JPH01170467A - Blood vessel substitute material - Google Patents

Blood vessel substitute material

Info

Publication number
JPH01170467A
JPH01170467A JP62329284A JP32928487A JPH01170467A JP H01170467 A JPH01170467 A JP H01170467A JP 62329284 A JP62329284 A JP 62329284A JP 32928487 A JP32928487 A JP 32928487A JP H01170467 A JPH01170467 A JP H01170467A
Authority
JP
Japan
Prior art keywords
blood vessel
artificial blood
substitute material
endothelial cells
artificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62329284A
Other languages
Japanese (ja)
Inventor
Hajime Kurumaya
元 車谷
Shoji Nagaoka
長岡 昭二
Koji Watanabe
渡辺 幸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62329284A priority Critical patent/JPH01170467A/en
Publication of JPH01170467A publication Critical patent/JPH01170467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To obtain a blood vessel substitute material excellent in bio- compatibility, by bonding a cell adhesive substance to the inner surface of an artificial blood vessel using extremely fine fibers at least in a part of the inner surface thereof and further bonding a vascular endothelial cell thereto in vitro. CONSTITUTION:In an artificial blood vessel used in a blood substitute material, extremely fine fibers of 0.5 denier or less are used at least in a part of the inner surface of said blood vessel and a cell adhesive substance such as collagen, gelatin or fibrin is applied to said inner surface. Subsequently, an endothelial cell is cultured in vitro to be bonded to the artificial blood vessel. Whereupon, the endothelial starts secretion and a basement membrane component such as collagen is strongly interlaced with the extremely fine fibers and, therefore, the endothelial cell becomes hard to release by blood flow. By this method, the blood substitute material excellent in bio-compatibility and generating no thromboembolism is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、生体適合性に優れた血管代替材料に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a blood vessel substitute material with excellent biocompatibility.

[従来の技術] 人工血管、血管パッチなどの血管代替材料において、例
えば人工血管では内径8mm以上のものでは臨床の実績
も積まれ多少の問題はあるものの、実用に供するものが
開発されている。しかし取扱性、生体適合性について満
足できるものは開発されていない。特に内径が6mm以
下の細径人工血管についてはその開発要求は極めて強い
ものの、未だ実用に耐えうるしのが開発されていない。
[Prior Art] Among blood vessel substitute materials such as artificial blood vessels and blood vessel patches, for example, artificial blood vessels with an inner diameter of 8 mm or more have been clinically proven and have been developed for practical use, although there are some problems. However, no material has been developed that is satisfactory in terms of handleability and biocompatibility. In particular, there is an extremely strong demand for the development of small-diameter artificial blood vessels with an inner diameter of 6 mm or less, but no one that can be put to practical use has yet been developed.

従って、より生体に近い優れた特性を有する人工血管へ
の要求は強く、さらに細径人工血管の開発が関係者の現
在の関心事であり、かつこの開発が切に望まれている。
Therefore, there is a strong demand for artificial blood vessels with excellent characteristics that are closer to those of living organisms, and the development of thinner artificial blood vessels is a current concern of those concerned, and the development of this is eagerly desired.

このような血管代替材料を開発する手段として、抗血栓
性を有する高分子材料を用いて人工血管を作成し、血栓
形成を本質的に押さえようとする試みが数多く行なわれ
てきた。しかし、長期間にわたって完全に血栓閉塞を押
さえうる例は未だない。
As a means of developing such blood vessel substitute materials, many attempts have been made to essentially suppress thrombus formation by creating artificial blood vessels using polymeric materials having antithrombotic properties. However, there has yet to be a case in which thrombotic occlusion can be completely suppressed over a long period of time.

