JPH01172279A - Metal/ceramic joining material and production thereof - Google Patents

Metal/ceramic joining material and production thereof

Info

Publication number
JPH01172279A
JPH01172279A JP32860787A JP32860787A JPH01172279A JP H01172279 A JPH01172279 A JP H01172279A JP 32860787 A JP32860787 A JP 32860787A JP 32860787 A JP32860787 A JP 32860787A JP H01172279 A JPH01172279 A JP H01172279A
Authority
JP
Japan
Prior art keywords
aluminosilicate
metal
powder
shows
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32860787A
Other languages
Japanese (ja)
Inventor
Nobuo Tokina
常名 伸夫
Tsutomu Ishikawa
努 石川
Takeshi Kawabe
川辺 健
Masanobu Nakamura
中村 昌允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP32860787A priority Critical patent/JPH01172279A/en
Publication of JPH01172279A publication Critical patent/JPH01172279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title material in which fine metallic particles are uniformly disperse din an aluminosilicate base material and it is excellent in bonding strength and utilizable as a brazing material by reducing aluminosilicate substituted with metallic ions which has been obtained by bringing aluminosilicate powder into contact with a metallic salt aq. soln. CONSTITUTION:Aluminosilicate powder substituted with metallic ions is obtained by mixing A-type, X-type and Y-type crystalline aluminosilicate (zeolite) having <=5mu mean particle diameter shown in a formula [(m) shows 0.5-1.5, (n) shows 0.5-50 and Me shows Na, K] with one or more kinds of metallic salt aq. soln. selected among groups of both transition metal such as Ag, Fe, Ni, Cu, Mn, Ti, Y, Zr, Nb, Mo, Nd, Er and Pb. Then the title having <=1,000Angstrom mean particle diameter are uniformly dispersed and incorporated at 10-60wt.% in the joined material is obtained by heating and reducing this powder at 150-1,000 deg.C in the atmosphere of only H2 or the reducing atmosphere of inert gas (e.g. N2) contg. >=10mol.% H2.

Description

【発明の詳細な説明】 挟巖分立 本発明は、超微粒子状の金属を均一に分散、含有するア
ルミノシリケートからなる金属・セラミックス接合材料
、およびこのような接合材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal-ceramic bonding material made of aluminosilicate containing ultrafine metal particles uniformly dispersed therein, and to a method for manufacturing such a bonding material.

丈米抜! セラミックスと金属との接合方法は、現在重要な工業的
課題として注目されている。特に、エンジン等の機械的
な応用に際しては、耐熱性、断熱性、硬度、耐摩耗性、
耐食性を必要とする部分はセラミックスで構成し、それ
以外の部分は金属で構成するのが合理的であり、脆さや
高価格などのセラミックスの短所を補うためにも必要で
ある。そこで、簡単で、しかも信頼性の高いセラミック
ス・金属の接合方法の開発がまたれている。
No long rice! The method of joining ceramics and metals is currently attracting attention as an important industrial issue. In particular, for mechanical applications such as engines, heat resistance, heat insulation, hardness, wear resistance,
It is reasonable to configure parts that require corrosion resistance with ceramics and other parts with metals, and this is necessary to compensate for the disadvantages of ceramics such as brittleness and high cost. Therefore, efforts are being made to develop a simple and highly reliable method for joining ceramics and metal.

セラミックスと金属との接合方法としては。As a method of joining ceramics and metal.

有機系接着剤による接合、ケイ酸アルカリ等の無機系接
着剤による接合、ねじ止め等の機械的接合、ろう付は剤
を使用するブレージング法。
Bonding using organic adhesives, bonding using inorganic adhesives such as alkali silicate, mechanical bonding such as screwing, and brazing methods that use brazing agents.

中間物を介さず直接接合するウェルディング法などがあ
り、ブレージング法は一般に、強度・気密性が高く、過
酷な使用条件に耐えうるという特徴を有している。
There are welding methods that directly join materials without using an intermediate, and brazing methods generally have high strength and airtightness, and are able to withstand harsh usage conditions.

