JPH01172203A - Carbon film - Google Patents

Carbon film

Info

Publication number
JPH01172203A
JPH01172203A JP62330807A JP33080787A JPH01172203A JP H01172203 A JPH01172203 A JP H01172203A JP 62330807 A JP62330807 A JP 62330807A JP 33080787 A JP33080787 A JP 33080787A JP H01172203 A JPH01172203 A JP H01172203A
Authority
JP
Japan
Prior art keywords
carbon film
carbon
film
diamond
raman spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62330807A
Other languages
Japanese (ja)
Inventor
Hideo Kurokawa
英雄 黒川
Tsutomu Mitani
力 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62330807A priority Critical patent/JPH01172203A/en
Publication of JPH01172203A publication Critical patent/JPH01172203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a novel carbon film different from conventional carbon films by specifying Raman spectrum of the carbon film. CONSTITUTION:A novel carbon film exhibiting Raman spectrum having principal peaks at 1,410cm<-1> and 1,450cm<-1> is provided. Said carbon film exhibits quite different Raman spectrum from that exhibited by carbon films known in the prior part, such as thin diamond film synthesized by several method, i-carbon film or carbon film contg. scattered crystallite of diamond in i-carbon, etc. The carbon film of the present invention has an amorphous structure consisting primarily of a same structure as turbulent diamond, containing scarcely graphitic structure, and having high hardness and high insulating property, etc. The carbon film can be synthesized by arc discharge, or arc discharge plus glow discharge.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蒸着法、スパッタリング法、イオンブレーテ
ィング法1等のPVD法や、各種CVD法で合成された
従来の炭素膜とは異なる新しい炭素膜に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a new carbon film different from conventional carbon films synthesized by PVD methods such as vapor deposition method, sputtering method, ion blating method, etc., and various CVD methods. It is related to.

従来の技術 最近、硬度、熱伝導率、比抵抗、などの緒特性がダイヤ
モンドに近いダイヤモンド膜やダイヤモンド状炭素膜に
関する研究が数多く報告されている(鈴木他;昭和62
年秋季応用物理学会講演論文集18p−T−6など)。
Conventional technology Recently, many studies have been reported on diamond films and diamond-like carbon films that have hardness, thermal conductivity, resistivity, and other properties similar to those of diamond (Suzuki et al.; 1982).
Proceedings of the Japan Society of Applied Physics Autumn 2016, p. 18, p-T-6, etc.).

ダイヤモンド膜の合成法については、比較的高い温度、
ガス圧力の条件で炭素、もしくは炭素の化合物を含む気
相と成長表面での十分な化学反応を利用して炭素の析出
を行わせるCVD法(熱分解法、熱フイラメント法、プ
ラズマ法等)や、より高真空で高速の炭素原子、イオン
あるいは炭化水素イオン等を、比較的低温の基板にぶつ
けるPVD法(イオンビーム法、イオン化蒸着法等)が
提案されている。
Regarding the synthesis method of diamond film, relatively high temperature,
CVD methods (thermal decomposition method, thermal filament method, plasma method, etc.) in which carbon is deposited using sufficient chemical reaction between the gas phase containing carbon or carbon compounds and the growth surface under gas pressure conditions; A PVD method (ion beam method, ionization vapor deposition method, etc.) has been proposed in which high-speed carbon atoms, ions, hydrocarbon ions, etc. are bombarded onto a relatively low-temperature substrate in a higher vacuum.

そしてこれら合成法を用いて結晶質から非晶質にわたる
数々の炭素膜が報告されている。炭素膜の評価は、エネ
ルギー損失分光分析、電子線回折などで行われているが
、炭素の同素体を明確に分離できることから特にラマン
分光分析が有効と考えられている。ダイヤモンドのラマ
ンスペクトルは1330c+w−’近傍に鋭いピークを
示し、グラファイトでは1580c+a−’および13
60cm−’近傍にピークを示す(第2図参照)。
A number of carbon films ranging from crystalline to amorphous have been reported using these synthesis methods. Carbon films are evaluated using energy loss spectroscopy, electron beam diffraction, etc., but Raman spectroscopy is considered particularly effective because it can clearly separate carbon allotropes. The Raman spectrum of diamond shows a sharp peak near 1330c+w-', and for graphite it shows a sharp peak near 1580c+a-' and 13
A peak is shown near 60 cm-' (see Figure 2).

