 LHSV (hr -1 ) 1.0 Hydrogen/hydrocarbon oil ( Nm3 /Kl) 830 Hydrogen concentration (mol%) 90 or more After 100 hours of break-in operation under certain conditions, 100
Activity comparisons were performed at ~110 hours. The desulfurization activity was determined as a value relative to the apparent reaction rate constant (quadratic equation) of the desulfurization reaction of catalyst B at 361° C. as 100. The results are shown in Table 1 and FIG. In addition, Table 1 shows the properties of each catalyst used and the packing density in the reaction tube.
Also listed. The average diameter of the catalysts E, F, G, H, I, and K corresponds to d shown in FIGS. 2 and 3, and the pressure resistance is a value measured from the direction of the arrow in FIGS. 2 and 3. Test Example 2 Using the same catalysts A to L as used in Test Example 1, the pressure loss due to gas and oil was actually measured under conditions simulating a reaction tower on an actual scale. The equipment and measurement conditions are as follows. Filling device dimensions Inner diameter 20.5mm, Outer diameter 32mm, Length 5000
mm Amount of catalyst used 1485ml (constant volume) Oil Commercial kerosene (specific gravity 15/4℃, 0.792, viscosity 1.2cst
(37.8℃) Flow rate 8.2/hr (equivalent to linear velocity 27 m/hr) Gas Commercially available nitrogen, flow rate 98/hr (equivalent to linear velocity 320 m/hr) When pressure loss ΔP when using catalyst B is 100 The relative ΔP values of each catalyst are shown in Table 1 and FIG.