ブレージング法としては、Ti、Zr、Ni等をろう材
として用いる活性金属法、Cuをろう材として用いる調
法、鉛ガラスやCab。
Brazing methods include an active metal method using Ti, Zr, Ni, etc. as a brazing material, a preparation method using Cu as a brazing material, lead glass, and Cab.

AI、O,含有ガラスをろう材として用いる酸化物ガラ
ス法などが知られているが、いずれも接着強度が十分で
ないという問題があった。この原因としては、金属とセ
ラミックスとを高温でろう付けする場合、ろう付は後の
冷却過程で金属およびセラミックスが収縮するが、金属
の収縮率がセラミックスのそれよりも著しく大きいため
、大きな圧縮応力が発生することにあり、場合によって
はセラミックス部品が破壊に至ることもある。
Although oxide glass methods using AI-, O-, and glass-containing glasses as brazing materials are known, they all have the problem of insufficient adhesive strength. The reason for this is that when metals and ceramics are brazed at high temperatures, the metal and ceramics shrink during the subsequent cooling process, and the shrinkage rate of the metal is significantly greater than that of the ceramics, resulting in large compressive stress. This can lead to destruction of ceramic parts in some cases.

特開昭59−102876号公報には、非酸化物系セラ
ミックスと金属とを接合するに際して、その中間に酸化
物セラミックス層および金属層を設けて両者をろう材に
より接合することが記載されている。しかしこの方法に
よっても、接着強度が弱いという欠点を克服するには至
らず、また、作業性も悪い。
JP-A-59-102876 describes that when non-oxide ceramics and metal are bonded, an oxide ceramic layer and a metal layer are provided in between and the two are bonded using a brazing material. . However, even with this method, the drawback of weak adhesive strength cannot be overcome, and workability is also poor.

1豆立旦煎 本発明は、面倒な前処理を必要とすることもなく、金属
とセラミックスとの間の強固な接着が可能な接合材料お
よびその製造方法を提供するものである。
The present invention provides a bonding material that enables strong bonding between metal and ceramics without requiring troublesome pretreatment, and a method for manufacturing the same.

】」R1」腹 本発明の金属・セラミックス接合材料は、アルミノシリ
ケートの母材中に、金属超微粒子を均一分散させたこと
を特徴とする。
] "R1" The metal-ceramic bonding material of the present invention is characterized by uniformly dispersing ultrafine metal particles in an aluminosilicate base material.

また、本発明の金属・セラミックス接合材料の製造方法
は、次の(a)および(b)工程を有することを特徴と
する。
Further, the method for manufacturing a metal-ceramic bonding material of the present invention is characterized by having the following steps (a) and (b).

(a):金属塩水溶液とアルミノシリケート粉体とを接
触せしめ、該金属イオンで置 換されたアルミノシリケート粉体を製 造する工程。
(a): A step of bringing an aqueous metal salt solution into contact with aluminosilicate powder to produce aluminosilicate powder substituted with the metal ions.

(b) : (、)工程で得られた金属イオン置換アル
ミノシリケート粉体を、還元性雰囲気 下で還元処理し、金属超微粒子をアル ミノシリケート母体中に分散させる工 程。
(b): A step in which the metal ion-substituted aluminosilicate powder obtained in step (,) is subjected to a reduction treatment in a reducing atmosphere to disperse ultrafine metal particles in the aluminosilicate matrix.

以下、本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.

アルミノシリケートとしては、ゼオライトが好適である
。ゼオライトは、アルミニウム原子、ケイ素原子および
酸素原子が結合して規則的な三次元骨格格子を作り、こ
の格子の空洞内にナトリウムやカリウム等のカチオンが
含まれている。後述の本発明の製造方法では、この規則
正しい空洞構造に着目し、この空洞内を利用して金属超
微粒子を生成せしめることにより、均一分散が容易に可
能となる。
Zeolite is suitable as the aluminosilicate. In zeolite, aluminum atoms, silicon atoms, and oxygen atoms combine to form a regular three-dimensional skeletal lattice, and cations such as sodium and potassium are contained in the cavities of this lattice. In the manufacturing method of the present invention, which will be described later, by focusing on this regular cavity structure and generating ultrafine metal particles using the interior of the cavities, uniform dispersion can be easily achieved.