上記合成法で合成された炭素膜のラマンスペクトルを調
べると、ダイヤモンドとほぼ同程度の緒特性を有する結
晶質の膜では第3図に示すようにブロードなピークのな
かに1330cm−’の鋭いピークが認められ、はぼダ
イヤモンドの多結晶膜と考えられる。膜の表面には微結
晶が集まった形態が観察され、ダイヤモンド薄膜と称さ
れている。
Examining the Raman spectrum of the carbon film synthesized by the above synthesis method, a crystalline film with almost the same properties as diamond has a sharp peak at 1330 cm-' among the broad peaks as shown in Figure 3. is observed, and it is considered to be a polycrystalline film of diamond. A collection of microcrystals is observed on the surface of the film, which is called a diamond thin film.

またi−カーボンと称された比較的高硬度の非晶質膜で
は、1520〜1580cm−’に主ピークを持つブロ
ードなラマンスペクトルが観測される(第4図参照)。
Furthermore, in a relatively hard amorphous film called i-carbon, a broad Raman spectrum with a main peak at 1520 to 1580 cm-' is observed (see FIG. 4).

i−カーボン膜は非晶質硬質炭素膜。The i-carbon film is an amorphous hard carbon film.

あるいはダイヤモンド状炭素膜と称されることがある。Alternatively, it is sometimes called a diamond-like carbon film.

i−カーボン膜の中にダイヤモンドの微結晶粒が散在す
るような場合は、ブロードなピークの中にダイヤモンド
の鋭いピークが存在するラマンスペクトルとなる。
If diamond microcrystal grains are scattered in the i-carbon film, the Raman spectrum will have a sharp diamond peak among the broad peaks.

発明が解決しようとする問題点 本発明は、各種合成法で作られたダイヤモンド薄膜、i
−カーボン膜あるいはi−カーボンの中にダイヤモンド
微結晶が散在する膜、など従来から報告されている膜と
は全く異なったラマンスペクトルを示す新しい炭素膜を
提供するものである。
Problems to be Solved by the Invention The present invention provides diamond thin films made by various synthetic methods, i.
The present invention provides a new carbon film that exhibits a Raman spectrum completely different from conventionally reported films, such as carbon films or i-carbon films in which diamond microcrystals are interspersed.

問題点を解決するための手段 本発明に記載する新しい炭素膜は、アーク放電、もしく
はグロー放電にアーク放電を付加することにより実現さ
れる。
Means for Solving the Problems The new carbon film described in the present invention is realized by adding arc discharge to arc discharge or glow discharge.

作用 アーク放電を利用することで従来から報告されている膜
とは全く異なったラマンスペクトルを示す炭素膜が合成
されるメカニズムについては、まだよ(わかっていない
。本発明者は、アーク放電がグロー放電等に比べて局部
的ではあるが高温プラズマ状態となり、イオンや電子の
密度、ラジカル等中性粒子の密度が高くなることに原因
があると考えている。従ってアーク放電以外でも、例え
ば大気圧近傍でマイクロ波等を用いて熱プラズマを作り
これを利用すれば同様の膜を合成することが可能である
と考えている。
The mechanism by which a carbon film that exhibits a Raman spectrum that is completely different from that of previously reported films is synthesized by using working arc discharge is not yet known. We believe that the cause is that, compared to electric discharges, it becomes a high-temperature plasma state, albeit locally, and the density of ions, electrons, and neutral particles such as radicals increases.Therefore, other than arc discharges, for example, atmospheric pressure We believe that it is possible to synthesize similar films by creating thermal plasma nearby using microwaves or the like.

実施例 第1図に、本願の炭素膜を合成する際に使用した装置の
概略を示す。これはすでに本発明者らが提案しているプ
ラズマ・インジェクションCVD装置であり(特開昭6
1−130487号公報:プラズマ・インジェクション
CVD装置)、プラズマ管1と基体11を設置する真空
槽2から構成される。プラズマ管1の外周部には励起コ
イル3が設置され、管内にグロー放電を生じさせる。
EXAMPLE FIG. 1 shows an outline of the apparatus used to synthesize the carbon film of the present application. This is a plasma injection CVD apparatus that the present inventors have already proposed (Japanese Patent Laid-Open No. 6
No. 1-130487: Plasma Injection CVD Apparatus) is composed of a plasma tube 1 and a vacuum chamber 2 in which a substrate 11 is installed. An excitation coil 3 is installed around the outer periphery of the plasma tube 1 to generate a glow discharge inside the tube.

またプラズマ管1内には電極9が設置され、基体11も
しくは基体設置台12との間に電位が設定される。10
Torr以上の高真空に排気されたプラズマ管1の中に
ArガスとCI4ガスを導入する。
Further, an electrode 9 is installed inside the plasma tube 1, and a potential is set between it and the substrate 11 or the substrate installation table 12. 10
Ar gas and CI4 gas are introduced into a plasma tube 1 evacuated to a high vacuum of Torr or higher.