一方、理想的な抗血栓性表面として血管の内腔を覆って
いる血管内皮細胞がある。血管内皮細胞は、プロスタサ
イクリンや組繊ブラスミノゲンアクチベーターなどを分
泌するとともに、その表面にトロンボモジュリンやヘパ
ラン硫酸を有している。このように、血管内皮細胞は様
々な機構により血管壁に血小板が粘着し、また血管内で
血液が凝固することを防いでいる。このため人工血管内
腔に血管内皮細胞を付着させることによって、血栓によ
る閉塞のない細口径の人工血管を作ろうとする試みが行
なわれてきた。−例を上げると5tan1yらは通常の
ポリエステル繊維から作成された、長さが10】、直径
が4mmの人工血管の内表面ならびに空隙にフィブリン
を貼布あるいは埋めこんだ。この人工血管を犬の血管に
置換したとき、内皮細胞を付着させた場合のほうが血栓
による人工血管の閉塞が起こらない割合(開存率)が高
いとしている。
On the other hand, vascular endothelial cells that line the lumen of blood vessels serve as ideal antithrombotic surfaces. Vascular endothelial cells secrete prostacyclin and plasminogen activator, and also have thrombomodulin and heparan sulfate on their surface. In this way, vascular endothelial cells use various mechanisms to cause platelets to adhere to blood vessel walls and to prevent blood from coagulating within blood vessels. For this reason, attempts have been made to create a narrow-diameter artificial blood vessel that is free from occlusion by thrombi by attaching vascular endothelial cells to the lumen of the artificial blood vessel. - To give an example, Tan1y et al. pasted or embedded fibrin into the inner surface and voids of an artificial blood vessel with a length of 10 mm and a diameter of 4 mm, which was made from ordinary polyester fibers. When this artificial blood vessel is replaced with a dog's blood vessel, the rate of occlusion of the artificial blood vessel due to blood clots (patency rate) is higher when endothelial cells are attached.

しかしながら、従来の人工血管に内皮細胞を植え付けた
場合には、植え付ける人工血管が硬く、はつれやすく、
また吻合および縫合が困難で、かつ縫いしろも小さくで
きないため、吻合部付近で血栓が付着し、閉塞の原因に
なっていた。また内皮細胞の人工基材への付着が弱いた
め、埋めこみ後血流によって剥離するなど内皮細胞層の
安定な形成が困難であった。
However, when endothelial cells are implanted into conventional artificial blood vessels, the implanted artificial blood vessels are hard and easily fray.
Furthermore, since anastomosis and suturing are difficult and the sewing margin cannot be made small, blood clots adhere to the vicinity of the anastomosis, causing occlusion. Furthermore, because endothelial cells adhere poorly to the artificial base material, stable formation of an endothelial cell layer has been difficult, such as peeling off due to blood flow after implantation.

[発明が解決しようとする問題点] 本発明の目的は、上記欠点のない取扱性良好にして、か
つ生体適合性に優れた血管代替材料を提供せんとするも
ので、特に細径の人工血管においても血栓による閉塞の
おこり難い材料を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a blood vessel substitute material that does not have the above-mentioned drawbacks, is easy to handle, and has excellent biocompatibility, and is particularly applicable to small diameter artificial blood vessels. Another object of the present invention is to provide a material that is less likely to be blocked by blood clots.

[問題点を解決するための手段] 本発明の目的は、0.5デニール以下の極細繊維を内表
面の少なくとも一部に用いた人工血管の内表面に細胞接
着性物質を付着せしめ、さらに血管内皮細胞をインビト
ロで付着せしめてなる血管代替材料により達成できる。
[Means for Solving the Problems] An object of the present invention is to attach a cell-adhesive substance to the inner surface of an artificial blood vessel using ultrafine fibers of 0.5 denier or less on at least a portion of the inner surface, and to This can be achieved by using a vascular substitute material to which endothelial cells are attached in vitro.

本発明の血管代替林料に用いる人工血管は、0゜5デニ
ール以下の極細繊維を内表面の少なくとも一部に用いた
人工血管からなる必要がある。極細繊維とすることで内
皮細胞が分泌し、その上で生育するコラーゲンなどの基
底膜成分と人工血管の極細繊維が強固に絡み合うため、
血流によって内皮細胞は剥離しにくくなる。また生体内
に移植後、繊維間隙への血管平滑筋細胞や繊維芽細胞の
侵入が極細繊維とすることによって多くなるため、植え
付けな内皮細胞層はさらに安定化する。また極細繊維と
なすことにより、かかる生体適合性のみならず、さらに
は柔軟性、吻合性、縫合性も著しく改善される。
The artificial blood vessel used in the blood vessel substitute forest material of the present invention must be made of an artificial blood vessel using ultrafine fibers of 0°5 denier or less on at least a portion of its inner surface. By making ultra-fine fibers, the ultra-fine fibers of the artificial blood vessel are tightly intertwined with basement membrane components such as collagen that are secreted by endothelial cells and grown on top of them.
Blood flow makes it difficult for endothelial cells to detach. Furthermore, after transplantation into a living body, the invasion of vascular smooth muscle cells and fibroblasts into the fiber interstices increases due to the use of ultrafine fibers, which further stabilizes the implanted endothelial cell layer. Furthermore, by forming the fibers into microfibers, not only the biocompatibility but also flexibility, anastomotic properties, and suturing properties are significantly improved.