【表】【table】

【表】 以上の試験結果をまとめると、まず、標準触媒
をBとしたとき、第4図から円筒状触媒A、B、
C、Dについて粒子径が小さくなるに従い脱硫活
性が向上していることがわかる。また極めて小さ
い粒径の破砕触媒Jと触媒Aとは同じ脱硫活性を
示す。換言すれば触媒Aは粒子の内部まで脱硫反
応に使用されているといえよう。 触媒KおよびLはアルミナ担体が別のものであ
りまた、細孔分布が異なるため水素化脱硫活性は
小さい。触媒Eは本発明触媒に類するものである
が、その形状が不適当であるため触媒Bよりも低
活性である。本発明触媒であるF、およびGは明
らかに別の部類に属する好適な活性を示す。これ
は該触媒を構成する粒子径が約0.5mmφの円筒状
押出品の集合体となつており、またその形状がす
ぐれているためである。 すなわち、前述したように、触媒の特性に見合
つた粒子径の集合体を本発明の形状としたことが
良好な活性を示す原因であるが、なお、ΔPを上
昇させるものであつてはならないことはもちろん
である。ところがこれは第5図からわかるように
標準触媒Bよりも高い活性を示すだけでなく、
ΔPも明らかに低いという結果がえられている。
ただし、触媒E、KおよびLも同様に低いΔPを
示しており、低ΔPと高活性をあわせもつために
は、たんにその形状が本発明のものであることだ
けではなく、触媒の細孔分布もまた本発明のもの
でなければならないことがわかる。 なお、触媒HおよびIはその横断面が花弁状を
呈するが、寸法的に本発明の範囲から除外され
る。すなわち、花弁状横断面に於て中央円と周辺
円との距離が長い(中央円直径の5/6)触媒Hは、
かさ比重が軽くなりすぎ、触媒強度が大幅に低下
しており、ΔPは小さいか実用触媒としては活性
も低い。また、触媒Iはあまりにも各円の中心が
集まりすぎて、本発明の好ましい特性を実現して
いない。この触媒は活性は高いがΔPが高い値を
示す。 試験例 3 クエート常圧残渣油を使用し試験例1で示した
條件下で、触媒Bおよび本発明の触媒Fを用いた
長期寿命試験を行つた。すなわち、L.H.S.V=
1.0hr-1、水素/炭化水素油=830Nm3/Kl、反応
圧力=150Kg/cm2、水素濃度=90mol%の條件で
生成油の硫黄分が1.0wt%になるよう反応温度を
制御した。試験結果を第6図に示すか、この結果
から触媒の物理的性状は全く同じであつても、そ
の性能を大幅に向上させるため、粒子径を小さく
し、粒子のすべての部分が有効に使用されるよう
にした本発明触媒のほうがあきらかに長い触媒寿
命をもつことがわかる。
[Table] To summarize the above test results, first, when the standard catalyst is B, from Fig. 4, cylindrical catalysts A, B,
It can be seen that desulfurization activity improves as the particle size becomes smaller for C and D. Further, crushed catalyst J and catalyst A, which have extremely small particle sizes, exhibit the same desulfurization activity. In other words, it can be said that catalyst A is used for the desulfurization reaction even inside the particles. Catalysts K and L have different alumina carriers and have different pore distributions, so their hydrodesulfurization activity is low. Catalyst E is similar to the catalyst of the present invention, but its activity is lower than that of catalyst B due to its inappropriate shape. The catalysts of the present invention, F and G, clearly belong to a different class of preferred activities. This is because the catalyst is an aggregate of cylindrical extrudates with a particle size of about 0.5 mmφ, and its shape is excellent. That is, as mentioned above, the shape of the aggregate of the present invention has a particle size that matches the characteristics of the catalyst, which is the cause of good activity, but it must not increase ΔP. Of course. However, as shown in Figure 5, this catalyst not only exhibits higher activity than standard catalyst B;
The results show that ΔP is also clearly low.
However, catalysts E, K, and L also show low ΔP, and in order to have both low ΔP and high activity, it is necessary not only to have the shape of the catalyst according to the present invention, but also to have the pores of the catalyst. It can be seen that the distribution must also be of the invention. Although catalysts H and I have petal-shaped cross sections, they are excluded from the scope of the present invention due to their dimensions. In other words, the catalyst H has a long distance between the central circle and the peripheral circle (5/6 of the diameter of the central circle) in the petal-shaped cross section.
The bulk specific gravity is too light, the catalyst strength is significantly reduced, and ΔP is too small or the activity is too low to be used as a practical catalyst. In addition, in Catalyst I, the centers of each circle are too concentrated, and the desirable characteristics of the present invention are not realized. Although this catalyst has high activity, it shows a high value of ΔP. Test Example 3 A long-term life test was conducted using Kuwait atmospheric residual oil under the conditions shown in Test Example 1 using Catalyst B and Catalyst F of the present invention. That is, LHSV=
The reaction temperature was controlled so that the sulfur content of the produced oil was 1.0 wt% under the following conditions: 1.0 hr -1 , hydrogen/hydrocarbon oil = 830 Nm 3 /Kl, reaction pressure = 150 Kg/cm 2 , and hydrogen concentration = 90 mol%. The test results are shown in Figure 6.The results show that even though the physical properties of the catalyst are exactly the same, in order to significantly improve its performance, the particle size is reduced and all parts of the particle are used effectively. It can be seen that the catalyst of the present invention, which is made to have a longer catalyst life, has a clearly longer catalyst life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例たる触媒の横断面
図、第2図は従来触媒の横断面図、第3図は本発
明の別の実施例たる触媒の横断面図、第4図は触
媒平均径と脱硫活性相対値との関係を示すグラ
フ、第5図は触媒平均径とΔP相対値との関係を
示すグラフ、第6図は運転時間と反応温度上昇割
合との関係を示すグラフである。
FIG. 1 is a cross-sectional view of a catalyst according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a conventional catalyst, FIG. 3 is a cross-sectional view of a catalyst according to another embodiment of the present invention, and FIG. 4 is a cross-sectional view of a catalyst according to another embodiment of the present invention. A graph showing the relationship between the average diameter of the catalyst and the relative value of desulfurization activity. Figure 5 is a graph showing the relationship between the average diameter of the catalyst and the relative value of ΔP. Figure 6 is a graph showing the relationship between the operating time and the rate of increase in reaction temperature. It is.

Claims (1)