導入されたガスは励起コイル3に印加される高周波電力
によりプラズマ化される。この後電極9と基体11もし
くは基体設置台12との間に直流電源10により電位差
を設定する。通常はこの電位差でプラズマ中のイオンが
加速されたり、電極9と基体11との間でグロー放電が
生じる。プラズマ管内の圧力、電極9と基体11間の電
位差、電極9と基体11間の距離2等を適切に設定すれ
ば、電極9と基体11との間でアーク放電が生じる。例
えば電極9と基体11間の距離が15cm。
The introduced gas is turned into plasma by high frequency power applied to the excitation coil 3. Thereafter, a potential difference is set between the electrode 9 and the substrate 11 or the substrate installation stand 12 using the DC power supply 10. Usually, this potential difference accelerates ions in the plasma or causes glow discharge between the electrode 9 and the base 11. If the pressure inside the plasma tube, the potential difference between the electrode 9 and the base 11, the distance 2 between the electrode 9 and the base 11, etc. are appropriately set, arc discharge will occur between the electrode 9 and the base 11. For example, the distance between the electrode 9 and the base 11 is 15 cm.

プラズマ管1中のガス圧力が0,3Torr (導入ガ
スはArガスとCH4ガス)、基体の比抵抗が約0.1
ΩCSの場合、電極9と基体11間の電位差が0.8 
kV近傍でアーク放電が発生する。このアーク放電を利
用して基体11表面に膜を合成する。使用する原料ガス
はCHaガスに限るものではな(炭化水素ガスであれば
いずれのガスでもかまわない。また使用する装置もPI
−CVD装置に限るものでな(、例えば平行平板型のス
パッタリング装置のようにアーク放電が生じるものであ
れはいずれの構成のものでもかまわない。
The gas pressure in the plasma tube 1 is 0.3 Torr (the introduced gases are Ar gas and CH4 gas), and the specific resistance of the substrate is approximately 0.1.
In the case of ΩCS, the potential difference between the electrode 9 and the substrate 11 is 0.8
Arc discharge occurs near kV. A film is synthesized on the surface of the substrate 11 using this arc discharge. The raw material gas used is not limited to CHa gas (any hydrocarbon gas may be used. Also, the equipment used is PI gas).
- It is not limited to a CVD apparatus (for example, it may be of any configuration as long as it generates arc discharge, such as a parallel plate type sputtering apparatus).

この方法で合成した膜(以後アーク放電膜と略称する)
のラマンスペクトルを第5図に示す。第5図かられかる
ように、アーク放電を利用して合成した膜のラマンスペ
クトルは1410及び145Qcm−’にブロードな主
ピークを示すもので、従米からよ(知られているダイヤ
モンド、グラファイト、i−カーボン、あるいは無定形
炭素のラマンスペクトルとは全く異なる。天然ダイヤモ
ンドの表面に高エネルギーのArイオン(100Kev
以上)を衝突させ、その後ラマンスペクトルを測定する
と、ダイヤモンド結晶の1330cm−’にではなく1
370.1410,1450c「1にご(弱いピークが
認められた。これは高エネルギーのArイオンにより表
面のダイヤモンドの結晶性が乱されたためと考えられ、
これと同じピークを主とするアーク放電膜は乱れたダイ
ヤモンドと同じ構造の膜と推定される。アーク放電膜を
電子線回折及び透過電子顕微鏡で分析すると、結晶性は
認められず非晶質であることがわかった。またエネルギ
ー損失分光分析(ELLS)によると(第7図参照)5
〜8evのπ電子によるプラズモンピークは認められず
、グラファイト的な構造はあまり含まれていないと考え
られる。
Film synthesized using this method (hereinafter abbreviated as arc discharge film)
The Raman spectrum of is shown in FIG. As can be seen from Fig. 5, the Raman spectrum of the film synthesized using arc discharge shows broad main peaks at 1410 and 145 Qcm-', and it is found that -It is completely different from the Raman spectrum of carbon or amorphous carbon.High-energy Ar ions (100Kev) on the surface of natural diamond
(above)) and then measure the Raman spectrum, it is found that the diamond crystal is not at 1330 cm-' but at 1
370.1410, 1450c "1 Nigo (weak peak was observed. This is thought to be due to the disturbance of the crystallinity of the diamond on the surface by high-energy Ar ions.
It is presumed that the arc discharge film that mainly has the same peak is a film with the same structure as disordered diamond. When the arc discharge film was analyzed by electron diffraction and transmission electron microscopy, no crystallinity was observed and it was found to be amorphous. Also, according to energy loss spectroscopy (ELLS) (see Figure 7)5
A plasmon peak due to π electrons of ~8 ev was not observed, and it is thought that a graphite-like structure is not included much.