本発明に用いる人工血管用極細ポリマーとしては、ポリ
エステル、ポリウレタン、ポリフェニレンサルファイド
、ポリスルホン、ポリエーテル、ポリアミド、ポリオレ
フィン、ポリテトラフルオロエチレン、ポリカーボネー
ト、ポリアセタール、ポリグリコール酸、キチン、キト
サン、セルロース、セルロースエステル、セルロースエ
ーテルおよびこれら共重合体などである。このうち、特
にポリエチレンテレフタレート、ポリブチレンテレフタ
レート、あるいはこれらのスルホン基、カルボキシル基
、アクリルアミド基などの親水基を導入した共重合体な
どのポリエステルが好ましい。
Ultrafine polymers for artificial blood vessels used in the present invention include polyester, polyurethane, polyphenylene sulfide, polysulfone, polyether, polyamide, polyolefin, polytetrafluoroethylene, polycarbonate, polyacetal, polyglycolic acid, chitin, chitosan, cellulose, cellulose ester, These include cellulose ethers and copolymers thereof. Among these, polyesters such as polyethylene terephthalate, polybutylene terephthalate, or copolymers thereof into which hydrophilic groups such as sulfone groups, carboxyl groups, and acrylamide groups are introduced are particularly preferred.

また極細繊維への親水性付与に当たっては、物理的手段
として、プラズマ処理等の高圧電界による処理なども効
果的である。
In addition, in imparting hydrophilicity to ultrafine fibers, a treatment using a high-voltage electric field such as plasma treatment is also effective as a physical means.

極細繊維の製法および加工方法については、すでにUS
P3,5.31.368:USP3,350.488:
特許公報昭61−4546等に見られるように、多成分
系繊維を形成し、その−成分を除去もしくは剥離せしめ
て極細繊維化する方法がある。この極細化処理は、予め
行なって人工血管となしても良いが、人工血管となした
後、極細化処理することもできる。かかる方法を経ずに
、直接極m繊維となしたものを用いることも当然可能で
ある。
The manufacturing and processing methods for ultrafine fibers have already been published in the US.
P3,5.31.368:USP3,350.488:
As seen in Japanese Patent Publication No. 61-4546, there is a method of forming multi-component fibers and removing or exfoliating the components to form ultra-fine fibers. This ultra-fine treatment may be performed in advance to form an artificial blood vessel, but it is also possible to perform the ultra-fine treatment after forming an artificial blood vessel. Of course, it is also possible to directly use ultra-m fibers without going through such a method.

人工血管の形成は常法に従い、織り、編み、組紐、不織
布化による直接法で形成可能である。
Artificial blood vessels can be formed by direct methods such as weaving, knitting, braiding, and non-woven fabrics according to conventional methods.

本発明では、耐はつれ性の改善も極めて重要課題である
。このため、例えばチューブ形成時に改善する手段とし
ては、捩り織り、経編、トーションレースなど、組織を
工夫することで改善することが可能である。また後加工
法としては、かかるチューブをレーザー等による熱で、
柔軟性と強度を損なわない程度に部分的、かつ間歇的に
繊維相互を融着させる方法がある。極細繊維のため、僅
かな熱でも部分的に融けやすく、柔軟性を損なわずに繊
維相互の接着、すなわち、はつれ止めが可能となる。
In the present invention, improvement of resistance to fading is also an extremely important issue. For this reason, for example, as a means for improving the tube formation, it is possible to improve the structure by devising the structure such as twist weaving, warp knitting, torsion lace, etc. In addition, as a post-processing method, such a tube is heated by a laser etc.
There is a method of partially and intermittently fusing the fibers to each other to the extent that flexibility and strength are not impaired. Because it is an ultra-fine fiber, it is easy to partially melt even with a slight amount of heat, and it is possible to adhere the fibers to each other, that is, to prevent them from fraying, without losing flexibility.