金属超微粒子は、本発明の接合材料中に、 10〜60
重量%含有せしめるのが好適であり、好ましくは15〜
50重量%である。金属含有量が少な過ぎると接着強度
が小さく、一方、多過ぎると金属超微粒子を均一に分散
させることが固層となる。
The ultrafine metal particles in the bonding material of the present invention have a content of 10 to 60
It is suitable to contain 15% by weight, preferably 15% to 15% by weight.
It is 50% by weight. If the metal content is too small, the adhesive strength will be low, while if it is too large, uniform dispersion of ultrafine metal particles will result in a solid layer.

金属としては、Ag、Fe、Ni、Cu。Metals include Ag, Fe, Ni, and Cu.

Mn、Ti、Y、Z r、Nb、Mo、Nd、Er等の
遷移金属あるいはpbなどが好適である。
Transition metals such as Mn, Ti, Y, Zr, Nb, Mo, Nd, Er, or pb are suitable.

金属は2種以上併用することもできる。Two or more metals can also be used in combination.

金属は、超微粒子として、好ましくは平均粒径1000
Å以下、より好ましくは200Å以下の超微粒子として
アルミノシリケート中に均一に分散される。
The metal preferably has an average particle size of 1000 as ultrafine particles.
They are uniformly dispersed in the aluminosilicate as ultrafine particles with a size of Å or less, preferably 200 Å or less.

本発明の金属・セラミックス接合材料は、1μ園以下、
好ましくは0.3μ−以下の粉体として調製することが
好適である。
The metal-ceramic bonding material of the present invention is less than 1 μm,
Preferably, it is suitably prepared as a powder of 0.3 μm or less.

このような金属・セラミックス接合材料は。This type of metal/ceramic bonding material.

ゼオライトのようなアルミノシリケートの空洞中のナト
リウムやカリウムがイオン交換性であることを利用して
金属イオンを取り込み、これを還元して規則的な格子を
利用して金属微粒子を直接生成せしめることにより得ら
れる。
By taking advantage of the ion-exchange properties of sodium and potassium in the cavities of aluminosilicate such as zeolite, we take in metal ions and reduce them to directly generate metal particles using a regular lattice. can get.

Cu等の金属イオンによる置換は、アルミノシリケート
粉体と金属塩水溶液とを混合することにより行える。具
体的には、 Cu (N Oa )−などの金属塩水溶
液と、アルミノシリケート粉体または分散液(スラリー
)とを撹拌下で混合することにより金属イオン置換アル
ミノシリケートが得られる。撹拌は系が均一になる程度
でよく、温度は高いほど置換が速やかに進行する。最終
的に得られる粉体中の金属量は、金属イオンの置換率を
制御することにより調整できる。
Substitution with metal ions such as Cu can be performed by mixing aluminosilicate powder and an aqueous metal salt solution. Specifically, a metal ion-substituted aluminosilicate is obtained by mixing an aqueous solution of a metal salt such as Cu (N Oa )- and an aluminosilicate powder or dispersion (slurry) with stirring. Stirring is sufficient to make the system uniform, and the higher the temperature, the more rapidly the substitution will proceed. The amount of metal in the finally obtained powder can be adjusted by controlling the substitution rate of metal ions.