【特許請求の範囲】 1 多孔性アルミナと、これに担持された水素添
加成分を含有する水素化脱硫触媒に於て、当該触
媒が柱体であつてその横断面が直径0.4〜5mmの
円の周囲にその中心から等角に直径の等しい3〜
6ケの円を配して、中央の円の中心から等角にあ
る円の中心までの距離を中央の円の直径の1/4〜
3/4とすると共に、等角にある円の直径を中央の
円のそれにほぼ等しくした花弁状を呈し、この花
弁状横断面を持つ柱体の高さが2〜15mmの範囲に
あり、且つ上記触媒の細孔分布が下記の(a)及び(b)
の両条件を共に満足することを特徴とする石油系
重質炭化水素油の水素化脱硫触媒。 (a) 窒素ガス吸着法で測定した細孔分布条件 細孔直径が0〜600Åの範囲にある細孔の平
均直径が100〜130Åであり、90〜140Åの細孔
直径を持つ細孔の容積合計が、0〜600Åの細
孔直径を持つ細孔の容積合計の少なくとも70%
であり、0〜60Åの細孔直径を持つ細孔の容積
合計が、0〜600Åの細孔直径を持つ細孔の容
積合計の10%以下である、 (b) 水銀圧入法で測定した細孔分布条件 細孔直径が62〜600Åの範囲にある細孔の平
均直径が90〜130Åであり、平均直径±10Åの
細孔直径を持つ細孔の容積合計が62〜600Åの
細孔容積の少なくとも60%を占め、平均直径+
10Å以上の細孔直径を持つ細孔の容積合計が62
〜600Åの細孔容積の10%以下である、 2 等角にある円の直径が中央の円の直径の±20
%の範囲にあることを特徴とする特許請求の範囲
第1項記載の触媒。 3 多孔性アルミナに担持された水素添加成分が
ニツケル、コバルト及びモリブデンの酸化物であ
る特許請求の範囲第1項記載の触媒。 4 ニツケル、コバルト及びモリブデンの酸化物
の担持量がNiOとして10wt%以下、CoOとして
10wt%、MoO3として5〜30wt%である特許請
求の範囲第3項記載の触媒。
[Claims] 1. In a hydrodesulfurization catalyst containing porous alumina and a hydrogenation component supported thereon, the catalyst is a column whose cross section is circular with a diameter of 0.4 to 5 mm. 3~ with equal diameter around the center equiangularly
Arrange six circles and measure the distance from the center of the center circle to the center of the equiangular circle from 1/4 to the diameter of the center circle.
3/4, and the diameter of the equiangular circle is approximately equal to that of the central circle, and the height of the column with this petal-shaped cross section is in the range of 2 to 15 mm, and The pore distribution of the above catalyst is as shown in (a) and (b) below.
A hydrodesulfurization catalyst for petroleum-based heavy hydrocarbon oil, characterized by satisfying both of the following conditions. (a) Pore distribution conditions measured by nitrogen gas adsorption method The average diameter of pores with a pore diameter in the range of 0 to 600 Å is 100 to 130 Å, and the volume of pores with a pore diameter of 90 to 140 Å the sum is at least 70% of the total volume of pores with a pore diameter between 0 and 600 Å
and the total volume of pores with a pore diameter of 0 to 60 Å is less than 10% of the total volume of pores with a pore diameter of 0 to 600 Å; (b) pores measured by mercury intrusion method; Pore distribution conditions The average diameter of pores with a pore diameter in the range of 62 to 600 Å is 90 to 130 Å, and the total volume of pores with a pore diameter of ±10 Å is 62 to 600 Å. Occupying at least 60%, average diameter +
The total volume of pores with a pore diameter of 10 Å or more is 62
~10% of the pore volume of ~600 Å, 2 The diameter of the equiangular circle is ±20 of the diameter of the central circle.
% of the catalyst according to claim 1. 3. The catalyst according to claim 1, wherein the hydrogenation component supported on porous alumina is an oxide of nickel, cobalt, and molybdenum. 4 The supported amount of oxides of nickel, cobalt and molybdenum is 10wt% or less as NiO, as CoO
The catalyst according to claim 3 , which is 10 wt% and 5 to 30 wt% as MoO3.
JP2657079A 1979-03-07 1979-03-07 Desulfurization catalyst of petroleum base heavy hydrocarbon oil Granted JPS55119445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2657079A JPS55119445A (en) 1979-03-07 1979-03-07 Desulfurization catalyst of petroleum base heavy hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2657079A JPS55119445A (en) 1979-03-07 1979-03-07 Desulfurization catalyst of petroleum base heavy hydrocarbon oil

Publications (2)

Publication Number Publication Date
JPS55119445A JPS55119445A (en) 1980-09-13
JPH0117415B2 true JPH0117415B2 (en) 1989-03-30

Family

ID=12197199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2657079A Granted JPS55119445A (en) 1979-03-07 1979-03-07 Desulfurization catalyst of petroleum base heavy hydrocarbon oil