別な方法としては、細いビーム状の高圧流1ホを吹き当
てることがある。より具体的には、細い高速の水条流も
しくはエアーをチューブに吹き当てることにより繊維相
互を績ませ、はつれを防ぐことができる。この際、極細
繊維とすることで繊維相互の絡まり効果は一層助長され
る。さらにより効果的に行なうためには、別のポリマー
溶液もしくはエマルションでかるく処理することである
Another method is to apply a thin beam of high pressure flow. More specifically, by blowing a thin, high-speed water stream or air onto the tube, the fibers can be made to intertwine to prevent fraying. At this time, by using ultrafine fibers, the effect of intertwining the fibers with each other is further promoted. In order to achieve even greater effectiveness, it is possible to lightly treat with another polymer solution or emulsion.

例えばセグメント化ポリウレタンで軽く処理することで
、突貫的極細繊維の効果を妨げずに、はつれを止めるこ
とができる。かかる手段を適宜利用することで、はつれ
防止は有効に達成可能となる。
Light treatment with segmented polyurethane, for example, can stop fraying without interfering with the effect of the abrupt microfibers. By appropriately utilizing such means, prevention of fraying can be effectively achieved.

極細繊維を人工血管に用いる特徴として、比較的低透水
率の組織でも生体の細胞形成は速やかに良好に行なわれ
るし、高透水率下でもより一層良好に行なわれ、透水率
を目的に応じ幅広くとることができる。
The characteristics of using microfibers for artificial blood vessels are that biological cell formation occurs quickly and well even in tissues with relatively low water permeability, and even better even under high water permeability, and the water permeability can be varied widely depending on the purpose. You can take it.

本発明で用いる血管内皮細胞は、ウサギ、イヌ、ブタ、
マウス、サル、モルモットなど種々の動物由来のものが
使用できるが、最終的にヒトに移植することを目的とす
る場合にはヒト由来のものを用いる必要があり、移植を
受ける当人の細胞を用いることが最も好ましい。
The vascular endothelial cells used in the present invention include rabbit, dog, pig,
Cells derived from various animals such as mice, monkeys, and guinea pigs can be used, but if the purpose is to ultimately transplant them into humans, it is necessary to use cells derived from humans. Most preferably, it is used.

この細胞は動脈、靜脈、毛細血管などから、例えば江橋
節部編「心臓・血管研究方法の開発」p。
These cells are derived from arteries, blood vessels, capillaries, etc., for example, "Development of Heart and Blood Vessel Research Methods," edited by Noribe Ebashi, p.

27〜37と同様の手法により採取することができる。It can be collected by the same method as Nos. 27-37.

ヒトの場合は大伏在靜脈、あるいは脂肪組織の毛細血管
由来のものを用いるのが一般的である。
In humans, it is common to use those derived from the greater saphenous vein or the capillaries of adipose tissue.

これらの内皮細胞は分難後、本出願に記す人工血管に付
着され血管代替物とされるが、適当な培地中でインビト
ロで培養された後、移植に用いるのが好ましい。また基
材へ細胞を付着させるに先立ち、適当な数になるまで通
常の手法に従って、例えば組織培養フラスコを用いてイ
ンビトロにて細胞を培養させた後、人工血管に付着させ
ることも有効である。
After separation, these endothelial cells are attached to the artificial blood vessel described in this application and used as a blood vessel substitute, but it is preferable to use them for transplantation after culturing them in vitro in an appropriate medium. It is also effective to culture the cells in vitro in a tissue culture flask, for example, using a tissue culture flask, according to a conventional method, before attaching the cells to the substrate, and then attach the cells to the artificial blood vessel.

人工血管へ内皮細胞を安定して付着させるために、人工
血管内表面にコラーゲン、ゼラチン、フィブロネクチン
、ビトロネクチン、ラミニン、フィブリンなどの細胞接
着性物質をあらかじめコーティングすることが必要であ
る。このコーティングをより確実にするため、1)人工
血管のグロー放電処理および/またはプラズマ処理、2
)コーティングされた細胞接着性物質の化学的手段によ
る架橋、3)人工血管内腔への細胞接着因子の固定化な
どを行なうことは特に有効である。
In order to stably attach endothelial cells to an artificial blood vessel, it is necessary to coat the inner surface of the artificial blood vessel with a cell-adhesive substance such as collagen, gelatin, fibronectin, vitronectin, laminin, or fibrin in advance. In order to make this coating more reliable, 1) glow discharge treatment and/or plasma treatment of the artificial blood vessel, 2)
It is particularly effective to crosslink the coated cell adhesion substance by chemical means, and 3) immobilize the cell adhesion factor to the lumen of the artificial blood vessel.