アルミノシリケート粉体としては、無水物として、下記
一般式(1)で表されるものが好適であり、特にA型、
X型、Y型の結晶性アルミノシリケート(ゼオライト)
が好ましい。
As the aluminosilicate powder, those represented by the following general formula (1) as anhydrides are preferable, especially type A,
X-type, Y-type crystalline aluminosilicate (zeolite)
is preferred.

mMe、0AR20,・n5io、  −(1)(m 
=0.5〜1.5、n=0.5〜50、M e = N
 a、K) アルミノシリケート粉体は、平均粒径5μ票以下、好ま
しくは0.5μm以下のものが好適である。
mMe, 0AR20,・n5io, −(1)(m
=0.5-1.5, n=0.5-50, M e = N
a, K) The aluminosilicate powder preferably has an average particle size of 5 μm or less, preferably 0.5 μm or less.

ついで、金属イオン置換アルミノシリケートを、混合液
から固液分離し、水洗する。固液分離は、ベルト式のド
ラム式真空r過器、遠心分離器、デカントなどの通常の
方法により行われる。
Then, the metal ion-substituted aluminosilicate is separated into solid and liquid from the mixed liquid and washed with water. Solid-liquid separation is performed by a conventional method such as a belt-type drum vacuum filtration device, a centrifugal separator, or a decant.

次に、この置換アルミノシリケートを還元して、金属が
超微粒子として均一分散した金属・セラミックス接合材
料が得られる。還元処理は、好ましくは10モル算以上
の水素を含有する還元性ガス雰囲気下に行われる。この
ガス雰囲気は、水素のみ(100モル%)を用いてもよ
く、水素と窒素、アルゴン等の不活性ガスとを併用して
もよい。水素濃度が低すぎると還元が十分に進まなり1
゜ 還元は、150〜1000℃、好ましくは200〜70
0℃で行う、温度が低すぎると、還元が十分に進行しな
い、また、温度が高すぎても還元の効果は飽和に達し、
それ以上の加熱は不経済である。
Next, this substituted aluminosilicate is reduced to obtain a metal-ceramic bonding material in which metal is uniformly dispersed as ultrafine particles. The reduction treatment is preferably performed in a reducing gas atmosphere containing 10 moles or more of hydrogen. For this gas atmosphere, hydrogen alone (100 mol %) may be used, or hydrogen and an inert gas such as nitrogen or argon may be used in combination. If the hydrogen concentration is too low, reduction will not proceed sufficiently1
°Reduction is carried out at 150-1000°C, preferably 200-70°C.
If the temperature is too low, the reduction will not proceed sufficiently, and if the temperature is too high, the reduction effect will reach saturation.
Further heating is uneconomical.

結晶性アルミノシリケートを用いた場合、この還元処理
により、アルミノシリケート母材が結晶性を保持してい
ても、また、非晶質となっていてもよい。
When a crystalline aluminosilicate is used, the aluminosilicate base material may maintain crystallinity or may become amorphous due to this reduction treatment.

本発明の接合材料を用いて金属・セラミックスを接合す
るには、接合すべき金属材料とセラミックス材料との間
にろう付は材として本発明の接合材料層を形成し、加熱
、ろう付けすることにより行なうことができる。
To join metals and ceramics using the joining material of the present invention, a layer of the joining material of the present invention is formed as a brazing material between the metal material and the ceramic material to be joined, and then heated and brazed. This can be done by

見匪立羞果 本発明によれば、セラミックス素材であるアルミノシリ
ケート中に、金属超微粒子を均一に分散させて金属・セ
ラミックス接合材料とすることにより、金属とセラミッ
クスとを優れた接着強度で結合することができる。これ
は、本発明の接合材料をろう付材として用いた場合に。
According to the present invention, by uniformly dispersing ultrafine metal particles in aluminosilicate, which is a ceramic material, and using it as a metal-ceramic bonding material, metal and ceramics can be bonded with excellent adhesive strength. can do. This occurs when the bonding material of the present invention is used as a brazing material.

超微粒子金属の表面活性が著しく高く界面の親和性が大
きくなると同時に、冷却時の圧縮応力を超微粒子が吸収
し、これにより接着強度が向上するためと思われる。
This is thought to be because the surface activity of the ultrafine metal particles is extremely high, increasing the affinity of the interface, and at the same time, the ultrafine particles absorb compressive stress during cooling, thereby improving adhesive strength.