Country Status (1)

Country Link
JP (1) JPS55119445A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394303A (en) * 1981-05-12 1983-07-19 Chevron Research Company Large pore shaped hydroprocessing catalysts
US4441990A (en) * 1982-05-28 1984-04-10 Mobil Oil Corporation Hollow shaped catalytic extrudates
US4517077A (en) * 1983-11-14 1985-05-14 Katalco Corporation Shaped catalyst particle for use in hydroprocessing of petroleum oils
US4652545A (en) * 1985-05-06 1987-03-24 American Cyanamid Company Catalyst for hydroconversion of heavy oils and method of making the catalyst
JPH0661464B2 (en) * 1986-02-26 1994-08-17 住友金属鉱山株式会社 Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils
MY139580A (en) 2002-06-07 2009-10-30 Shell Int Research Shaped catalyst particles for hydrocarbon synthesis
CN1713960A (en) * 2002-11-04 2005-12-28 国际壳牌研究有限公司 Elongated shaped particles, use as a catalyst or support thereof
CA2714818A1 (en) * 2007-01-18 2008-07-24 Janssen Pharmaceutica Nv Catalyst, catalyst precursor, catalyst carrier, preparation and use of thereof in fischer-tropsch synthesis
CN109718862B (en) * 2017-10-27 2021-11-09 中国石油化工股份有限公司 Silicon-containing alumina carrier and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3814684A (en) * 1972-06-14 1974-06-04 Gulf Research Development Co Residue hydrodesulfurization process with catalysts whose pores have a small orifice size
JPS5420962A (en) * 1977-07-15 1979-02-16 Matsuyama Sekyu Kagaku Kk Combined distillation system
JPS5520962A (en) * 1978-08-03 1980-02-14 Shuichi Sakai Rolling roll

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3814684A (en) * 1972-06-14 1974-06-04 Gulf Research Development Co Residue hydrodesulfurization process with catalysts whose pores have a small orifice size
JPS5420962A (en) * 1977-07-15 1979-02-16 Matsuyama Sekyu Kagaku Kk Combined distillation system
JPS5520962A (en) * 1978-08-03 1980-02-14 Shuichi Sakai Rolling roll

Also Published As

Publication number Publication date
JPS55119445A (en) 1980-09-13

Similar Documents

Publication Publication Date Title
US4510263A (en) Catalyst with high geometric surface area alumina extrudate and catalyst with high geometric surface area
CA1183120A (en) Hydrogenation catalyst for desulfurization and removal of heavy metals
US3966644A (en) Shaped catalyst particles
JP5684107B2 (en) Method for converting catalyst systems and crude oil feeds with such catalyst systems
EP1993729B1 (en) Method for preparing a catalyst for hydrotreating process
KR20010040660A (en) Catalyst for hydrofining and method for preparation thereof
KR20150016573A (en) Improved catalyst and process for hydroconversion of a heavy feedstock
JPH0154096B2 (en)
JPH0117415B2 (en)
US4013547A (en) Desulfurization of residual petroleum oils with a catalyst calcined at higher temperatures
EP1392431B1 (en) High-macropore hydroprocessing catalyst and its use
US4981832A (en) Catalyst composition for hydrogenation of heavy hydrocarbon oil and process for producing the catalyst
CA1248513A (en) Residual hydrocarbon demetalation and desulfurization
US4908344A (en) Hydroprocessing catalyst and support having bidisperse pore structure
US5944983A (en) Hydrotreating catalyst and hydrotreating process of hydrocarbon oil by using the same
JP3545943B2 (en) Hydrorefining catalyst
EP0243894B1 (en) Hydroprocessing catalyst and support having bidisperse pore structure
JP2002119866A (en) Hydrotreating catalyst particle
JPH09248460A (en) Catalyst for hydrogenating treatment of heavy oil and hydrogenating treatment method
JPH0295443A (en) Catalyst for hydrogenation treatment of residual oil
JP3802939B2 (en) Catalyst for hydrotreating
CN103374388A (en) Hydrotreating method of heavy oil with high contents of iron and calcium
JPS6333416B2 (en)
JP4519379B2 (en) Heavy hydrocarbon oil hydrotreating catalyst
JP2001162168A (en) Hydrogenation catalyst and method for hydrogenation treatment of heavy hydrocarbon oil by using that catalyst