細胞接着性物質が付着された人工血管の内表面に内皮細
胞を付着させるには、15%のFe2を含むM199培
地等の培地に血管内皮細胞を浮遊させた細胞培養液を人
工血管内に注入して内表面に接触させるか、人工血管内
で該細胞培養液を培養することにより行なう。
To attach endothelial cells to the inner surface of an artificial blood vessel to which a cell-adhesive substance has been attached, a cell culture solution in which vascular endothelial cells are suspended in a medium such as M199 medium containing 15% Fe2 is injected into the artificial blood vessel. This can be done by bringing the cells into contact with the inner surface, or by culturing the cell culture solution within an artificial blood vessel.

[実 施 例] 次に、実施例により本発明をより具体的に説明するが、
本発明はこれらのみにとられれるものではない。
[Example] Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these.

実施例1 0.07デニールのポリエステル極細繊維を用い平織り
組繊にて内径3rl!r+1、長さ6cmの人工血管を
作成した。ついで高圧の水条流をあて繊維相互を絡ませ
た。織り目の間には分繊した極細繊維が数本横切った構
造をなしていた。この人工血管をアルゴンガスの存在下
にプラズマ処理を行なった後、内腔に0.5%の精製ア
テロコラーゲン水溶液を注入し、風乾することで人工血
管内部のコラーゲンコーティングを行なった。
Example 1 Using 0.07 denier polyester ultrafine fiber, plain weave and inner diameter 3rl! An artificial blood vessel with r+1 and a length of 6 cm was created. A high-pressure water stream was then applied to entangle the fibers with each other. It had a structure in which several split ultra-fine fibers crossed between the weaves. After this artificial blood vessel was subjected to plasma treatment in the presence of argon gas, a 0.5% purified aqueous atelocollagen solution was injected into the lumen and air-dried to coat the inside of the artificial blood vessel with collagen.

血管内皮細胞はイヌ外頚静脈由来のものを使用した。無
菌的に取り出した動脈をリン酸緩衝液(PBS)で数回
洗浄した後、0.05%のトリプシンを含むPBSを加
え、両端を結んで室温に30分間静置した。浮遊した細
胞を遠心分離にて集め、20%のウシ胎児血清(Fe2
)と1.5■/ mlのECGF (コロボレーティブ
社製)を含むM199培地を用い、37度のCO2イン
キュベーター内で培養した。
The vascular endothelial cells used were those derived from the external jugular vein of dogs. After the artery was aseptically removed and washed several times with phosphate buffered saline (PBS), PBS containing 0.05% trypsin was added, both ends were tied, and the artery was left at room temperature for 30 minutes. Floating cells were collected by centrifugation and added with 20% fetal bovine serum (Fe2
) and 1.5 μ/ml ECGF (manufactured by Coloborative) using M199 medium and cultured in a CO2 incubator at 37 degrees.

蛍光ラベルした■因子関連抗原抗体で蛍光染色されるこ
とにより、この細胞が血管内皮細胞であることを確認し
た。10日間培養することで1×105個の血管内皮細
胞を得た。
The cells were confirmed to be vascular endothelial cells by fluorescent staining with a fluorescently labeled factor-related antigen antibody. By culturing for 10 days, 1×10 5 vascular endothelial cells were obtained.