本発明の製造方法によれば、アルミノシリケートのイオ
ン交換能を利用し、金属イオンをアルミノシリケートの
空洞中に取り込み、これを還元して金属とすることによ
り、金属の超微粒子がアルミノシリケートマトリックス
中に均一に分散した接合材料を容易に得ることができる
According to the production method of the present invention, by utilizing the ion exchange ability of aluminosilicate, metal ions are taken into the cavities of aluminosilicate, and the metal ions are reduced to metal, so that ultrafine metal particles are incorporated into the aluminosilicate matrix. A uniformly dispersed bonding material can be easily obtained.

この接合材料を用いることにより、上記優れた接着特性
を、いかんなく発現させることができる。
By using this bonding material, the above-mentioned excellent adhesive properties can be fully exhibited.

実施例1 後記表−1に示した各種金属の硝酸塩の所定量を2Qの
水に溶解し、これに結晶性アルミノシリケート(NaA
型、純分77.8%)284.0 gを添加し1表−1
の吸着温度および時間をかけて撹拌下で吸着を行なった
Example 1 A predetermined amount of nitrates of various metals shown in Table 1 below was dissolved in 2Q water, and crystalline aluminosilicate (NaA
Add 284.0 g of mold, purity 77.8%)
Adsorption was carried out under stirring at an adsorption temperature and time.

この後、吸引濾過により固液分離し、純水で洗浄した後
、105℃の乾燥機中で乾燥した。乾燥は噴霧乾燥、バ
ンド乾燥、ドラム乾燥等公知の乾燥方法が使用できる。
Thereafter, solid-liquid separation was performed by suction filtration, washed with pure water, and then dried in a dryer at 105°C. For drying, known drying methods such as spray drying, band drying, drum drying, etc. can be used.

乾燥後の金属イオン置換アルミノシリケートを2Qのオ
ートクレーブに移し、表−1の還元条件下で還元を行な
い、金属超微粒子分散アルミノシリケート粉末を得た。
The dried metal ion-substituted aluminosilicate was transferred to a 2Q autoclave and reduced under the reducing conditions shown in Table 1 to obtain aluminosilicate powder in which ultrafine metal particles were dispersed.

次いで、接合する金属とセラミックスとの間に得られた
金属超微粒子分散アルミノシリケートの層を形成し、1
400℃にて5hr真空焼結を行なった。得られたもの
の接合強度(引張り強度)を表−1に示す。
Next, a layer of the obtained ultrafine metal particle-dispersed aluminosilicate is formed between the metal and ceramic to be joined, and 1
Vacuum sintering was performed at 400°C for 5 hours. The bonding strength (tensile strength) of the obtained product is shown in Table 1.

(以下余白) 表−1(Margin below) Table-1

Claims (2)

【特許請求の範囲】[Claims] 1.アルミノシリケート母材中に金属超微粒子を均一分
散させたことを特徴とする金属・セラミックス接合材料
1. A metal/ceramic bonding material characterized by uniformly dispersing ultrafine metal particles in an aluminosilicate base material.
2.(a):金属塩水溶液とアルミノシリケート粉体と
を接触せしめ該金属イオンで置換 されたアルミノシリケート粉体を製造 する工程、 (b):得られた金属イオン置換アルミノシリケート粉
体を、還元性雰囲気下で還元 処理し、金属超微粒子をアルミノシリ ケート母体中に分散させる工程 を有することを特徴とする金属・セラミックス接合材料
の製造方法。
2. (a): A step of bringing an aqueous metal salt solution into contact with an aluminosilicate powder to produce an aluminosilicate powder substituted with the metal ions; A method for producing a metal-ceramic bonding material, comprising a step of performing a reduction treatment in an atmosphere and dispersing ultrafine metal particles in an aluminosilicate matrix.
JP32860787A 1987-12-25 1987-12-25 Metal/ceramic joining material and production thereof Pending JPH01172279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32860787A JPH01172279A (en) 1987-12-25 1987-12-25 Metal/ceramic joining material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32860787A JPH01172279A (en) 1987-12-25 1987-12-25 Metal/ceramic joining material and production thereof