以上のことから、アーク放電膜はグラファイト的な構造
はあまり含まず乱れたダイヤモンドと同じ構造を主とす
る非晶質膜で、1410.14500「1にブロードな
ピークを持つラマンスペクトルを示し、従来から報告さ
れている膜とは異なる新しい炭素膜といえる。
From the above, the arc discharge film is an amorphous film that does not contain much graphite-like structure and has the same structure as disordered diamond, and it shows a Raman spectrum with a broad peak at 1410.14500 "1". This can be said to be a new carbon film, different from the film reported by.

アーク放電膜の特徴は非常に硬(、ダイヤモンドチップ
を備えたガラスカッターでのみ傷をつけることができた
。またアーク放電膜は絶縁性を示し、IQIOΩC1以
上の比抵抗を有する。膜の付着性は良好で、特にSi、
Ge、Sn基体に対しては極めて強い付着性を示す。A
u、Ag、Cu等一部の基体に対しては付着性が不十分
であるが、この場合良好な付着性を示すSi等の中間層
を設定することで対処できる。
The characteristic of the arc discharge film is that it is extremely hard (it could only be scratched with a glass cutter equipped with a diamond tip.The arc discharge film also exhibits insulating properties and has a specific resistance of IQIOΩC1 or higher.Adhesion of the film is good, especially Si,
It exhibits extremely strong adhesion to Ge and Sn substrates. A
Although adhesion is insufficient for some substrates such as U, Ag, and Cu, this can be overcome by providing an intermediate layer such as Si that exhibits good adhesion.

以上のような特性を生かし、工具の耐摩耗膜等耐久性、
耐摩耗性が必要な用途への応用展開が期待できる。
Taking advantage of the above characteristics, we can improve the durability of tools such as wear-resistant coatings,
It can be expected to be applied to applications that require wear resistance.

発明の効果 本発明は、グラファイト的な構造はあまり含まず乱れた
ダイヤモンドと同じ構造を主とする非晶質構造で、従来
から報告されているものとは異なる炭素膜を提供するす
るもので、硬度、絶縁性等の優れた緒特性を生かした広
い応用展開が可能となり、その効果は大きい。
Effects of the Invention The present invention provides a carbon film that is different from those previously reported, with an amorphous structure that does not contain much graphite-like structure and is mainly the same structure as disordered diamond. It has become possible to develop a wide range of applications by taking advantage of its excellent properties such as hardness and insulation, and its effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する際に使用した装置の構成図、
第2図はダイヤモンド及びグラファイトのラマンスペク
トル図、第3図、第4図はそれぞれダイヤモンド膜及び
i−カーボン膜のラマンスペクトル図、第5図は本発明
に記載した炭素膜のラマンスペクトル図、第6図は、表
面をArイオンで衝撃する前後のダイヤモンドのラマン
スペクトル図、第7図は、ダイヤモンド、グラファイト
、及び本発明に記載した炭素膜のラマンスペクトル図で
ある。 代理人の氏名 弁理士 中尾敏男 ほか1名第mrlI
J 第2図 ;・ 友 救 (の勺 第3図 2之 壇タ (C□−り 第4図 理数(C用1] 第5図 !二・°°・1: 11.−°。 016.、、、:、、:二 :;;、′:E・、−゛。 /π0  /、!;l)0  /、3%ス敷(cm”) 第6図 ↓ノ340 /、fl)0    147)0     /、300
刃文 a   (cm−リ
FIG. 1 is a configuration diagram of the apparatus used in carrying out the present invention;
Figure 2 is a Raman spectrum diagram of diamond and graphite, Figures 3 and 4 are Raman spectrum diagrams of a diamond film and an i-carbon film, respectively, and Figure 5 is a Raman spectrum diagram of a carbon film described in the present invention. FIG. 6 is a Raman spectrum diagram of diamond before and after the surface is bombarded with Ar ions, and FIG. 7 is a Raman spectrum diagram of diamond, graphite, and the carbon film described in the present invention. Name of agent: Patent attorney Toshio Nakao and 1 other person
J Diagram 2;・Friend Salvation (Nosei Diagram 3 2 no Danta) (C□-ri 4th Mathematics (1 for C)) Diagram 5! 2・°°・1: 11.-°. 016. ,,,:,,:2:;;,':E・,-゛. /π0 /,!;l)0 /,3% thread (cm”) Fig. 6↓ノ340 /,fl)0 147) 0 /, 300
Blade pattern a (cm-ri)