細胞をI〜リプシン処理した後、上述の培地に浮遊させ
人工血管内腔を注入した。ついで両端を縫合糸でしばり
、培地を加えたローラーボトル内で水平位置を保ったま
ま緩やかにローラーボトルを4時間回転させることで、
人工血管に血管内皮細胞を付着させた。この操作によっ
て注入細胞の約65%が人工血管に付着した。人工血管
に付着せしめた内皮細胞の培養を人工血管の両端を開放
した後、ボトル自体をゆっくりと回転させながら37度
の恒温室内で2日間行なった。人工血管の一部を切り開
き、ヘマトキシリンーエオイジン染色を行なったところ
、人工血管の内面の50%以上が内皮細胞によって被覆
されていることが確認された。イヌを5頭用いて、イヌ
1頭の細胞からそれぞれ2本の血管代替物(計10本)
を作成した。
After the cells were treated with I~lipsin, they were suspended in the above-mentioned medium and injected into the lumen of an artificial blood vessel. Then, both ends were tied with sutures, and the roller bottle was gently rotated for 4 hours while maintaining the horizontal position in the roller bottle containing the culture medium.
Vascular endothelial cells were attached to the artificial blood vessel. By this operation, approximately 65% of the injected cells adhered to the artificial blood vessel. After opening both ends of the artificial blood vessel, endothelial cells attached to the artificial blood vessel were cultured for two days in a thermostatic chamber at 37 degrees while slowly rotating the bottle itself. When a part of the artificial blood vessel was cut open and stained with hematoxylin-eosin, it was confirmed that more than 50% of the inner surface of the artificial blood vessel was covered with endothelial cells. Using 5 dogs, 2 blood vessel substitutes were made from each dog's cells (10 in total)
It was created.

この人工血管2本づつの細胞を採取したものと、それぞ
れ同じ5頭のイヌの大腿動脈に置換した。
The cells from each of these two artificial blood vessels were collected and replaced with the femoral arteries of the same five dogs.

30日後の開存率は80%であった。開存していたもの
では内表面の70%以上が血管内皮細胞で被覆されてお
り、またいずれの箇所にも赤色血栓を認めなかっな。埋
め込みに際し、吻合性および縫合性は良好で針の通りも
良く、切断端から1゜5mm程度の縫いしろにもかかわ
らず、はつれはなかった。
The patency rate after 30 days was 80%. In those that were patent, more than 70% of the inner surface was covered with vascular endothelial cells, and no red thrombus was observed at any location. During implantation, the anastomosis and suturing properties were good, the needle passed through easily, and there was no fraying despite the sewing margin of about 1.5 mm from the cut end.

比較実施例 実施例と同一の人工血管を用い、1)コラーゲンをコー
ティングした後内皮細胞を培養しないもの、2)コラー
ゲンをコーティングせず内皮細胞を付着せしめたもの、
および3)1.4デニールの同一素材を用いて作成した
人工血管にコラーゲンコーティングした後、内皮細胞を
培養したものについて、それぞれ10本づつ5頭のイヌ
に置換した。30日後の開存率は、1)、2)ともに1
0%、3)は50%であった。3)の開存例のうち、2
例は内皮細胞の被覆が60%以上であったが、他の3例
は特に吻合部付近に赤色血栓が認められ、内皮細胞によ
る被覆率は20%以下であった。また、3)は切断端が
ほつれるため2.5mm以上の縫いしろをとらなければ
吻合が困難であった。
Comparative Example Using the same artificial blood vessels as in Example, 1) one in which endothelial cells were not cultured after coating with collagen, 2) one in which endothelial cells were attached without coating with collagen,
and 3) artificial blood vessels made using the same 1.4 denier material were coated with collagen and cultured with endothelial cells, and 10 of each were replaced in five dogs. The patency rate after 30 days is 1 for both 1) and 2).
0%, 3) was 50%. Among the patency cases of 3), 2
In this example, the endothelial cell coverage was 60% or more, but in the other three cases, red blood clots were observed especially near the anastomosis, and the endothelial cell coverage was 20% or less. In addition, in case 3), the cut end frayed, making it difficult to perform anastomosis unless a seam allowance of 2.5 mm or more was taken.

[発明の効果] 本発明の材料は生体適合性に優れ、血栓閉塞のおこり難
いのもであるため血管代替材料として有用であり、特に
細径人工血管用として優れた材料である。
[Effects of the Invention] The material of the present invention has excellent biocompatibility and is unlikely to cause thrombotic occlusion, so it is useful as a blood vessel substitute material, and is particularly an excellent material for use in small-diameter artificial blood vessels.