Publications (1)

Publication Number Publication Date
JPH01172279A true JPH01172279A (en) 1989-07-07

Family

ID=18212161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32860787A Pending JPH01172279A (en) 1987-12-25 1987-12-25 Metal/ceramic joining material and production thereof

Country Status (1)

Country Link
JP (1) JPH01172279A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006700A2 (en) * 1994-08-25 1996-03-07 Qqc, Inc. Nanoscale particles, and uses for same
KR20020061584A (en) * 2002-07-09 2002-07-24 나노기술개발(주) The brazing process on the low temperature between ceramics and metal using nano composite particles
JP2014196233A (en) * 2013-03-07 2014-10-16 独立行政法人産業技術総合研究所 Method for joining ceramic member and aluminum member together and assembly

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006700A2 (en) * 1994-08-25 1996-03-07 Qqc, Inc. Nanoscale particles, and uses for same
WO1996006700A3 (en) * 1994-08-25 1996-03-28 Qqc Inc Nanoscale particles, and uses for same
US5902498A (en) * 1994-08-25 1999-05-11 Qqc, Inc. Methods of joining metal components and resulting articles particularly automotive torque converter assemblies
KR20020061584A (en) * 2002-07-09 2002-07-24 나노기술개발(주) The brazing process on the low temperature between ceramics and metal using nano composite particles
JP2014196233A (en) * 2013-03-07 2014-10-16 独立行政法人産業技術総合研究所 Method for joining ceramic member and aluminum member together and assembly
JP2018090488A (en) * 2013-03-07 2018-06-14 国立研究開発法人産業技術総合研究所 Method for joining ceramic member and aluminum member, and joined body

Similar Documents

Publication Publication Date Title
CN113307647B (en) Indirect brazing method of aluminum nitride ceramic copper-clad plate
US3620799A (en) Method for metallizing a ceramic body
US20100028699A1 (en) Metal-ceramic composite with good adhesion and method for its production
CN101172880A (en) Titanium group high temperature amorphous solder of hard solder Si*N* ceramic and method for producing the same
JP2001010874A (en) Production of composite material of inorganic material with metal containing aluminum and product related to the same
JPH03115535A (en) Method for decreasing oxygen in rare earth metal
JPH04293743A (en) Ternary brazing alloy for carbon or graphite
RU2196683C2 (en) Substrate, method for its production (versions) and metallic compound of articles
CN1046945A (en) Quaternary grain refiner and manufacture method thereof
JPH01172279A (en) Metal/ceramic joining material and production thereof
US3255522A (en) Abrasion resistant material bonding process using boron alloys
US6077564A (en) Process for producing a metal-coated, metallized component of aluminum nitride ceramic and metal-coated component obtained thereby
US3312533A (en) Ceramic article with sintered metallic layer and flux
US2848802A (en) Method of soft soldering to nonmetallic refractory bodies
TW574175B (en) Material compound, and the manufacture thereof
CN106048285B (en) A kind of method for preparing CNT graphene powder composite strengthening leypewter
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
CN110695565B (en) Indium-based active brazing filler metal for brazing quartz and kovar alloy and brazing process
CN112299869B (en) Laser welding method for silicon carbide and composite material thereof
CN1244934C (en) Insulation material for heating wire, method for making same and use thereof
CN107587010A (en) A kind of block cast formula aluminium alloy processing method
JPH0240028B2 (en) SERAMITSUKUSUTOKINZOKU * DOSHUSERAMITSUKUSUDOSHIMATAHAISHUSERAMITSUKUSUKANNOSETSUGOHOHO
JPS63144112A (en) Ceramic composition containing metallic ultrafine powder
JPH03140427A (en) Manufacture of magnesium-series sintered composite
CN1504586A (en) Silicide alloy-titanium carbide cermet