Claims (5)

【特許請求の範囲】[Claims] (1)1410cm^−^1、および1450cm^−
^1を主ピークとしたラマンスペクトルを示す炭素膜。
(1) 1410cm^-^1 and 1450cm^-
A carbon film showing a Raman spectrum with ^1 as the main peak.
(2)炭素膜がアーク放電を利用して合成された特許請
求の範囲第1項記載の炭素膜。
(2) The carbon film according to claim 1, wherein the carbon film is synthesized using arc discharge.
(3)炭素膜がアーク放電とグロー放電を併用して合成
された特許請求の範囲第1項記載の炭素膜。
(3) The carbon film according to claim 1, wherein the carbon film is synthesized using a combination of arc discharge and glow discharge.
(4)炭素膜が熱プラズマを利用して合成された特許請
求の範囲第1項記載の炭素膜。
(4) The carbon film according to claim 1, wherein the carbon film is synthesized using thermal plasma.
(5)炭素膜が非晶質である特許請求の範囲第1項記載
の炭素膜。
(5) The carbon film according to claim 1, wherein the carbon film is amorphous.
JP62330807A 1987-12-25 1987-12-25 Carbon film Pending JPH01172203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62330807A JPH01172203A (en) 1987-12-25 1987-12-25 Carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62330807A JPH01172203A (en) 1987-12-25 1987-12-25 Carbon film

Publications (1)

Publication Number Publication Date
JPH01172203A true JPH01172203A (en) 1989-07-07

Family

ID=18236772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62330807A Pending JPH01172203A (en) 1987-12-25 1987-12-25 Carbon film

Country Status (1)

Country Link
JP (1) JPH01172203A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6669996B2 (en) 2000-07-06 2003-12-30 University Of Louisville Method of synthesizing metal doped diamond-like carbon films
KR100422244B1 (en) * 1997-08-13 2004-03-10 나노-프로프리어터리, 인크. A carbon film for field emission devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422244B1 (en) * 1997-08-13 2004-03-10 나노-프로프리어터리, 인크. A carbon film for field emission devices
US6669996B2 (en) 2000-07-06 2003-12-30 University Of Louisville Method of synthesizing metal doped diamond-like carbon films

Similar Documents

Publication Publication Date Title
Bewilogua et al. History of diamond-like carbon films—From first experiments to worldwide applications
EP1238122B1 (en) Method and apparatus for forming carbonaceous film
EP0755460B1 (en) Process to produce diamond films
Zarrabian et al. Observation of nanocrystalline diamond in diamondlike carbon films deposited at room temperature in electron cyclotron resonance plasma
EP0278480B2 (en) Microwave enhanced cvd method for coating plastic articles with carbon film
WO1996033507A1 (en) Diamond thin film electron emitter
Fujimori et al. Carbon film formation by laser evaporation and ion beam sputtering
US5720808A (en) Method for forming diamond film
JP3026425B2 (en) Method for producing hard thin film and hard thin film
Meilunas et al. Diamond nucleation on surfaces using carbon clusters
Ohtake et al. Synthesis of diamond-like carbon films by nanopulse plasma chemical vapor deposition at subatmospheric pressure
JPS60195092A (en) Method and apparatus for production of carbon thin film
EP0846792B1 (en) Method of synthesizing diamond
JPH01172203A (en) Carbon film
Bae et al. High-speed deposition of graphite-like carbon film by Ar/C6H6 surface-wave plasma with high-voltage pulse biasing
Sattel et al. Nucleation during deposition of hydrocarbon ions as a function of substrate temperature
Kondo et al. Synthesis of diamond-like carbon films by nanopulse plasma chemical vapor deposition in open air
Shih et al. Application of diamond coating to tool steels
Joshi et al. Structure and properties of diamondlike carbon coatings deposited in rf plasma from benzene and monosubstituted benzenes
Baik et al. Large size plasma generation using multicathode direct current geometry for diamond deposition
JPH04118884A (en) Solid discharge element
EP0230927B1 (en) Diamond manufacturing
Ali et al. Role of surface pre-treatment in the CVD of diamond films on copper
JPS63286575A (en) Production of rigid carbon film
Yin et al. The application of the cathodic arc to plasma assisted chemical vapor deposition of carbon