Claims (1)

【特許請求の範囲】[Claims] (1)0.5デニール以下の極細繊維を内表面の少なく
とも一部に用いた人工血管の内表面に細胞接着性物質を
付着せしめ、さらに血管内皮細胞をインビトロで付着せ
しめてなる血管代替材料。
(1) A vascular substitute material, which is obtained by attaching a cell-adhesive substance to the inner surface of an artificial blood vessel using ultrafine fibers of 0.5 denier or less on at least a portion of the inner surface, and further adhering vascular endothelial cells in vitro.
JP62329284A 1987-12-24 1987-12-24 Blood vessel substitute material Pending JPH01170467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62329284A JPH01170467A (en) 1987-12-24 1987-12-24 Blood vessel substitute material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62329284A JPH01170467A (en) 1987-12-24 1987-12-24 Blood vessel substitute material

Publications (1)

Publication Number Publication Date
JPH01170467A true JPH01170467A (en) 1989-07-05

Family

ID=18219733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62329284A Pending JPH01170467A (en) 1987-12-24 1987-12-24 Blood vessel substitute material

Country Status (1)

Country Link
JP (1) JPH01170467A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274244A (en) * 1989-04-14 1990-11-08 Yasunori Morohoshi Artificial blood vessel and its manufacture
WO1992017218A1 (en) * 1991-03-29 1992-10-15 Vascular Graft Research Center Co., Ltd. Composite artificial blood vessel
JP2006130007A (en) * 2004-11-04 2006-05-25 Japan Science & Technology Agency Hybrid complex and manufacturing method thereof, and medical material using the same
JP2019531695A (en) * 2016-09-14 2019-11-07 レボテック カンパニー,リミティド Artificial tissue precursor and method for preparing the same
US11439731B2 (en) 2016-09-14 2022-09-13 Revotek Co., Ltd. Artificial tissue progenitor and method for preparing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274244A (en) * 1989-04-14 1990-11-08 Yasunori Morohoshi Artificial blood vessel and its manufacture
WO1992017218A1 (en) * 1991-03-29 1992-10-15 Vascular Graft Research Center Co., Ltd. Composite artificial blood vessel
JP2006130007A (en) * 2004-11-04 2006-05-25 Japan Science & Technology Agency Hybrid complex and manufacturing method thereof, and medical material using the same
JP2019531695A (en) * 2016-09-14 2019-11-07 レボテック カンパニー,リミティド Artificial tissue precursor and method for preparing the same
US11439731B2 (en) 2016-09-14 2022-09-13 Revotek Co., Ltd. Artificial tissue progenitor and method for preparing the same

Similar Documents

Publication Publication Date Title
Miyata et al. Collagen engineering for biomaterial use
JP3504389B2 (en) Tubular graft impregnated with collagen sealant containing heparin
Chandy et al. Use of plasma glow for surface-engineering biomolecules to enhance bloodcompatibility of Dacron and PTFE vascular prosthesis
JP4526487B2 (en) Implantable tubular prosthesis made of polytetrafluoroethylene
KR100250409B1 (en) Elastin, elastin-based biomaterials and process
US5986168A (en) Prosthesis containing bioabsorbable materials insolubilized without chemical reagents and method of making the same
JP3318578B2 (en) Methods for promoting endothelialization and implantable products
Guidoin et al. Albumin coating of a knitted polyester arterial prosthesis: an alternative to preclotting
JP2008531125A (en) Implantable medical device with laminin coating and method of use
WO1992017218A1 (en) Composite artificial blood vessel
WO1992009312A1 (en) Implant material
JPH04242642A (en) Hybrid artificial blood vessel and preparation thereof
Minh et al. Fabrication of polycaprolactone/polyurethane loading conjugated linoleic acid and its antiplatelet adhesion
JPH01170467A (en) Blood vessel substitute material
Sigot‐Luizard et al. Cytocompatibility of albuminated polyester fabrics
Guidoin et al. A compound arterial prosthesis: the importance of the sterilization procedure on the healing and stability of albuminated polyester grafts
JPH0459901B2 (en)
Cardon et al. Sealing of polyester prostheses with autologous fibrin glue and bone marrow
CZ2017427A3 (en) Composite vascular replacement and method of its production
Changizi et al. Epsin mimetic UPI peptide delivery strategies to improve endothelization of vascular grafts
Ferrari et al. Small diameter vascular grafts coated with gelatin
Guidoin et al. Polyester prostheses as substitutes in the thoracic aorta of dogs. II. Evaluation of albuminated polyester grafts stored in ethanol
JPH01170465A (en) Intracorporeal implant material
JP3591868B2 (en) Artificial prosthesis
JPH0824686B2 (en) High-performance artificial blood vessel